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ABSTRACT
How hosts become exposed to environmentally transmitted pathogens has signif-
icant consequences for their dynamics and control, including conservation-critical
cases. We investigate whether dynamics of the globally important parasite Sarcoptes
scabiei are strongly influenced by transmission. We compare two transmission mod-
els, based on mange transmission in the bare-nosed wombat Vombatus ursinus: a
published model of exposure via free mixing in the environment, and a novel spatially
implicit model representing binary exposure. We also integrate disease management
into our models. We confirm up to four steady states are possible in either model,
demonstrating that robust mathematical conclusions underpin previous empirical
observations. We present detailed analytical and numerical evidence that a disease-
free steady state is achievable for wombats under a range of treatment strategies,
though more treatment effort is required in the case of binary exposure. These re-
sults enhance confidence in the success of applied management of environmentally
transmitted pathogens impacting wildlife.
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1 Introduction
Pathogens that are transmitted between hosts via the environment are responsible for some of themost conservation-critical dis-
eases facing wildlife (e.g., Bat White Nose syndrome, chytridiomycosis, Chronic Wasting Disease, sarcoptic mange) (Tompkins
et al., 2015). The development of theory relating to environmentally transmitted pathogens is therefore of direct relevance to
contemporary conservation issues, including the properties governing disease dynamics and assessment of disease-management
strategies. For example, the nature of host exposure to pathogen fomites in the environment (e.g., whether exposure is charac-
terised as generalised, binary, density- or frequency-dependent) can have consequences for thresholds of pathogen-driven host
declines, host-pathogen coexistence, andpathogen extinction (Devenish-Nelson et al., 2014; Beeton et al., 2019). Understanding
how the nature of pathogen exposure inuences host-pathogen thresholds can inuence the eectiveness of disease-mitigation
strategies (Joseph et al., 2013). Thus, theoretical studies interrogating environmentally transmitted pathogens of wildlife based
on empirical foundations are of both specic and general value.

Among themost generalist ofmammalianpathogens is the parasiticmiteSarcoptes scabiei, which causes the disease scabies (in
humans) or sarcopticmange (in other animals) (Fraser et al., 2016). Depending on host species, S. scabiei can be environmentally
or directly transmitted (Arlian andMorgan, 2017). It has been documented to aect wildlife populations, including canids (e.g.,
Vulpes vulpes,Vulpesmacrotis,Canis lupus,Nycterautes procyonoides), felids (e.g.,Acinonyx jubatus,Panthera leo), ungulates (e.g.,
Syncerus caffier, Capra ibex, Capricornis swinoei), primates (e.g., Gorilla gorilla, Pan paniscus) and marsupials (e.g., Vombatus
ursinus, Phascolarctos cinereus) (Bornstein et al., 2001; Pence andUeckermann, 2002; Astorga et al., 2018). Scabies is also among
the 30 most prevalent human pathogens and was recently declared by the World Health Organisation as a Neglected Tropical
Disease (Mounsey et al., 2016). A range of disease dynamic patterns are observed for S. scabiei in wildlife populations, including
stable coexistence, limit cycles and extirpation of host and pathogens (Beeton et al., 2019). Additionally, S. scabiei is subject to
various intervention strategies in both human and non-human populations using a range of parasiticides, delivered in a variety
of ways dependent on whether the specic host-parasite transmission is direct or environmental (Arlian andMorgan, 2017).

The bare-nosedwombat (Vombatus ursinus, a.k.a. commonwombat) is thewildlife speciesmost aected by sarcopticmange
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in Australia (Fraser et al., 2016). Owing to the solitary nature of bare-nosed wombats (hereafter referred to as ‘wombats’) trans-
mission between individuals is overwhelmingly through environmental fomites (Skerratt et al., 1999; Skerratt, 2005; Martin
et al., 2018). There is much uncertainty around the nature of their environmental exposure to S. scabiei, owing to challenges
associated with sampling mites from the environment. The general assumption is that transmission occurs in burrows, which
these nocturnalmarsupials reside in during the day, although this has never been directly tested. There aremultiple dynamic sce-
narios observed forwombats andmangedisease. Empirical researchhas shownpopulation extirpation, coexistence andpathogen
fade-out resulting in disease-free equilibria for wombats and S. scabiei (Martin et al., 2018). These observations are supported
by theoretical models (Beeton et al., 2019). In addition, there is much applied management and public interest in controlling
mange disease in wombat populations due to S. scabiei being an invasive parasite to Australia, introduced by European settlers
and their domestic animals (Fraser et al., 2016).

Themanner inwhich susceptiblewombats become exposed to S. scabieimayhave important implications for understanding
empirical disease dynamics and disease mitigation strategies, and this is not well understood. In one scenario, as modelled in
Beeton et al. (2019), wombats experience generalised exposure to mange-causing mites via the environment, consistent with a
population that is mixing relatively freely in the environment where pathogen fomites exist. This type of mixing is common
to many mechanistic models that accurately capture empirical disease and host-population dynamics, even though population
mixing is almost always more heterogeneous (Keeling and Rohani, 2008). Indeed, much contemporary research has focused
on understanding the role of heterogeneities (i.e., contact and transmission heterogeneity) on disease and population dynamics
(Lloyd-Smith et al., 2005). For wombats, evidence suggests that they are primarily exposed in the bedding chambers of burrows
in which they sleep (Skerratt, 2005). As wombats periodically switch the burrow in which they sleep (Martin et al., 2018),
exposure of susceptible individuals may therefore be binary in nature (i.e., the burrow either contains mites which wombats get
exposed to, or not), rather than a freely mixing scenario. Modelling this heterogeneity in transmission among wombat burrows
requires a qualitatively dierent approach; we adopt a spatially implicit approach for simplicity (Lopes et al., 2010), as opposed
to opting for a spatially explicit approach using metapopulations (Snäll et al., 2008) or individual-based models.

In this present study, we ask to what extent is mechanistic modelling that treats transmission of S. scabiei amongwombats as
freemixing robust to the other extreme of transmission, binary exposure in burrows? This question is of both fundamental and
applied value, as the extent of congruence has implications for the dynamical properties of the system, disease-control programs
aimed at mite eradication to protect bare-nosed wombats against disease-driven population declines, and even local extinction
events.

We may not necessarily be able to expect even qualitatively similar results after changing the model structure: such changes
can cause unpredictable results due to emergent behaviour in nonlinear systems, and many canonical examples exist demon-
strating this. The discrete logistic map is used to model populations with non-overlapping generations, yet can lead to chaos
under certain parameter values, despite such behaviour being entirely absent from its continuous-time analogue (May, 1976).
The Lotka-Volterra system used tomodel competing species converges to a stable equilibrium for two species, but is capable of a
wide range of behaviours for three ormore (May, 1976). Systems that are locally stable can become unstable whenmade spatially
explicit and diusion is introduced, potentially leading to Turing patterns (Turing, 1952).

2 The Mathematical Model
We consider a total population ofN (t) wombats, andwe suppose that there are four sub-populations, with S (t), E(t), I (t) and
R(t) individuals in each. The symbol t denotes time measured in days, and we clearly have

N = S + E + I + R. (1)

These four sub-populations S,E, I andR correspond approximately to the usual four sub-groups Susceptible, Exposed, Infected
and Recovered (Beeton et al., 2019), familiar from classical disease-spread models. Here, S (t) are the susceptible wombats, and
the “exposed” classE(t) representswombats carrying a fewmites, but are not yet showing symptoms ofmange. We adopted anE
and I class in ourmodels as they reect the conditions observable in the eld. Early stages of S. scabiei infection are inapparent in
wombats and generally not possible to diagnose relative to healthy individuals. However, as infection increases, signs of disease
develop and are diagnosable both clinically and by observation (Fraser et al., 2018; Martin et al., 2019). The infected group I (t)
are those with signicantmite infestationwho are sick or enfeebled as a result. Finally, there are the “recovered” individualsR(t)
that are resistant to mite infestation, at least in the short term, following treatment for the mites.

Wombats spend a signicant fraction of their time living in undergroundburrows. Whilewombats are solitary, they do share
the same burrows inwhich they sleep asynchronously, owing to switching burrows periodically (around once per week) (Martin
et al., 2019). Thus, although the mites do not survive long by themselves outside of the burrow (up to around 19 days), they
may be transmitted from one wombat to another through the material in the burrow bedding chamber, in a type of second-
order contact process. To avoid the added complexity of a spatially explicit approach, we instead opt for a spatially implicit
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Figure 1: Schematic diagram of the interaction between wombat sub-populations. The probability P of wombat infection
through an infected burrow is also indicated on the diagram, and its eective interactionwith the population groups is indicated
with dashed lines. (For interpretation of the references to colour in this gure legend, the reader is referred to the web version of
this article.)

approach (e.g., see Lopes et al., 2010). We achieve this by using a fth variable P (t), which is the proportion of burrows that
contain enough mites to ensure infection of any wombat that enters them. Clearly 0 ≤ P ≤ 1, and so P (t) also represents the
probability of infection of awombat entering a newburrowat random. This situation is illustrated in Figure 1. The second-order
term αSP thus gives the rate at which susceptible individuals are immediately transformed into “exposed” ones, with parameter α
representing a constant rate of movement of susceptible wombats between burrows at random. Exposed wombats then become
infected at a constant rate γ. The constant µ is the natural death rate of all wombats, and the additional constants µE and µI are
the extra rates at which the exposed and the infected individuals E and I die as a result of the mites they carry. We note that the
rate of transition ofwombats fromE to I is twice as high as µE (see Section 5), and thus has negligible inuence on interpretation
of the models. The natural mortality rate of the mites is responsible for the constant µP , the rate at which burrows lose their
infectious status. Wombats can be treated for mange using various pesticides, distributed indiscriminately at a population scale,
making them temporarily resistant to infection (Martin et al., 2019). Once awombat becomes resistant to themites, the constant
r in Figure 1 corresponds to the reversion rate at which the treatment wears o and recovered wombats become susceptible. To
protect or treat the wombats, eld ecologists are experimenting with small aps, laced with parasiticides, placed over the entries
to their burrows, and which the wombats must contact each time they enter or leave the burrow (Martin et al., 2019). This
provides a constant rate k at which wombats become resistant.

A logistic birth rate for wombats is assumed, and the population of wombats is made dimensionless by scaling it against
the carrying capacity of the environment. Consequently, the dimensionless fecundity-limiting capacity is 1, and the overall
population increase rate behaves like bN (1 − N ) for some constant birth rate b per wombat. The function N (t) is the total
wombat population in (1).

These modelling assumptions, combined with Figure 1, may be developed into a series of ordinary dierential equations
(ODEs) for each of the ve variables that describe this system. The rate of increase in the Susceptible sub-population is

dS
dt

=
[
bN (1 −N ) + rR

]
(1 − P) − αSP − (µ + k)S, (2)

and the “exposed” population varies as

dE
dt

=
[
bN (1 −N ) + rR + αS

]
P − (µ + γ + k + µE)E. (3)

Since this model assumes that mite infection occurs only in the wombat burrows, where also new wombats are born, both the
susceptible S and exposed E populations contain the logistic birth term. Wombats are born susceptible if their burrow does
not contain mites, and the probability of this is (1 − P). On the other hand, wombats are exposed at birth if they are born to a
mother in a mite-laden burrow, and the proportion of these is P.

From Figure 1, the number of infected wombats changes according to the rate law

dI
dt

= γE − (µ + k + µI )I (4)
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and the population of resistant wombats changes as

dR
dt

= k(S + E + I) − (µ + r)R. (5)

It is also necessary to account for the changing proportion P of infected burrows, and from Figure 1,

dP
dt

= β(E + I) (1 − P) − µPP. (6)

In equation (6), the rst term indicates that the rate of increase of infected burrows is proportional to the number of uninfected
burrows that are occupied by either an exposed E or an infected wombat I , multiplied by a burrow infection rate β. The term
−µPP provides a mechanism for an infected burrow to become uninfected once again, as the mites within it die at a rate µP .

Note that this rate depends on infectious wombats remaining in the burrow and regularly shedding mites rather than just
visiting it, as for wombat infection. To illustrate, assume that there are B available burrows and denote F = BP as the number
of infectious burrows with a high fomite load. Then

dF
dt

= ξ (E + I)B − F
B

− µPF ,

assuming that wombats are randomly dispersed among burrows and that uninfectious burrows containing an infected wombat
will become infectious at some rate ξ . Then

dP
dt

=
1
B
dF
dt

=
ξ
B
(E + I) (1 − P) − µPP

so the burrow infection rate β = ξ/B is the infection rate of an individual burrow divided by the total number of burrows.
For the purposes of direct comparison, we show the equations from Beeton et al. (2019) with their equivalents in equations

(1)–(6), where these dier. The equations for
dI
dt

and
dR
dt

are identical for both models.

dS
dt

=


bN (1 −N ) + rR −

βSF
1 + F

− (µ + k)S, from Beeton et al., 2019[
bN (1 −N ) + rR

]
(1 − P) − αSP − (µ + k)S from eq. (2)

dE
dt

=


βSF
1 + F

− (µ + γ + k + µE)E, from Beeton et al., 2019[
bN (1 −N ) + rR + αS

]
P − (µ + γ + k + µE)E from eq. (3)

dF
dt

= f (E + I) − µFF from Beeton et al., 2019

dP
dt

= β(E + I) (1 − P) − µPP from eq. (6)

Themajor aimof this present paper is to determine the extent towhich this newmodel, described by equations (1)–(6), gives
predictions that are compatible with those of the previous description of wombat-mite interaction. This will be an important
indicator of how robust such models are in their ability to provide consistent management strategies.

While the two models describe the same system, the mechanisms are quite dierent. In the previous work, all susceptible
wombats are assumed to be equally susceptible to infection and thus enter the exposed class at the same rate. The current work
diers in two respects: susceptible wombats cannot be infected until they enter an infected burrow, at which point they will
be infected. In other words: in the previous work heterogeneities in the environment had no eect on the model, but here the
infection status of wombats is entirely dependent on their local environment in a binary sense, with their movement through
the environment being the determining factor. In this respect, it more closely represents reality in the eld.

This comparison is important, since if the two are in broad agreement, then the results are more robust and are therefore
likely to be seen in actual eld studies. This would then indicate that themite eradication schemes thesemodels suggest are likely
to be eective in protecting bare-nosed wombats against severe loss and even possible extinction, as a result of sarcoptic mange.
Any dierences in the twomodels may also point to potential unforeseen outcomes due to model assumptions that can then be
accounted for.



LETTERS IN BIOMATHEMATICS 7

3 Steady State Populations
Our previous study (Beeton et al., 2019) of sarcoptic mange in wombats identied four dierent steady states. The rst resulted
in complete extinction of bothmites andwombats, and therewas a second state inwhich thewombats survived but themites did
not. This second state would be the aim of any treatment regime against sarcoptic mange. There were also two further endemic
states in which both mites and wombats survived, although one of these states contained some negative sub-populations and so
is not a biologically meaningful outcome.

The present model likewise contains four steady states. There is again a state of total extinction, in which all the sub-
populations are zero and the proportion of infected burrows is also therefore zero. Mathematically,

(Seq,Eeq, Ieq,Req,Peq) = (0, 0, 0, 0, 0). (7)

Disease-spread models commonly contain such an extinction state, as discussed by Hethcote (2000).
There is also a steady state solution in this model, in which wombats survive but mites do not, as in Beeton et al. (2019). We

follow that paper and dene constants

λ0 = µ + r
λR = µ + r + k, (8)

so that the second equilibrium can be written succinctly as

(Seq,Eeq, Ieq,Req,Peq) =
(
λ0 (b − µ)

bλR
, 0, 0,

k(b − µ)
bλR

, 0
)
. (9)

The total mite population in (1) in this case becomes simplyNeq = (b − µ)/b. This is identical to their mite-free equilibrium.
As with the previous model, there are two further endemic steady states in this new model. It is convenient to dene addi-

tional constants

mI = µ + k + µI
mE = µ + k + µE
mA = µ + k + α. (10)

Then it follows from (4) and (5) that the equilibrium populations are related according to

Eeq =
mI

γ
Ieq

Seq =
λ0
k
Req −

(mI + γ)
γ

Ieq, (11)

making use of the constants dened in (8). The steady-state distribution of infected burrows is found from (6) to be

Peq =
β(mI + γ)Ieq

γµP + β(mI + γ)Ieq
, (12)

in terms of the equilibrium number Ieq of infected wombats. So long as Ieq ≥ 0, the proportion of infected burrows in (12) lies
in the interval 0 ≤ Peq ≤ 1, as required. It follows from (1) that the total wombat population at equilibrium has the simple form
Neq = (λR/k)Req.

To derive expressions for the endemic populations, it is useful to dene further constants

ϕ =
α
β
µPmI (mE + γ)

ψ =
α
γ
(mI + γ)

[
α(mI + γ) +mI (mE + γ)

]
σ = bλR + kr + αλ0, (13)

where use has been made of the constants (8) and (10). Then the steady-state form of (3) shows that

Ieq =
α(mI + γ)

ψ

[
σ
k
Req − b

(
λR
k

)2
R2
eq

]
−
ϕ
ψ
. (14)
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Finally, it remains to derive an equation forReq fromwhich all the other equilibrium quantities can then be calculated. The
steady-state forms of (2) and (3) are added, and use is made of the expressions (11), (12) and (14) to give, after some algebra, the
quadratic equation

0 = bαmA

(
λR
k

)2
(mI + γ)2R2

eq − αP̃
(
λR
k

)
(mI + γ)Req − ϕQ̃. (15)

Here, the additional constants

Q̃ = µEmI + µIγ

P̃ =(b − µ)
[
α(mI + γ) +mI (mE + γ)

]
− σ
λR

Q̃ (16)

have been dened for convenience. This quadratic equation (15) hasmuch in commonwith the equation in Beeton et al. (2019)
for the endemic states in that model. Its two solutions are

Req =
k

2bαmAλR (mI + γ)

[
αP̃ ±

√︂(
αP̃

)2
+ 4bαmAϕQ̃

]
. (17)

The constants ϕ dened in (13) and Q̃ in (16) are both positive, and so it follows from the solution (17) that both values of
Req are real, with the positive sign giving a positive value for Req and the negative sign giving a negative value. The equilibrium
obtainedwith the negative sign in (17) is therefore never of any biological signicance. The other endemic state, with the positive
sign, always gives Req > 0 but may nevertheless give some negative values for the other equilibrium populations in (11), (12)
and (14), depending on the values of the constants in the model. In those cases, this second endemic steady state is also not
biologically meaningful, in which case only the extinction state (7) and the no-mites state (9) would remain. This situationmay
even be optimal, in a biological sense, since it is the mite-free equilibrium (9) that is the most desirable from the point of view of
protecting bare-nosed wombats.

4 Stability of Equilibria
We are concerned to know the conditions under which the mite-free steady state (9) is stable, since to achieve this state in the
eld would be the aim of any treatment programme.

For the total extinction steady state (7) in Section 3, the eigenvalues may be determined as the roots of the characteristic
equation det(J − ΛI) = 0, and after some algebra are found to be

Λ = −µP ; −(γ +mE); −mI ; −λR; (b − µ) (18)

The rst four of these are negative, but the last one is positive in our case of interest b > µ, where we dene the wombat birth
rate b to exceed the death rate by natural causes µ. In the converse case b < µ, all eigenvalues are negative, meaning the wombat
population will always become extinct even in the absence of mites, which is not of interest to us from a dynamics perspective.
This is therefore an unstable equilibrium, behaving as a saddle in 5-dimensional phase space. This dynamical behaviour near the
total equilibrium state is commonly encountered (e.g., Ross River Virus, Denholm et al., 2017).

From the point of view of wombat survival, the most important steady state is the mite-free case (9) in Section 3. In this
case, the eigenvalue calculation yields the characteristic equation

det(J − ΛI) = −
[
Λ2 + (b + k + r)Λ + λR (b − µ)

]
×
[
Λ3 + a2Λ2 + a1Λ + a0

]
= 0 (19)

in which we have dened the constant coecients

a2 =(mE + γ) + (mI + µP)

a1 =(mI + µP) (mE + γ) + µPmI −
β(b − µ)mAλ0

bλR

a0 = µPmI (mE + γ) − (mI + γ)
β(b − µ)mAλ0

bλR
. (20)

The expression (19) is a quintic polynomial equation for the eigenvalue Λ, and so it has ve roots. It consists of a quadratic
polynomial multiplied by a cubic; the quadratic has two roots and the cubic has three. It is straightforward to calculate the two
roots of the quadratic and to determine that, for b > µ, their real parts are always negative. Thus the eigenmodes corresponding
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to these two roots are always stable. Stability of the equilibrium point must therefore be determined by the three remaining
roots of the cubic in (19). It is not, however, generally feasible to calculate the roots of the cubic directly in closed form, and so
to determine whether or not their real parts are negative and the steady state therefore stable. We can use the Routh-Hurwitz
criterion (e.g., see Murray, 1989) to determine a necessary condition for stability; this asserts that the roots of the cubic will all
have negative real parts if the inequalities

a2 > 0 ; a0 > 0 ; a2a1 > a0 (21)

all hold simultaneously. Thus the condition (21) must be satised for the steady state to be stable. The rst condition in (21) is
trivially true, and the second requirement a0 > 0 leads to the necessary condition

µP >
β(mI + γ) (b − µ)mAλ0

(mE + γ)bmIλR
(22)

for stability of themite-free equilibrium. Weobserve that the requirement (22) is not yet sufficient to guarantee stability, since the
nal inequality in (21) has not been satised. This is extremely dicult to do, and the algebra is overwhelming. In general, then,
we only have the weaker (necessary) stability condition (22) as a guide to the stability of this important mite-free equilibrium
point.

In the special case µE = µI , Beeton et al. (2019) were able to show that the last inequality in (21) is also satised, thusmaking
their equivalent of (22) both a necessary and a sucient condition for stability of the important mite-free steady state. A similar
result is achieved here.

When µE = µI , the cubic in (19) can be written in the simpler form

Λ3 + a2Λ2 + a1Λ + a0

=[Λ +mI + γ] ×
[
Λ2 + (mI + µP)Λ + µPmI −

β(b − µ)mAλ0
bλR

]
.

Now the three roots of this cubic can be identied at once. They are

Λ = − (mI + γ)

Λ = −
(mI + µP)

2
±

√︄(mI − µP
2

)2
+
β(b − µ)mAλ0

bλR
, (23)

when µE = µI . The rst of the eigenvalues in (23) is clearly negative and the next two are clearly real since their discriminant is
positive. For these two to be negative, the square-root termmust be smaller than the rst term, which requires

µP >
β(b − µ)mAλ0

bmIλR
. (24)

This condition (24) is therefore both necessary and sucient for the mite-free equilibrium to be stable, in the case µE = µI .The
more general (necessary) condition (22) reduces to (24) for this case. This condition is directly related to (2.17) in Beeton et al.
(2019)—replacing the shedding rate f from that result with mA = µ + k + α and µF with µP gives our result, suggesting that
these two variables are equivalent in some sense.

The stability of the two endemic steady states (17) can be ascertained in the same way as above. The 5× 5 Jacobianmatrix of
derivatives is calculated and evaluated at each of these two endemic states numerically to calculate the eigenvalues that determine
stability. As a check, this purely numerical procedure was used for all four steady states, including the total extinction state and
the mite-free equilibrium discussed above, and compared with the analytical results obtained here.

5 Presentation of Results and Discussion
We here present results produced by the system of equations (2)–(6) and interpreted by our analyses above and numerical sim-
ulation in the R programming language (R Core Team, 2018). We particularly focus on their biological signicance and their
relationship to the model of Beeton et al. (2019). We rst summarise the broad characteristics our new model shares with the
earlier one, then give a more detailed description of the dierences. In particular, we examine the eect of parameters: those
shared between the models, those unique to one of them, and the relationship of parameters between models (as indicated in
the previous section above).



10 N. J. BEETON, L. K. FORBES, S. CARVER

M
ite

 m
or

ta
lit

y 
(d

ay
s)

5.2
5.4
5.6
5.8
6.0
6.2
6.4

R
ot

at
io

n 
pe

rio
d 

(y
ea

rs
)

5.2
5.4
5.6
5.8
6.0
6.2
6.4

R
ot

at
io

n 
pe

rio
d 

(y
ea

rs
)

10 20 30 40 50 60 70

25
20

15
10

5

● A

(a) β = 0.01
10 20 30 40 50 60 70

25
20

15
10

5

● X

(d) k = 0.02 (50 days)

M
ite

 m
or

ta
lit

y 
(d

ay
s)

5.2
5.4
5.6
5.8
6.0
6.2
6.4

R
ot

at
io

n 
pe

rio
d 

(y
ea

rs
)

5.2
5.4
5.6
5.8
6.0
6.2
6.4

R
ot

at
io

n 
pe

rio
d 

(y
ea

rs
)

10 20 30 40 50 60 70

25
20

15
10

5

● B

(b) β = 0.05
10 20 30 40 50 60 70

25
20

15
10

5

● Y

(e) k = 0.04 (25 days)

Burrow switching time (days)

M
ite

 m
or

ta
lit

y 
(d

ay
s)

5.2
5.4
5.6
5.8
6.0
6.2
6.4
6.6

R
ot

at
io

n 
pe

rio
d 

(y
ea

rs
)

5.2
5.4
5.6
5.8
6.0
6.2
6.4
6.6

R
ot

at
io

n 
pe

rio
d 

(y
ea

rs
)

10 20 30 40 50 60 70

25
20

15
10

5

● C

● D

(c) β = 0.1

Burrow switching time (days)

10 20 30 40 50 60 70

25
20

15
10

5

● Z

(f) k = 1/7 (7 days)

Figure 2: The stable states of themodel at dierent expected values of burrow-switching time (1/α) between 0 and 70 days, and
expectedmite life expectancy (1/µP) between 0 and 28 days. For Figures 2a–c, no treatment is occurring (k = 0), but the burrow
infection rate β is varied. For Figures 2d–f, β is set to 0.05 and the treatment rate k is varied. Purple represents the endemic (“plus
sign”) and yellow the mite-free equilibria. Shades of blue represent a limit cycle around the endemic equilibrium, with period
(in years) of small oscillations around the equilibrium determined by the shade: note that this diers from the limit cycle’s
period of oscillation away from the boundary of the Hopf region. Red dashed lines represent the corresponding boundary
between stability of endemic and mite-free equilibria from Beeton et al. (2019), with burrow-switching time α replaced with
mite-shedding time f , and mite mortality µF replaced with µP . The labelled points A–D and X–Z represent points of interest
that will be explored further. (For interpretation of the references to colour in this gure legend, the reader is referred to the web
version of this article.)
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Figure 3: Time histories for the populations of the four sub-classes of wombat and for the fomite population. In addition,
the total surviving wombat population is shown. Blue, black, orange, and red lines represent points A, B, C andD, respectively,
from Figure 2. Solid lines represent the initial condition (S = 1, F = 0.1) and dotted lines the initial condition (S = 2, F = 0.1).
Note thatR(t) is here identically zero in all cases due to the lack of treatment. (For interpretation of the references to colour in
this gure legend, the reader is referred to the web version of this article.)
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Figure 4: Time histories for the populations of the four sub-classes of wombat and for the fomite population. In addition, the
total surviving wombat population is shown. Black, red, orange and blue lines represent points B, X, Y and Z, respectively, from
Figure 2. The initial condition is (S = 1, F = 0.1) in all cases. Note that the black lines in Figures 3 and 4 represent the same
trajectory (point B). (For interpretation of the references to colour in this gure legend, the reader is referred to the web version
of this article.)
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Following Beeton et al. (2019) and consistent with eld measurements, we have set the wombat birth rate to be b = 1/(3 ×
365) and their death rate as µ = 1/(15 × 365). The additional death rates experienced by the exposed and infected wombats
are taken to be µE = 1/60 and µI = 1/60, and the remaining rates in the model are chosen to be r = 1/7, α = 0.05, β = 0.1
and γ = 1/30. We also experimented with scenarios where µE was increased or µI decreased (Appendices B and C, respectively),
breaking the µE = µI assumption: while these scenarios did qualitatively change the results, they did not change our conclusions
so are not reported in the main text.

We combine the analytical results of the model derived in Section 4 and numerical simulation in Figure 2. The gure de-
scribes which state is stable at any given value for the pair of parameters α and µP , if any, for dierent scenarios involving values of
β and k (see Martin et al., 2019). Figure 2 in Beeton et al. (2019) performs the same task but for the pair of parameters f and µP
in their model; for the purposes of comparison, we have added in our Figure 2 a red dashed line denoting the boundary between
stability of endemic and mite-free equilibria for those parameters and that model. As mentioned, the stability condition for the
mite-free equilibrium (yellow in the gure) is the same in our model and the previous model, where f = µ + k + α and µF = µP .
As mortality (µ) is on a much slower time scale than either shedding rate or wombat movement (f and α), we see the results for
that boundary where f = α and µF = µP are near-identical when k = 0 (i.e., Figures 2a–c). As with that model, across the pre-
sented scenarios at most only a single state has all eigenvalues negative, thus being the stable state. For suciently slow wombat
movement (i.e., low α, high wombat movement period) and high mite mortality rate (i.e., high µP and low life expectancy), the
mite-free equilibrium (9) is stable; otherwise the “plus sign” endemic equilibrium (17) will generally be stable. Our results also
match the previous model in that the mite-free equilibrium is stable at points A and Z and the endemic equilibrium is stable
at points B, C , X and Y . In our model, the wombat population persists at these points at 0.2290, 0.1151, 0.4723 and 0.6947
respectively, where numbers are given as a proportion of the equilibrium mite-free abundance (i.e., 1 − µ/b). Where wombat
movement between burrows is frequent and mite mortality is low, no equilibrium point will be stable—aHopf bifurcation oc-
curs and a limit cycle forms around the endemic equilibrium. This is the case for pointD (burrow-switching time 3 days, mite
life expectancy 27 days), and the population size oscillates between 0.0015 and 0.1234 in the long term.

Figures 3 and 4 show the evolution over time of the sub-populations of wombats and the states of the burrows under the
dierent scenarios labelled in Figure 2. The former examines changing the burrow infection rate β (A,B and C) and exploring
an example limit cycle (D). The latter examines changing the treatment rate k (B,X ,Y and Z). Both gures examine an entirely
susceptible population of wombats (S = 1, E = I = R = 0) along with 10% of burrows infected (P = 0.1), and Figure 3
additionally examines a population well above carrying capacity (S = 2) to test for potential additional eects due to resource-
driven pressure. In the gures, it can be seen that the presence of mange causes the total population size to be held below the
environmental carrying capacity. In Figure 4, it can further be seen that the population size returns to the environmental carrying
capacity (if disease free) or close to it (if mites are not eradicated).

The trajectories follow a qualitatively similar path to those in the previous model: in Figure 3, the mange epidemic quickly
dies out inCaseA, but periodic epidemics continue in the other cases, slowly decreasing towards an eventual endemic state except
in Case D, where periodic epidemics continue due to the limit cycle. For the original initial condition (S = 1), the minimum
populations experienced during the simulations are 1, 0.0236, 0.0062 and0.0010 forA,B,C andD, respectively. For S = 2, they
are 1, 0.0118, 0.0055 and again 0.0010. As expected, increasing the infection rate rapidly increases the risk of extinction by Allee
eects (Murray, 1989), and an overabundant population is likely to experience a more severe crash for moderate infection rates
(B). However, as seen in Figure 4, even a small amount of treatment improves the situation signicantly and avoids dangerously
low population levels: the minima here are 0.2811, 0.5179 and 1 for X ,Y and Z, respectively, with mange eradicated in Case Z.

The above results provide evidence that ourmodel replicates the qualitative traits of that of Beeton et al. (2019) both during
the transient phase and at equilibrium. However, there are interesting and important dierences between the two models. In
Figure 2, we see the similarity between α and f ends once we start increasing k, which is on the same time scale (unlike µ). As a
result, eradicating mange becomes more dicult for our model compared to the previous one, especially where both burrow-
switching rates and mite mortality are low. This is due to the spatially implicit nature of our model: even if wombats are not
switching regularly between burrows, a persistent population of mites in some burrows will immediately infect any wombats
that are born or revert from resistance in these burrows, allowing mange to remain endemic despite treatment. Our numerical
simulations also pick up another important dierence in equilibrium states: limit cycles can occur even at low infection rates
(e.g., β = 0.01), whereas in the previous model a much higher infection rate (e.g., β = 0.1) was necessary to observe these. These
limit cycles are particularly worrisome for wombats, as they experience repeated population crashes to potentially unsustainable
levels, which are near-identical in both of our models.

There are also important dierences in the transient behaviours of these models and the population sizes at equilibrium,
as seen in Figures 3 and 4 of both papers. To summarise, for low infection rates, the population is less aected in our model,
but population crashes are substantially more severe for intermediate infection rates (Case B; the previous model experiences
minima of only 0.0306 and 0.0162 for initial S = 1 and S = 2 respectively). The most obvious dierences, however, are under
treatment, with our model having substantially lower endemic equilibrium populations in both Cases X and Y (only 0.4723
and 0.6947 versus 0.5739 and 0.9616 respectively), consistent with the previous results.
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6 Conclusions
The aimof this paper has been to compare a new spatially implicitmodel ofmite transmission inwombatswith a recentmodel by
Beeton et al. (2019) that does not consider explicitly the role played by wombat burrows as a major contributor to the spread of
mite-bornemange disease. Importantly, these twodierentmodels have nevertheless produced qualitatively similar conclusions;
there is a steady state at which both species die out, a second steady state in which only the wombats survive, and a possible two
further equilibria that describe endemic behaviour with mites and wombats in all the dierent stages of infection co-existing.
These models are thus structurally robust, in the sense that dierent methods of describing the same overall biology yield the
same types of behaviour. Both models are still likely to contain some incorrect assumptions that may result in inaccuracies
when compared to eld data; nevertheless, combining the two should provide more robust conclusions compared to using a
single model and describe qualitative events that actually occur in the eld. In particular, comparing the eects of management
between the two models is important: we have shown that our newmethod requires a higher level of treatment to achieve mite
eradication, and so using the previous method alone would likely produce overly optimistic results.

As for the simpler model (Beeton et al., 2019), the new model considered here also contains the important mite-free steady
state, and achieving this would surely be the goal of any mite remediation programme (see alsoMartin et al., 2019). This would
require that steady state to be stable, and an inequality (22) has been derived here that suggests conditions for achieving such sta-
bility. In accordance with common sense, it requires the natural death rate µP of the mites to be higher than a certain threshold,
which itself can be lowered by increasing the treatment rate k or increasing the period of resistance (i.e., decreasing the reversion
rate: see Figure A1, Appendix A). Again, this conclusion was also suggested by the simpler model of Beeton et al. (2019). In
practice, we apply the treatment programme (rate k) by means of insecticide-laden aps at the entrances of the wombat bur-
rows, and the wombats must contact these each time they pass through the burrow entrances, although recent eld research
has suggested that the delivery success of treatment in the eld is less reliable (as low as 1/3) (Martin et al., 2019). In addition,
treatment and thus resistance is more likely to occur in pulses (see Beeton et al., 2019). In order to increase the death rate µP of
the mites, it might also be necessary to supplement the treatment regime with other methods of treatment such as fumigation
of targeted insect growth regulator chemicals to retard the growth of the mites (Wardhaugh, 2005; Chandler et al., 2011).
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Appendix A Decreased reversion rate
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Figure A1: The stable states of the model at dierent expected values of burrow-switching time (1/α) between 0 and 70 days,
and expectedmite life expectancy (1/µP) between 0 and 28 days. For Figures A1a–b, the reversion rate is 30 days, with two levels
of treatment (k = 0.02 and 0.04). For Figures A1c–d, the reversion rate is increased to 90 days. Purple represents the endemic
(“plus sign”) and yellow the mite-free equilibria. Red dashed lines represent the corresponding boundary between stability of
endemic and mite-free equilibria from Beeton et al. (2019), with burrow-switching time α replaced with mite-shedding time f ,
andmitemortality µF replaced with µP . The labelled points X and Y represent points of interest explained in themain text. (For
interpretation of the references to colour in this gure legend, the reader is referred to the web version of this article.)
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Appendix B Decreased µE
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Figure A2: The stable states of the model at dierent expected values of burrow-switching time (1/α) between 0 and 70 days,
and expected mite life expectancy (1/µP) between 0 and 28 days, as with Figure 2 but with µE reduced from 1/60 to 1/120. For
Figures A2a–c, no treatment is occurring (k = 0), but the burrow infection rate β is varied. For Figures A2d–f, β is set to 0.05
and the treatment rate k is varied. Purple represents the endemic (“plus sign”) and yellow the mite-free equilibria. Shades of
blue represent a limit cycle around the endemic equilibrium, with period (in years) of small oscillations around the equilibrium
determined by the shade: note that this diers from the limit cycle’s period of oscillation away from the boundary of the Hopf
region. Red dashed lines represent the corresponding boundary between stability of endemic and mite-free equilibria from
Beeton et al. (2019), with burrow-switching time α replaced withmite-shedding time f , andmitemortality µF replaced with µP .
The labelled points A–D and X–Z represent points of interest explained in the main text. (For interpretation of the references
to colour in this gure legend, the reader is referred to the web version of this article.)
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Appendix C Increased µI
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Figure A3: The stable states of the model at dierent expected values of burrow-switching time (1/α) between 0 and 70 days,
and expected mite life expectancy (1/µP) between 0 and 28 days, as with Figure 2 but with µI increased from 1/60 to 1/30. For
Figures A3a–c, no treatment is occurring (k = 0), but the burrow infection rate β is varied. For Figures A3d–f, β is set to 0.05
and the treatment rate k is varied. Purple represents the endemic (“plus sign”) and yellow the mite-free equilibria. Shades of
blue represent a limit cycle around the endemic equilibrium, with period (in years) of small oscillations around the equilibrium
determined by the shade: note that this diers from the limit cycle’s period of oscillation away from the boundary of the Hopf
region. Red dashed lines represent the corresponding boundary between stability of endemic and mite-free equilibria from
Beeton et al. (2019), with burrow-switching time α replaced withmite-shedding time f , andmitemortality µF replaced with µP .
The labelled points A–D and X–Z represent points of interest explained in the main text. (For a colour version of this gure,
refer to the web version of this article.)
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