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Since its first development by Torgerson (1952), multi-
dimensional scaling (MDS) has been used as a method for 
modeling psychological phenomena in low-dimensional 
space. In many such applications, the geometry of MDS 
serves as a model of psychological space. The distance 
function defined on psychological space then serves as 
a model of mental arithmetic (Borg & Groenen, 2005, 
chap. 17). The Minkowski family of distance functions 
has been considered by many previous studies as a pro-
spective candidate for a psychological distance function. 
For any value r  0, the Minkowski distance between two 
points xi and xj in p is defined by

 
d x xij ik jk

r

k

p r

1

1

,
 

(1)

where the parameter r is called the Minkowski exponent 
and k represents the kth dimension. In a special case of the 
Minkowski distance, in which r  2, Equation 1 yields the 
well-known Euclidean distance. When r  1, it yields the 
city block distance, which is also known as the Manhattan 
distance or taxicab distance.

Kruskal (1964) first presented a method to find the best 
Minkowski metric when analyzing dissimilarity data by 
MDS. His approach was simple: First, compute MDS so-
lutions for several different Minkowski exponents r and 
then choose the one that results in the lowest stress, which 

is a loss function used in MDS analysis (typical exam-
ples of stress are shown in the next paragraph). Arnold 
(1971) essentially reformulated the same procedure, with 
a detailed description. In the original article, Kruskal ap-
plied this method to the experimental data presented by 
Ekman (1954), who obtained directly judged similarities 
data of pure spectral colors. Since that study, there have 
been many investigations that compared the stress value 
of different Minkowski metrics to study the property of 
the psychological space for specific subject areas. Arabie 
(1991), Borg and Groenen (2005, chap. 17), and Townes 
and Abbott (1974) provided reviews of such studies.

However, from a modern psychometric point of view, 
several drawbacks for this popular method are identified. 
A primary problem can be attributed to the loss function 
that is minimized in MDS analysis. In Kruskal’s (1964) 
approach, the so-called Kruskal’s stress-1,
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where ij is the observed dissimilarity of objects i and j, was 
minimized. This approach was taken in many other applica-
tion studies. However, we have no definite reason to exclude 
other possible loss functions. In fact, many other measures 
of fit for MDS analysis have been proposed. For a review 
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are gained (see, e.g., Box & Tiao, 1992; Gelman, Carlin, 
Stern, & Rubin, 2004).

In fact, Lee (2008) used such a method as one of the 
three case studies in which he applied Bayesian analysis to 
psychological models. Lee’s model and method were pro-
posed for individual subject data, which are an n  n  m 
array representing the (dis)similarity of objects i and j 
(i, j  1, . . . , n) judged by a subject t (t  1, . . . , m). 
However, in many studies dealing with the Minkowski 
exponent, this kind of data is often averaged to obtain an 
n  n matrix, which is then used for MDS analysis (for re-
views of such studies, see Arabie, 1991; Borg & Groenen, 
2005). Also, MDS is often applied to the data of a single 
n  n (dis)similarity matrix. Although Lee’s method is 
theoretically useful and seems to work well for individual 
subject data, it is less certain whether this method is di-
rectly applicable to the averaged or single data.

The present article is organized as follows: First, the 
natural averaged data version of Lee’s (2008) individual 
subject model is described. Then, we present a numerical 
simulation study to evaluate this method and show that 
the result is not very satisfactory. Next, we propose a new 
Bayesian MDS methodology to estimate the Minkowski 
exponent. The evaluation of this proposed method is based 
on a numerical simulation study similar to the previous 
one. Finally, the conclusions are presented.

The implementation of Bayesian inference has become 
easier with the advent of MCMC software, such as Win-
BUGS (Lunn, Thomas, Best, & Spiegelhalter, 2000) and 
OpenBUGS (Spiegelhalter, Thomas, Best, & Lunn, 2007). 
The Appendix provides BUGS codes used in this study. 
Using these code sequences, readers can repeat the pres-
ent study as well as apply the proposed method to their 
own data.

AVERAGED DATA VERSION OF  
LEE’S (2008) METHOD

As mentioned in the previous section, Lee (2008) pro-
posed a new approach for finding the best Minkowski 
metric. The novelty of his method lies in treating the 
Minkowski exponential r as a random variable and esti-
mating it using the Bayesian estimation technique. In this 
section, we describe a straightforward extension of Lee’s 
method to the averaged data problem.

In Lee’s (2008) model, the observed similarity is as-
sumed to be generated as the exponential decay of the 
distance of points in multidimensional space; however, 
it is subject to noise. The noise process is assumed to be 
normal with zero means. Therefore, the model distribu-
tion for the observed similarity sij of objects i and j is

 
s N dij ij~ exp , ,2

 
(7)

where dij is the Minkowski distance between objects i 
and j (Equation 1).

For prior distributions, Lee (2008) modeled that the co-
ordinate xik has an equally prior probability of being any-
where in a sufficiently large interval with bounds (– , ),

 xik ~ U( , ), (8)

of such MDS measures of fit, see Borg and Groenen (2005, 
chap. 11). For example, when d is the average distance, 
other candidates for the loss functions include stress-2,
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and more.
Choosing a suitable loss function is very important, be-

cause different loss functions result in different values of 
the optimized Minkowski exponent. However, from the 
above list of the proposed stress measures, it is difficult to 
choose a single, universal measure.

Furthermore, although in all of the stress functions listed 
above, the degree of deviation between the observed dis-
similarity and proximity is evaluated in terms of the sum of 
squared Euclidean distance—that is, i j( ij  dij)2—this 
is just a common practice. Instead, a loss that is based on 
Minkowski distance could be (and maybe should be) used 
for MDS with Minkowski distances. For example, when 
we are to calculate the loss for the MDS with Minkowski 
distance of order r, we could calculate the Minkowski ver-
sion of stress-1 as
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instead of the Euclidean version (Equation 2). Again, the 
choice of such a loss function will affect the optimized 
value of r that minimizes the loss function.

This kind of arbitrariness problem in the loss function 
occurs because of a common strategy of dealing with 
Minkowski distance in MDS. As described previously, the 
common strategy is to fix the Minkowski exponent r, to 
perform MDS and calculate the stress value, and to then 
repeat these processes for several r values to find the op-
timal r that results in the lowest stress value. However, in 
the present article, we treat the Minkowski exponent r as 
a parameter and directly estimate it and other parameters 
by using the Bayesian MDS technique (Oh & Raftery, 
2001; Okada & Shigemasu, 2009). Note that almost all 
existing Minkowski MDS applications have used a least-
squares type MDS. On the other hand, by using Bayesian 
estimation, we can treat the Minkowski exponent r as a 
parameter and directly evaluate its marginal posterior dis-
tribution. This solves the arbitrariness problem because 
we no longer have to choose a loss function. Of course, 
the benefits of Bayesian inference, such as the availability 
of a point estimate, the whole posterior distribution of pa-
rameters, and the ability to incorporate prior uncertainty, 
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which corresponds to the true model structure of Equation 8. 
Two conditions—namely, 0  1.5 and 0  0.15—were 
considered for the values of 0. The generated configuration 
X was transformed to the true distance D  {dij} by Equa-
tion 1. In doing so, three conditions of the true Minkowski 
exponents were used: r  1 (city block metric), 1.5 (in be-
tween), and 2 (Euclidean metric). Then, it was transformed 
to the observed similarity matrix, S  {sij}, by

 sij  exp( dij), (12)

which corresponds to Equation 7, when 2  0 (i.e., when 
no error is introduced).

Fifty independent data sets of the artificially “observed” 
similarity matrix S were generated as above for each of the 
three true Minkowski exponent conditions and for each of 
the two true uniform distribution parameter ( 0) conditions. 
The artificial data were then analyzed by Lee’s (2008) 
method. The analysis was performed using  MATLAB 
(The MathWorks, Inc., Natick, MA) and  OpenBUGS 
(Spiegelhalter et al., 2007) via the use of the MATBUGS 
program (Murphy & Mahdaviani, 2005). We modified 
Lee’s OpenBUGS script1 for our data and used it in the 
analysis, using 10 as a “sufficiently large” value of  in 
Equation 8.2 The first 20,000 MCMC iterations were dis-
carded as burn-in, and the following 40,000 iterations were 
used for posterior estimation.

Because in Lee’s (2008) method, the Minkowski expo-
nent r is restricted to the interval [0, 2] (Equation 9), the 
posterior distribution of r is typically not symmetric. There-
fore, rather than the posterior means, the posterior mode is 
appropriate for the point estimate of the Minkowski expo-
nent. To find a posterior mode of Minkowski exponent r, 
the kernel density estimation with a normal (Gaussian) ker-
nel is used to fit a continuous density. Then, the point that 
gives the mode of the fitted continuous density is used as a 
posterior point estimate. Furthermore, we recorded the 95% 
credibility intervals of r for use in interval estimation.

Result
The resultant posterior mode estimates of the Minkowski 

parameter r and its 95% credibility intervals are plotted 
for all trials in Figure 1. From the result, it is clear that 
the estimated value of the Minkowski parameter is a little 
smaller than, but close to, 2, regardless of the true value. 
Therefore, it was determined that the estimate from the 
natural extension of Lee’s (2008) method to the aver-
aged data problem is strongly biased. Moreover, it would 
not be appropriate for investigating the value of the true 
Minkowski exponent in the averaged data problem. Some 
possible reasons why this method did not work are pre-
sented in the Conclusions section.

PROPOSED METHOD

The simulation study in the previous section showed 
that, although the idea of treating the Minkowski param-
eter r as a random variable seems promising, the “naive” 
extension of Lee’s (2008) method to the averaged data 
problem may not be adequate for analyzing the true 

where   0, and U( , ) denotes uniform distribution 
between  and . The term sufficiently large was used to 
identify an interval large enough that increasing the value 
of  almost does not change the posterior distribution over 
the coordinate point parameters. The prior distribution for 
Minkowski exponent r was a uniform distribution with 
explicit end points,

 r ~ U(0, 2). (9)

The prior distribution for the variance parameter 2 was 
an inverse gamma distribution,

 2 ~ IG( , ), (10)

where  was set to near zero. With these settings, the pos-
terior distribution of r (as well as other parameters) was 
estimated using the MCMC algorithm.

The above method proposed by Lee (2008) is impor-
tant, because it introduced a new concept to the problem of 
finding the best Minkowski exponent: the Minkowski ex-
ponent as a random variable, which is to be estimated in the 
analysis as well as other MDS parameters. His article con-
firmed that this method worked for individual subject data. 
However, as we noted previously, it is not known whether 
this method is directly applicable to averaged or single 
data, which are common in psychology and behavioral sci-
ence. We emphasize this partly because, from the knowl-
edge of former studies in statistics, it could be troublesome 
to set a lognormal distribution on the observed similarity 
with the mean Minkowski distance when the objective is to 
estimate the Minkowski exponent value (r in Equation 1, 
where dij satisfies Equation 7). It is known that a lognormal 
distribution is very heavily tailed, and sometimes the mo-
ment of higher orders makes parameter estimation unsta-
ble (Aitchinson & Brown, 1957; Schmoyer, Beauchamp, 
Brandt, & Hoffman, 1996). Additionally, in this setting, the 
objective is the estimation of the parameters of the distance 
function, which is, simultaneously, a location parameter 
of a distribution function. This situation is uncommon in 
standard statistical parameter estimation, and, therefore, 
little knowledge about when the estimation succeeds is 
available. Therefore, it is our view that a simulation study 
is needed for this method to be applicable. Consequently, 
in the next section, we provide a simulation study that in-
vestigates an averaged data version of Lee’s method.

NUMERICAL EXPERIMENT 1

As noted above, the aim of the first simulation is to 
assess the performance of the natural extension of the ex-
isting Minkowski exponent estimation proposed by Lee 
(2008). For this purpose, we generated random data from 
the true model (that is, the model explained in the previous 
section) and then analyzed it with Lee’s method.

The simulation data were generated as follows. The true 
configuration matrix X was set to be a 15  2 matrix. This 
means the number of dimensions p was set to 2. Each ele-
ment of X was generated from a uniform distribution,

 xik ~ U( 0, 0), (11)
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is set independently for k  1, . . . , p. Also, for the prior of 
the error variance 2, an inverse gamma distribution

 2 ~ IG(a, b) (17)

is used. With these settings, the posterior distribution of r 
(as well as other parameters) can be estimated using the 
MCMC algorithm.

NUMERICAL EXPERIMENT 2

In order to investigate the applicability of the proposed 
model, we conducted a new simulation study.

As was the case with Numerical Experiment 1, the ar-
tificial data were generated from the true model (i.e., the 
proposed model). Again, the three conditions of the true 
Minkowski parameters were set as r  1, 1.5, and 2. For 
each condition, we generated artificial data as follows: 
Each element of the configuration X was generated from 
a normal distribution,

 xik ~ N(0, 0), (18)

which corresponds to the true model structure (Equation 15) 
with   diag( 0, . . . , 0). We considered two conditions for 
the variance parameter 0—namely, 0  1 and 0  0.32. 
The number of dimensions p was set to 2. Thus generated, 

Minkowski exponent; therefore, another method is re-
quired. This section introduces a new approach to Bayes-
ian MDS with Minkowski distance.

The idea is simply to extend the Euclidean MDS model 
of Oh and Raftery (2001) to the general Minkowski distance 
model. Namely, the observed dissimilarity ij between ob-
jects i and j is modeled using the normal distribution,

 ij ~ N(dij, 2), (13)

where dij is the Minkowski distance among the object 
configurations (Equation 1). For the prior distribution of 
the Minkowski exponent r, we follow the setting of Lee’s 
(2008) model,

 r ~ U(0, 2). (14)

For other parameters, we used the prior settings of Oh 
and Raftery (2001). Specifically, for the prior distribution 
of xi, we used a multivariate normal distribution,

 xi ~ N(0, ), (15)

independently for i  1, . . . , n objects, where   
diag( 1, . . . , p) is a diagonal covariance matrix. For each 
element of , an inverse gamma hyperprior,

 k ~ IG( , k), (16)
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Figure 1. Posterior modes (squares) and 95% credibility intervals (lines) of Minkowski exponent r by an averaged data version of 
Lee’s (2008) method, when the true r equals 1 (left), 1.5 (middle), and 2 (right). (A) When 0 1.5. (B) When 0  0.15. One box contains 
the results of 50 trials.
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ure 2B shows that the credibility intervals are larger when 
0 is small. This can be because, when 0 in Equation 18 

is small, every object becomes closer to one another and, 
therefore, the difference between them becomes smaller, 
making the estimation of the Minkowski exponent harder 
than it would be otherwise.

REAL DATA ANALYSIS

Because the proposed method seems to work well, we 
applied it to real data. We analyzed the experimental data 
presented by Helm (1959). In this experiment, 10 examin-
ees were asked to judge the dissimilarity of 10 color chips 
that were different in hues but constant in both brightness 
and saturation. The colors ranged over the entire spectrum 
from red (long wavelength) to purple (short wavelength). 
Data from 10 participants are used for the analysis.3

The proposed model is used for analysis. Prior distribu-
tions and hyperparameters are the same as those used in 
the previous simulation study (Numerical Experiment 1). 
The first 10,000 MCMC iterations were discarded as 
burn-in; we used runs of the subsequent 200,000 itera-
tions for posterior inference.

The resultant posterior density of the Minkowski ex-
ponent r is shown in Figure 3. The gray bars indicate the 
histogram of 200,000 posterior MCMC samples of the 

X is transformed to the distance D  {dij} by Equation 1 
with the three conditions of the true Minkowski exponents: 
r  1, 1.5, and 2. Then, this D is used as a dissimilarity data 
matrix   { ij}. This operation corresponds to generating 

ij from Equation 13, with 2  0; that is, just as in numeri-
cal Experiment 1, no error is introduced. We generated 50 
independent sets of artificially “observed” dissimilarity  
per one condition in this manner and then analyzed them 
using the proposed method. As for the values of hyperpa-
rameters in Equations 16 and 17, we used the same settings 
used in Oh and Raftery (2001). Again, we performed the 
analysis using MATLAB and OpenBUGS via the use of the 
MATBUGS program. The first 20,000 MCMC iterations 
were discarded as burn-in; we used the subsequent 40,000 
iterations for posterior estimation.

Result
The resultant posterior estimates (posterior means) of 

the Minkowski parameter and its 95% credibility intervals 
are plotted for all 50 trials in Figure 2. It can be seen that, 
although in some estimations the credibility intervals are 
somewhat large, the posterior point estimate (squares) is 
close to the true value in all conditions. Comparing this 
result with that of the previous model (Figure 1), it is clear 
that the model proposed here recovers the true Minkowski 
exponent better. Also, comparing Figure 2A with Fig-
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Figure 2. Means (black squares) and 95% credibility intervals (lines) of Minkowski exponent r by the proposed method, when the 
true r equals 1 (left), 1.5 (middle), and 2 (right). (A) When 0  1. (B) When 0  0.32. One box contains the results of 50 trials.
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With regard to Lee’s (2008) method, it would be de-
sirable to determine why this method could not recover 
the value of the true Minkowski exponent in its exten-
sion to the averaged data problem, even though it worked 
for individual subject data (Lee, 2008). One of the pos-
sibilities would be that the exponential transformation 
in Equation 12 causes a problem in the estimation of the 
Minkowski exponent, because, as described previously, 
former studies have found difficulties in the estimation 
using a lognormal distribution. Another plausible expla-
nation would be that fitting individual subject data helps 
make the recovery of r more robust.

Note that in our method—as well as in Lee’s (2008) 
method—the possible range of the Minkowski exponent 
is restricted to be within [0, 2]. There are four reasons for 
this restriction, of which the first three were presented in 
Lee’s article. First, the common interest of psychologi-
cal researchers is usually in whether r is 1 (city block) or 
2 (Euclidean), both of which are within this range. Sec-
ond, metrics with r  1 have been given a psychological 
justification in terms of modeling stimuli with compo-
nent dimensions that compete for attention. Third, it is 
difficult to give a psychological meaning to metrics with 
r  2. Fourth, on the basis of our experience, if one allows 
r to assume larger values, numerical trouble frequently 
occurs. This may happen because the actual value of the 
Minkowski distance almost does not change when the 
value of the Minkowski exponent becomes large, which 
makes it difficult to distinguish the true value.

Our final remark is about application studies. As noted 
in the introduction, thus far, most empirical studies that 
deal with a Minkowski property of a psychological space 
have been conducted using a stress-minimization strategy. 
It would be of interest to reanalyze the existing results by 
using the proposed method.
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APPENDIX 
BUGS Code Sequences

The BUGS code for the natural extension of Lee’s (2008) model to averaged (or single-subject) data, as used 
in Numerical Experiment 1, is as follows:

model {
  for (i in 1:n) {
    for (j in 1:n) {
      S[i,j] ~ dnorm(mu[i,j],invomega2)
      mu[i,j] <- exp(-d[i,j])
      d[i,j] <- pow(pow(abs(X[i,1]-X[j,1]),r)+pow(abs(X[i,2]-X[j,2]),r),1/r)
    }
  }
  for (i in 1:n) {
    for (k in 1:2) {
      X[i,k] ~ dunif(-10,10)
    }
  }
  invomega2 ~ dgamma(zeta, zeta)
  r ~ dunif(0,2)
  zeta <- 0.001
}

The BUGS code for the proposed model used in Numerical Experiment 2 is as follows:

model{
  for(i in 2 : n) {
    for(j in 1 : i-1) {
      Delta[i,j] ~ dnorm(d[i,j],invphi2)
      d[i,j] <- pow(pow(abs(X[i,1]-X[j,1]),r)+pow(abs(X[i,2]-X[j,2]),r),1/r)
    }
  }
  invphi2 ~ dgamma(a,b)
  for(k in 1 : 2) {
    for(i in 1 : n) {
      X[i,k] ~ dnorm(0,invlambda[k])
    }
  invlambda[k] ~ dgamma(alpha,beta[k])
  }
  r ~ dunif(0,2)
}
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