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Introduction
Social norms (SN) are customary rules of behaviors that coordinate people’s interactions 
with each others, as defined by Young in [10]. They are different from mere conventions 
and fashions; they could in fact guide our collective behaviors in social situations, even 
at the expense of our individual interest [2]. Such self-enforcing normative power has 
been the target of several studies in philosophy, social psychology, political science and 
economics.

In the current paper, we focus on the game-theoretic approaches to SN, given that 
an increasing number of related studies have been reported in recent years [22]. In 
this setting, a SN is primarily perceived as a Nash equilibrium of a symmetric game 
with multiple equilibria, usually a coordination game. One stream of thoughts based 
on evolutionary game theory considers a given SN to be the result of an evolutionary 
process of expectation formation that has the ability to solve the equilibrium selec-
tion problem for coordination games, or in loose terms a ‘focal point’ [23] shaped 
through evolution [6, 28]. On the other hand, Bicchieri [5] regards SNs as a class of 
default ‘behavioral rules’, that are triggered once and only once the individuals have 
collectively the right kind of expectations about norm conformity. Bicchieri talks 
about “conditional preferences for obeying the norms”. Two expectations for condi-
tional preferences are specified: empirical expectation, where the individual believes 
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that a sufficient subset of the population conforms to the norm and normative expec-
tation, where the individual believes that a sufficient subset of the population expects 
him to conform to the norm. The latter expectation can be combined with possible 
sanctions. Once the norm conforming state is triggered, SNs are manifested as equi-
libria of coordination games in this case also. Other approaches to SN involve signal-
ing systems [17]. There are major disagreements among these game-theoretic models. 
For instance, whether SNs should affect individual’s utility or not. Such disagreements 
and the failure to tackle some key challenges have led Paternotte and Grose [22] to 
conclude that game theory may have a limited explanatory power to account for 
social norms.

On another front, social network analysis has been used with considerable success in 
order to model social ties within a population, a group of people [11, 18]. It allows to for-
malize using the graph theoretic language the structure of interactions and relationships 
(edges) between individuals (vertices), and to subsequently study phenomena in these 
structures, such as the six degrees of separation and the coexistence of weak / strong ties. 
In cases of strategic interactions, the situations where an individual plays a game with 
its neighbors by targeting to coordinate with as many as possible of them, are known as 
local-interaction games [12, 21]. They have been extensively covered in the literature (see 
Weidenholzer’s survey [27] and Goyal’s book [18]). If an equilibrium happens in these 
game for a given population, it shall describe a social norm. However, these approaches 
account above all for the local level of graphs, the relations linking neighbors. Consid-
ering the social network structure as a whole and unique entity, other than in a global 
context where any player can be linked to any other player, or other than regular graphs 
such as circles, grids and lattices, is quite limited in these accounts. As known, the net-
work structure might vary from a population to another one, and might be much differ-
ent from regular graphs. Besides, the interactions within a population are in a dynamic 
state, that could transform the network shape in times [24]. For these reasons, it is essen-
tial to perceive social network in a large-scale outlook when dealing with social norms.

A key social norm in human societies is fairness. It plays a central role in the alloca-
tion of various goods, the promotion of social order, and the group cohesion. There is a 
substantial evidence suggesting that the fairness norm is common within societies, e.g., 
in the labor market [4]. However, its interpretation is rather context-dependent, and may 
suggest different behaviors depending on the situation at hand, and also on the cultural 
shared scripts. The game of choice to study fairness is the ultimatum bargaining game 
and its derivations [14, 15]. One advantage of such a game is that the contextual infor-
mation clues are kept at their minimal level, and fairness in this setting is usually under-
stood by all players. In the current study, in order to study the fairness norm, which is 
central to human coordination, we focus on the ultimatum game, but in a more realistic 
outlook accounting for the social network connection.

Concerning the SN model, we opt for Bicchieri’s approach, considering that several 
experimental results have been already obtained in her case. We conduct a series of sim-
ulation experiments to examine the effects that a network topology could have on the 
speed of emergence of social norms. The emphasis is placed on three realistic models of 
social networks and a number of intrinsic topological properties in the emergence of the 
fairness norm, which will be seen in the next section.
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Methodology
The ultimatum game is a typical bargaining game with two players: the proposer (P) and 
the responder (R). The purpose of the game is to split an amount of money M between 
P and R, where P first proposes a division 0 ≤ x ≤ M of money to R. The latter player 
can either accept or refuse the offer. In case the offer x is accepted, P gets (M − x) and R 
gets x, otherwise both players will receive nothing. What is interesting about this game 
is that laboratory experiments of its one-shot version, which is the one considered in 
this manuscript, contradicts the standard economic theory and its well-known principle 
of expected utility maximization. On average around M/3 to M/4 is offered, with a siz-
able proportion of people offering M/2 [19]. When the fair division M/2 is adopted by 
the overall population, this strategy shall be interpreted as the fairness norm. To study 
the evolution dynamics leading to the fairness SN or to an unfair norm, we use the 
approach introduced by Bicchieri in her book [5], which is presented in section "Norm 
emergence". Section  "Proposed relaxations" discusses the relaxations of the approach 
concerning the common shared information between players, and the structure of the 
social network.

Norm emergence

In Bicchieri’s model, norms are internalized, thus their effect is directly accounted in 
players’ utilities. If the player i is assigned the role P, its utility for a strategy x ∈ S , where 
S ⊆ [0,M] is the set of considered strategies, is written as follows:

while the utility of the player i in the role R is equal to,

Ni is the estimate of the social norm within the population of players P , as perceived 
by player i. The parameters k ′i and ki are the sensitivities to the norm when player 
i is, respectively, in the role of the proposer and the responder. The responder sensi-
tivity ki lies within the range [0, kmax] . It induces a disutility proportional to the devi-
ation from the perceived norm (Ni − x) , when x < Ni . In case ki is large, the player i 
has a strong inclination to conform to the SN, and tends then to reject low offers. In 
fact, the values of ki and Ni define a lower bound for accepted offers by player i, 
Ui
R,accept(x) ≥ 0 =⇒ x ≥ ki

1+ki
Ni . The value of kmax delimits the variations of ki , and 

is chosen to be in the same range of M1. The parameter ki is chosen from a uniform 
distribution on [0, kmax] . The second parameter, the proposer sensitivity k ′i , is selected 
from a normal distribution with a mean equal to 0 and a standard deviation of 0.2, 
in accordance with [5]. In the same manner of ki , the parameter k ′i controls also the 
degree of conformity to the perceived norm. A high k ′i implies that i is more inclined 

Ui
P,accept(x) = (M − x)+

{

0 if x ≥ Ni

−k ′i (Ni − x) otherwise,

Ui
R,accept(x) = x +

{

0 if x ≥ Ni

−ki (Ni − x) otherwise.

1  kmax can take larger values than M. It corresponds to the situation where the responder i is highly sensitive to the 
perceived norm Ni , and can have a null utility for offers deviating very slightly from the perceived norm x = Ni − ǫ : 
Ui
P,accept(Ni − ǫ) = 0 =⇒ kmax = Ni

ǫ
− 1 ≤ M

ǫ
− 1 , for ǫ > 0 small enough.
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to conform to the SN. In order to not associate a positive utility to deviation from Ni , 
which means that the proposer benefits from deviating from the SN, only positive val-
ues of k ′i are considered (as in [5]). Note that in the rejection case, the utility terms are 
Ui
P,reject(x) = Ui

R,reject(x) = 0.
The distributions of ki and k ′i are not symmetric, since they are related to the same 

term, i.e., the deviation (Ni − x) from the point of view of the responder, but from differ-
ent perspectives. When player i is a responder, the sensitivity ki can be seen as his type. 
To represent population’s types, sampling from a uniform distribution is a reasonable 
choice. However, when i is in the proposer role, the sensitivity k ′i is seen as a faculty of i 
to account for the opponent interest during the interaction. Such faculties are often dis-
tributed according to the normal distribution, e.g., the empathy quotient [20].

The steps of Bicchieri’s approach are listed in Algorithm  1. In the following, we 
describe how a player i estimates the norm Ni at each iteration of Algorithm 1, which 
corresponds to the step 2 of the algorithm. The set of strategies in the population is set to 
S = {0, 1, . . . ,M} (as in [5]). At each interaction, the distribution P of the offers x in the 
whole population for the previous interaction is considered to be accessible and known 
to all players. Each individual has been assigned a threshold 0 ≤ ti ≤ 1 , chosen from a 
continuous uniform distribution on [0, 1], which represents for i the minimal proportion 
of the population that must adopt the same strategy before this latter to be considered a 
candidate for the social norm. The first step in Ni computation is to compute the set of 
strategies to be considered for the social norm,

Then, a new distribution of offers representing the player i own beliefs for the current 
norm in the society is constructed. To do so, the distribution P is restricted to the set ni 
and trimmed according to the threshold ti as follows:

where κ is a renormalization constant for the distribution Pni . If ni = ∅ , no candidate for 
the SN can be derived, thus all strategies can be considered in this case. Finally, the con-
structed probability distribution by the player i can be written as:

and the player’s estimation of the norm Ni is equal to the expected value of the distribu-
tion Pi,

To illustrate the computation of Ni , let us consider an example run of Algorithm  1 
with N = 5 , M = 10 , kmax = 10 , and I = 2 . Table 1 shows the initial values which are 
randomly generated. The updates of the distribution of strategies P for the three itera-
tions of the algorithm are listed in Table  2, in addition to showing the constructed 

ni = {x ∈ S : P(x) > ti}.

(1)Pni(x) =
{

κ (P(x)− ti) if x ∈ ni
0 otherwise,

Pi =
{

Pni if ni �= ∅
P otherwise,

Ni =
M
∑

j=0

j × Pi(j).
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distributions by players 1 and 4: P1 and P4 . Player 1 has a threshold equal to t1 = 0.565 , 
which is larger than all the initial values of P(x), then n1 = ∅ , and subsequently P1 = P 
and N1 = E(P) = 6 . In the second iteration, only P(x = 5) is larger than t1 , which leads 
for the constructed distribution to be P1(x = 5) = 1 and P1(x  = 5) = 0 , and therefore 
N1 = 5 . In the same way, we obtain N1 = 4 for the third distribution, . The player 4 has a 
low threshold t4 = 0.022 , which leads the set n4 to include all strategies x with P(x)  = 0 
for all iterations. Then, the updates of P4 follows the formula (1), before computing N4 
as the expected value of P4 . The final output distribution P is shown in the last row of 
Table 2. The social norm for this case is equal to 4.

Table 1  Input values of an instance run of Algorithm 1 with N = 5 , M = 5 , and kmax = 10

Player i Threshold ti Responder sensitivity ki Proposer sensitivity k′
i

Initial 
strategy 
si

1 0.565 1.00 0.002 4

2 0.173 5.51 0.013 9

3 0.479 3.01 0.019 7

4 0.022 5.63 0.007 7

5 0.122 4.18 0.023 3

Table 2  The update of the probability distributions P, P1 , and P4 , plus the norm estimations N1 and N4

Iteration Distribution x = 0 1 2 3 4 5 6 7 8 9 10 Ni

1 P 0 0 0 0.2 0.2 0 0 0.4 0 0.2 0 –

P1 0 0 0 0.2 0.2 0 0 0.4 0 0.2 0 6

P4 0 0 0 0.195 0.195 0 0 0.414 0 0.195 0 6.02

2 P 0 0 0 0 0 0.8 0.2 0 0 0 0 –

P1 0 0 0 0 0 1 0 0 0 0 0 5

P4 0 0 0 0 0 0.814 0.186 0 0 0 0 5.18

3 P 0 0 0 0 0.6 0.4 0 0 0 0 0 –

P1 0 0 0 0 1 0 0 0 0 0 0 4

P4 0 0 0 0 0.604 0.395 0 0 0 0 0 4.37

Output P 0 0 0 0 1 0 0 0 0 0 0 -

Table 3  The number Q of players who accepted the offers of players 1 and 4 in step 3 of 
Algorithm 1, and the corresponding games

Iteration Player Q Instance games

1 1 0 –

4 2 4 (P) → 3 (R); 4 (P) → 1 (R)

2 1 2 1 (P) → 2 (R); 1 (P) → 2 (R);

4 3 4 (P) → 2 (R); 4 (P) → 5 (R); 4 (P) → 2 (R)

3 1 0 -

4 3 4 (P) → 2 (R); 4 (P) → 1 (R); 4 (P) → 1 (R)
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In the third step of Algorithm 1, each individual i is paired with I ∈ [|1,N − 1|] play-
ers selected uniformly at random without replacement from the population P \ {i} . The 
roles of the proposer and the responder are assigned at random as well for each pairwise 
interaction between i and j ∈ I . Without loss of generality, let us suppose that P is player 
i and R is player j. The proposer i offers an amount xi to the responder j, who accepts it in 
case Uj

R,accept(xi) > U
j
R,reject(xi) or in other terms:

The division xi that each player i ∈ P proposes is updated in the step 5 of Algorithm 1. 
The stochasticity of the algorithm in the initialization step (step 1) and in the paring step 
(step 3) renders the players learning process stochastic as well and nondeterministic.

In the fourth step, each player i ∈ P infers a distribution of the responder sensitivity 
k in the population, based on its interactions in the previous step. The distribution of k 
is used in the step 5 to derive the player i’s best-response offer. In the current iteration, 
when i plays the role of the proposer and its offer xi is accepted, he could infer an upper 
bound of the value of k in P according to the inequality (2). In the absence of the subjec-
tive information Nj , the player i could project his own view of the SN2. Then, i’s belief 
about the responder parameter k is falling within the range [0, xi

Ni−xi
[ . The new update 

of player i’s distribution function of k based on the current distribution function fi(k) is 
given by the normalization: f ′′i (k) = f ′i (k)/

∫ kmax

0 f ′i (k) dk , of the following function:

with ∆ and Q denoting, respectively, the amount of reinforcement, and the number of 
individuals who accepted player i’s offer in the current iteration. This updating in non-
Bayesian since the actual responder value k is not known. Table 3 shows the values of Q 

(2)kj <
xi

Nj − xi
.

f ′i (k) = fi(k)+
{

Q∆ if k <
xi

Ni−xi
0 otherwise,

2  There is evidence in the psychological literature that people project their own beliefs and preferences in the absence of 
information about other people’s beliefs and preferences [5].
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for players 1 and 4 along the iterations of Algorithm 1, and their corresponding games. 
The updating of the distributions f1(k) and f4(k) are shown in Fig. 1. The distribution 
f1(k) of player 1 is identical along the iterations. Although Q = 2 in the second iteration 
for player 1, only very low values of k are affected. The distributions f4(k) of player 4 
show more clearly the update of the belief about the value of k.

The last step of the algorithm’s iteration is the update of the strategy xi for each player 
i ∈ P , according to a best-response dynamic. Let fi(k) denotes the updated i’s belief dis-
tribution about the R sensitivity. The estimated value of k by player i corresponds to the 
expected value kexp =

∫ kmax

0 k fi(k) dk . To define the best-response offer xi , let us first 
restrict the set of strategies S to:

Si = {x ∈ S : x − kexp(Ni − x) > 0},

Fig. 1  The updates of the belief distribution f(k) for players 1 and 4 using ∆ = 5× 10
−3

Table 4  The values of the estimated value of k and the the best-response offer xi at the end of each 
iteration of Algorithm 1

Iter. Player kexp xi Iter. Player kexp xi Iter. Player kexp xi

1 1 4.15 5 2 1 4.15 5 3 1 4.15 4

2 3.07 5 2 3.11 4 2 3.15 4

3 3.79 5 3 3.79 4 3 3.79 4

4 2.88 5 4 3.00 4 4 3.11 4

5 4.17 6 5 4.17 5 5 4.17 4
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which are strategies with a nonnegative utility for a fictive R player. This latter represents 
the projection of the player i has for responders in P . The the best-response strategy is 
then:

which is the offer that maximizes i’s utility in the proposer role. Table  4 shows the 
updates of the values of kexp and xi for all players in our instance run.

Finally, the termination criterion of Algorithm 1 is given by step 6. When a proportion 
0 < r ≤ 1 of the population, usually closer to 1, adopts the same strategy, then a norm 
has emerged. This strategy is considered to be the social norm of the population, and the 
last distribution P of strategies is returned by the algorithm.

Proposed relaxations

An important assumption of Bicchieri’s model is that the strategy distribution P of the 
population is considered to be a common knowledge among individuals. As seen previ-
ously, the computation of the norm estimations Ni for the players is mainly based on 
the distribution P. In addition to the assumption “common knowledge P”, we consider 
two relaxed versions, where each player can only access the distribution of strategies 
over its (first-order) neighbors: “first-order P” assumption, and over its first and second-
order neighbors, which are neighbors of neighbors: “second-order P” assumption. This 
is a realistic assumption, since individuals have only access to a limited amount of infor-
mation, usually in their surroundings. The distinction between the interactions and the 
information neighborhoods for players has been previously considered for local-interac-
tion games by Durieu and Solal [9] and by Alós-Ferrer and Weidenholzer [1]. The former 
authors confirm a previous result of Ellison [12], but with a higher speed of convergence. 
Ellison [12] aimed to find conditions for which the players learn to coordinate on the 
efficient action, conditions that were under the assumption that each player’s interaction 
neighborhood is included in his information neighborhood. Our goal here is empirical. 
We aim to determine in an empirical fashion the effects a change of the information 
neighborhood could have on the spread in the emergence of social norms.

By asserting that each player is able to connect to all others, step 3 of Algorithm  1 
implicitly considers a complete network structure of the population. This assumption 
is rather unrealistic for societies, and even for small communities. The novelty of our 
account is to consider instead network topologies that could arise in real-world situa-
tions, namely Barabási–Albert (BA) [3] and Watts–Strogatz (WS) [26] models, plus the 
Erdős–Rényi (ER) random graph [13] for benchmark purposes. The aim is to examine 
how the speed of norm emergence, designated by the total number of the algorithm iter-
ations, is framed in terms of some network parameters. The network density and diame-
ter as well as three different centrality measures are used for this purpose. We also make 
use of the proper parameters of the network models: pER the probability to connect ver-
tices in ER models, pWS the probability to rewire links in WS models and m the number 
of links to add in each time step for BA networks. For each case instance of m, pWS and 
pER parameters and the complete graph case, 100 runs of Algorithm  1 are performed 

xi = arg max
x∈Si

Ui
P,accept(x),
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using the R software. Discussion of the simulation results and their associated figures are 
given in the next section.

Experimental results
Algorithm  1 is run with the parameter values employed in Bicchieri [5]: N = 50 , 
M = kmax = 10 , I = 5 , and r = 1 . For the complete graph case, we obtain a quick con-
vergence time, on average less than 15 iterations which confirms the results already 
reported by Bicchieri [5]. However, convergence to the fairness norm is not always guar-
anteed over the 100 runs, only 54% of our runs reach the equal split norm, unlike in 
[5]. As shown in Fig. 2, a non-negligible part of the runs converges to the unfair SN of 

Fig. 2  Complete graph case: the evolution along the iterations for convergence / divergence of the fairness 
norm for the 100 runs (left) and the distributions of the total number of iterations (right). Both panels are 
obtained under “common knowledge P” assumption
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Fig. 3  The distributions of the total number of iterations for the different network cases, obtained under 
“common knowledge P” assumption. The red lines link the mean values of the distributions
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4, which are displayed by the darker curves dropping quickly to zero proportion of the 
population in the figure’s left panel. The right panel of Fig. 2 shows that runs with fair-
ness norm converge with a higher iteration number, around 22 iterations on average.

In the following figures, only runs with the fairness norm are displayed, plus the con-
vergence ratio is lowered to 98% of the population instead of 100%3. For BA cases, we 
choose a linear preferential attachment, i.e., its power is fixed to one, and for the original 
lattice of WS networks only neighbors and next neighbors are connected. Fig. 3 shows 
that the distribution of the total iteration numbers are quite comparable for the various 
network topologies. Runs of “BA m = 1 ” have the highest mean of convergence time, 
which is reasonable since the network structure is actually a tree. In addition, the WS 
network instances present several outlier runs with slow convergence time.

The network instances are randomly generated. Thus, for each algorithm run, we can 
associate the corresponding network parameters: diameter, density and centrality index 
taken at the graph level, to the convergence time, i.e., the total number of iterations. 
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Fig. 4  BA network case: correspondences between the network parameters and the total number of 
iterations for runs with fairness norm, under “common knowledge P” assumption

3  This setting allows us to considerably reduce the CPU running time.
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These correspondences are shown in Fig. 4 for BA networks. In this figure for instance, 
runs of “BA m = 1 ” tree have the largest network diameter and the smallest network 
density. Using these correspondence, we could easily adjust the convergence time of 
Fig.  3. In Fig.  5, we examine the adjusted convergence time, wherein the mean of the 
ratios (iteration/diameter), (iteration/density) and (iteration/centrality index) are inde-
pendently averaged over the 100 runs and plotted for each network type. The term itera-
tion in the ratios indicates the convergence time. This adjustment can allow comparisons 
on equal basis and reduce the random effect of network generation.

For BA networks, the ratio (iteration/diameter) is increasing in terms of the parameter 
m, as depicted also in Fig. 3. The trend of Fig. 5 is however more pronounced, mainly due 
to the ‘hubs’ characterizing BA networks which reduce the overall distances. A lower 
network diameter is likely to be obtained as the number of hubs increases with larger m. 
On the other hand, m is inversely correlated with the network density, thus the decreas-
ing tendency of (iteration/density) in BA networks.

For WS model, as pWS probability increases, the original lattice is transformed to a 
small-world network and finally to a random graph at pWS = 1 . The added short-
cuts help to decrease distances. However, the effect of this addition on the plot 
(iteration/diameter) seems to be rather small. The shape of Fig. 3 is clearly reproduced in 
Fig. 5. Same remark for the shape of (iteration/density) plot and Fig. 3. We remind that 
WS small-world networks instances have a constant density.

Concerning ER random graphs, it was proven that their diameter is lower than or 
equal to 2 for the threshold pER >

√
2
√
( lnNN ) ≈ 0.28 (if N = 50) [7]. This is translated 

in the evolution of (iteration/diameter), which is rapidly increasing over the threshold 
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Fig. 5  Case of “common knowledge P ”: evolution of the convergence time adjusted to the network 
parameters of diameter, density and eigenvector centrality measure for the different network cases
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unlike in Fig. 3. We have to say that this evolution is also impacted by a better connectiv-
ity obtained with increasing pER values. Note that the “ER p=1" instance is a complete 
graph case.

Centrality index taken at a graph-level is a measure of dispersion. It is higher when 
larger centrality scores are concentrated on a small number of nodes. Its expression 
is given as the summation of the differences between the most central node and the 
centrality index of the other nodes, respectively. For closeness and betweenness cen-
trality, the star network is the most centralized structure [16, 25]. In the results of 
Fig. 5, we have obtained that in BA and WS network cases, the shape of eigenvector 
and closeness (graph-level) centrality plots are quite similar irrespective of the val-
ues ranges. This is the case for eigenvector and betweenness centrality plots in ER 
network. Only plots of eigenvector centrality are shown in Fig. 5. The shapes of the 
(iteration/eigenvector centrality) plots in BA and WS network cases prove to be gen-
erally analogous to those of Fig. 3. Thus, the small effect of the graph-level central-
ity index compared to the convergence time in these cases. ER random graphs take 
a different stance with a noticeable increase across pER , which could be somehow 
understandable since random graphs exhibit generally lower centrality scores due to 
randomness especially for larger values of pER.

When the “second-order P” assumption is adopted instead of “common knowledge P”, 
the equivalent of the previously reported Fig. 5 is given by Fig. 6. The first remark is that 
the two network cases of “BA m = 1 ” tree and “WS pWS = 0 ” lattice are not convergent, 
thus the corresponding mean values are not drawn. Secondly, if we compare the mean 
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Fig. 6  Case of “second-order P”: evolution of the convergence time adjusted to the network parameters of 
diameter, density and eigenvector centrality measure for the different network cases
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values of the network instances between Figs.  5 and 6, we notice that BA and WS net-
work cases report higher values in Fig. 6, but still within the same ranges of Fig. 5. ER 
network case shows a particularly close mean values for both assumptions. Addition-
ally, the shapes of the curves of ER networks are also similar for both Figs. 5 and 6. The 
shapes of the curves of BA networks reproduce the original evolution in Fig. 3, while WS 
networks describe a new concave shape. From these comparative observations, we could 
state that WS network instances are the most affected from the relaxation of the infor-
mation assumption about the shared offers, and the least affected network cases will be 
ER random graphs.

Fig. 7 corresponds to the case where the “first-order P” assumption is considered. This 
case is important as it comforts us in the initial conclusions drawn from Fig. 6. Plots of 
WS networks are not at all drawn here as none of its network instances is convergent, 
which means that among the 100 runs no instance run reaches the fairness norm. In BA 
network case, “BA m = 2 ” is not convergent in addition to the trees “BA m = 1 ”. For ER 
networks, the mean values reported in Fig. 7 are slightly higher than those of Fig. 6, how-
ever all ER network instances converge.

Table  5 shows the convergence time, i.e., the total number of iterations, for the dif-
ferent network cases and information assumptions. To summarize, if P distribution is 
common knowledge, all network cases converge. For second-order P, except the two 
cases of “BA m = 1 ” tree and “WS pWS = 0 ” lattice, there is convergence. However, for 
the first-order P assumption, half of the cases do not converge, mainly the WS network 
instances, and for tree and lattice cases the convergence is not obtained for any social 
norm so far. ER random graphs seem to be robust to the relaxation of the information 

Barabasi-Albert model (BA) Complete graph Erdos-Reny model (ER)

5

10

15

BA
 m=3

BA
 m=4

Complete
 graph

ER
 p=0.25

ER
 p=0.5

ER
 p=0.75

ER
 p=1

ite
ra

tio
n 

/ d
ia

m
et

er

Barabasi-Albert model (BA) Complete graph Erdos-Reny model (ER)

50

100

150

200

BA
 m=3

BA
 m=4

Complete
 graph

ER
 p=0.25

ER
 p=0.5

ER
 p=0.75

ER
 p=1

ite
ra

tio
n 

/ d
en

si
ty

Infinite value Infinite valu
Barabasi-Albert model (BA) Complete graph Erdos-Reny model (ER)

30

60

90

BA
 m=3

BA
 m=4

Complete
 graph

ER
 p=0.25

ER
 p=0.5

ER
 p=0.75

ER
 p=1

ite
ra

tio
n 

/ e
ig

en
ve

ct
or

 
ce

nt
ra

lit
y

Fig. 7  Case of “first-order P”: evolution of the convergence time adjusted to the network parameters of 
diameter, density and eigenvector centrality measure for the different network cases
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assumption. Convergence time of ER graphs are not affected by changes of the shared 
strategies information, according to Table 5. Investigating the reason behind this seem-
ing robustness of ER random graphs could be an interesting future question to explore. 
The implementation of the overall simulation approach is made in the R environment, 
using ‘igraph’ [8] and ‘doParallel’ packages. The various tests are performed on a 2.4-GHz 
Intel Xeon CPU and 64 GB memory machine.

Conclusion
This paper is about the emergence of Social Norms (SN) in a social network structure. 
The study case of fairness norm in the ultimatum game context [5] using the three net-
work structures of Barabási–Albert (BA), Watts–Strogatz (WS) models and Erdős–
Rényi (ER) random graph. The first conclusion is somehow expected. It is that network 
structure and how information is shared within the network influence in a significant 
and systematic way the convergence/divergence of the fairness social norm. For instance, 
“BA m = 1 ” and “WS pWS = 0 ” network cases are not convergent for the fairness norm 
from the second-order P assumption, wherein the probability distribution of strategies P 
of a player is shared with its first- and second-order neighbors, while it is steadily con-
verging when P is common knowledge. The second conclusion concerns the conver-
gence feedback along the two relaxations of the information assumption about players’ 
strategies. Empirical results suggest that ER random graphs are the most robust to these 
relaxations, contrary to WS networks that exhibit a sensitive dependence to the shared P 
distribution.

Table 5  Average of the convergence time for the fairness SN. ‘NA’ indicates that fairness norm is not 
obtained, while ‘NA∗ ’ indicates that all SNs, fairness and unfair are not obtained

Information assumption Common knowledge 
P

Second-order P First-order P

BA

{

m = 1 37 NA NA
∗

m = 2 16.04 35 NA

m = 3 20.31 20.17 11

m = 4 24.98 24.5 31.67

Complete Graph 17.06 17.21 17.17

WS

{

pWS = 0 18.44 NA NA
∗

pWS = 0.25 25.15 25.67 NA

pWS = 0.5 39.87 51.08 NA

pWS = 0.75 17.55 61 NA

pWS = 1 36.97 29.45 NA

ER

{

pER = 0.25 17.56 17.85 19.6

pER = 0.5 14.96 15.42 17.97

pER = 0.75 14.93 16.48 15.76

pER = 1 16.16 16.06 15.35
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To modelize SNs, economists and social scientists seem to place more focus on the 
game-theoretic framework [5, 6, 17, 22], nonetheless the question of “who play the SN 
game?” is as important as “what SN game is played?”. To better account for the ‘social’ 
character of social norms, the network structure is a vital and necessary element to 
incorporate in prospective game-theoretic models.
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