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THE APPLICATION OF ORTHOGONAL CONTRASTS TO DETERMINE
HOMOGENEOUS GROUPS

ABSTRACT

The paper presents a modified approach to analysis of data obtained from experiments carried out according to clas-
sical factorial designs. Four examples were discussed in order to present details of proposed method. Modification
of the analysis of variance presented here enables more effective use of information on how studied factors affect
the means of dependent variable. The specificity of this approach is based on alternative multiple comparison procedure
incorporating orthogonal contrasts to determine homogeneous groups.
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INTRODUCTION

From the nineteenth century, comparative experiments were frequently used
in various fields of science. However, results of such experiments may be affected
by errors if groups of experimental units are not equivalent at the start of the exper-
iment. R. A. Fisher pointed out that if the experimental units (plots) are random-
ly assigned into groups, their equivalence should be guaranteed at least in terms
of arithmetic means (Fisher, 1925, 1935; Cochran & Cox, 1957). Thus, his experi-
mental designs provide both comparisons and randomization which eliminates also
an unconscious bias of the experimenter. Random selection guarantees an impartial-
ity towards each factor, even though its meaning is not known to the experimenter.
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According to Fisher, consider the simplest randomized complete one-factor
design, where each observation may be described by the following linear model:

yij=m+a;tejfori=1,,p;j=1-,n;
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n=n ()]
=1

i
where: Yij— value of the dependent variable for the i-th level of factor A and the j-th
replication; m — general mean; a;— effect of i-th level of factor A; e;;— experimental
error for the i-th level of factor A and the j-th replication; p— number of levels
of factor A; n;— number of replications for i-th level of factor A; n— total number
of observations. Assuming that y;;~N(m + a;; 6?)and e;;~N(0; o2).

The analysis of variance for such experimental data takes into account two types
of variation: within object variation, arising from the variability ( s2) of the random
deviations, and between object variation, arising from the variability (s2) of tested
effects a;. The ratio of between-to-within object variation (called the F statistics)
given as:

2
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has the F distribution under the null hypothesis written as:

p
Hy: /\ a;=0 = H(,:Zaiz=0. 3)

1<i<p i=1

If compared with the critical value of F distribution at certain significance
level (o) the F statistics is the basis to confirm (if Fpp < Fap-1.n—p) Or deny (if
Fomp > Fa;p—1,n—p) the veracity of the null hypothesis given by formula (3) (Fisher,
1925; Cochran & Cox, 1957; Elandt, 1964; Searle, 1971; Wojcik & Laudanski,
1989; Laudanski, 1996; Mankowski, 2002; Box et al., 2005; Montgomery, 2005).

Considering comparative experiments the most familiar procedure following
rejection of null hypothesis (compared objects differ significantly) involves multi-
ple comparisons in order to determine exactly which levels of given effect (factor)
are equivalent in terms of analyzed response (usually mean value). Such proce-
dures, called sometimes post hoc tests or mean separation tests, allow to extract
specific subgroups of compared objects, homogeneous in terms of mean values
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of the response, i.e. subgroups within objects which do not differ significantly
between each other considering mean value of dependent variable. There are many
methods of conducting multiple comparisons which differ with kind of comparisons
they make (pairwise or with control) as well as with the type of error they control
(individual or interval error rates). The list of mean separation tests includes a lot
of procedures, like those of Tukey, Tukey-Kramer/Spjotvoll-Stoline or Student-
Newman-Keuls, each based on the distribution of studentized range, Duncan — based
on the distribution proposed by the author and individual error rates, Bonferroni —
based on a modified usage of Student's #-distribution or Scheffe — based on the F'
distribution (Tukey, 1953; Dunnett, 1955; Cornifield & Tukey, 1956; Schéffe, 1959;
Elandt, 1964; Duncan, 1975; Biegun & Gabriel, 1981; Hochberg & Tamhane, 1987,
Hochberg, 1988; Wojcik & Laudanski, 1989; Hsu & Nelson, 1998; Rafter et al.,
2002). Moreover, multiple comparisons may be realized using the method of mini-
mized within-group sum of squares (Wagner, 1977) and procedures derived from
cluster analysis (Calinski & Corsten, 1985).

Probably the most versatile and frequently used for multiple comparisons
is Tukey's procedure and its variants. It can be used to compare group means derived
from orthogonal designs characterized by the same number of observations for each
object, as well as from non-orthogonal ones characterized by an uneven number
of observations for objects. For example, Student-Newman-Keuls or Duncan proce-
dures should not be used for comparison of group means obtained from non-orthog-
onal designs as generally standard errors of mean differences may vary for each pair
of compared object means.

If the null hypothesis is not rejected, there is no basis to conclude that objects
are significantly different which means that all of them form one homogeneous
group of means. Thus, the experimenter may sometimes fail to formally confirm
a guess about diversity of tested objects.

In this paper we present an alternative multiple comparison procedure incorporat-
ing orthogonal contrasts to formally confirm an assumption about diversity of test-
ed objects and to determine homogeneous groups.

The presented analyzes were performed in the IBM®SPSS program.

EXAMPLES AND DISCUSSION

Example 1

In a preliminary experiment 17 lines and 3 cultivars of rye has been studied.
The unbalanced experiment was performed in 20 incomplete blocks, each split into
plots of 10 m%. Rye yield expressed in kilograms per plot was a dependent variable.
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Analysis of variance for this experiment (Table 1) showed no differences between
studied objects in terms of mean yield obtained from plot (»p = 0.2175). The exper-
imental accuracy for comparisons of mean yields calculated for analyzed objects
(percentage ratio of standard deviation for object means to overall mean — coeffi-
cient of variation) ranged from 8.26% to 9.48%, whereas mean comparison accura-
cy was 8.92%. These values indicate that the experiment was carried out properly.

Considering Tukey procedure, mean yields for tested objects did not differ signif-
icantly (mean value of honestly significant difference HSD at o = 0.05 was equal
to 2.712, which means that mean comparison accuracy was 33.8%), whereas ¢-test
showed significant difference between objects 16™ and 9" (least significant differ-
ence LSD = 1.446 <9.057-7.399 = 1.658) at the significance level a = 0.05 (mean
comparison accuracy in this case, i.e. percentage ratio of LSD to overall mean, was
20.7%).

Splitting tested objects according to the results of the comparison by the Student's
procedure into two subgroups and performing analysis of variance for such a data-
set will be equivalent to performing analysis in a cross-hierarchical design: blocksx-
objects within subgroups. Thus, it is possible to confirm the existence of differences
between mean yields calculated for subgroups, even though variation of mean yields
for objects within each subgroup is not significant.

Otherwise, if 20 objects are split into subgroups, group 1: (16, 13, 6, 20, 18, 17,
15, 8, 7, 10, 11) and group 2: (2, 4, 1, 14, 19, 5, 12, 3, 9), mean yields obtained
for these subgroups will be 8.419 and 7.549 respectively (Table 2). The F test (Table
3) confirms significance of differences between subgroups in terms of mean yields
(Femfl 8.2058), whereas differences of mean yields obtained for objects within
each subgroup are not significant (¥ gmp=0.3927).

This example proved that the analysis of variance cannot give fully satisfacto-
ry results of multiple mean comparisons. This happens because ANOVA is based
on comparison of all possible independent differences between pairs of means.
If the analysis concerns of many small differences and only few large ones then glob-
al null hypothesis cannot be rejected, because sum of squares which measures these
differences is too small relative to degrees of freedom corresponding to a number
of comparisons. Such situation may occur quite frequently in practice, therefore
modification of ANOVA technique to obtain homogeneous subgroups is justified.
It should be noted that the analysis of variance described above (a comparison of two
subgroups of analyzed objects) is nothing but a comparison known as a contrast
between effects of tested objects.

Table 1
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Analysis of variance for experimental data

Source | df | SS | MS | Femp |p-value
Blocks 19 11.6468 0.6130  0.8830 0.6039
Objects 19 17.5452 0.9234  1.3303 0.2175
Residual 41 28.4613 0.6942
Table 2
Postulated division into groups
Group |
Object 16 13 6 20 18 17 15 8 7 10 11 7
Mean 9.057 8.794 8.744 8.662 8.648 8489 8322 8.054 8.013 7917 7.904 | 8.419
Group II
Object 2 4 1 14 19 5 12 3 9 Vu
Mean 7.796  7.701 7.611 7.597 7470 7458 7.454 7453 7.399 7.549
Table 3
Complex analysis of variance for experimental data
Source | df | SS | MS | Fomp | p-value
Blocks 19 11.6468 0.6130 0.8830 0.60394
Objects 19 17.5452 0.9234 1.3303 0.21754
including:
Between groups 1 12.6380 12.6380  18.2058 0.00011
Within groups 18 4.9072 0.2726 0.3927 0.98235
Residual 41 28.4613 0.6942

ORTHOGONAL CONTRAST CONSTRUCTION

Consider a modified technique of analysis of variance for the model (1): rand-
omized complete one-factor design. The hypothesis (2) for this design is that
all mean values calculated for tested objects represent one homogeneous group
centered around the estimated experimental mean (m).

Rephrase our problem as follows: there are subgroups of examined objects having
estimated mean values centered around the subgroup mean (subgroup centroid)
similar as in the model (1) all object means are centered around an overall mean.
One can always guess the existence of such subgroups but they must be properly
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identified to ensure rejecting the null hypothesis of equality between subgroup
means (centroids) without rejecting the null hypothesis of differences between
means within these subgroups.

We will use one of hierarchical cluster analysis methods known as centroid clus-
tering to identify such object subgroups. In centroid clustering distance between
two clusters is defined as distance between their centers of gravity (here: between
means/average point in the multidimensional space defined by values of analyz-
ed variables). Agglomeration procedure assumes that each object creates initially
a separate cluster. Assuming that there is at most p object subgroups, agglomera-
tion procedure results in subsequent divisions into separate subgroups of objects
as number of subgroups is reduced from p—/ to 2 based on an arbitrary distance
measure, for example Euclidean or square Euclidean distance between means
of each subgroup. Distances of Student or Fisher which take into account experi-
mental design may be also used (Laudanski, 1996; Mankowski, 2002). The Fisher
distance may be expressed as:

ngny(¥s — ¥)? NgYs + N:Y)?
s +(Fs — Vi) =ns}7sz+n:}7t2—( sVs ) @)

ng + ng ng +n;

whereas Student distance may be determined as:

\/— — nsnt(:)_’s - 7{)2 (5)

ns +ng

In both formulas s and ¢ are indicators of subgroup means y; and y, respective-
ly, ns and n, denote numbers of observations that correspond to subgroup means
and are combined into one subgroup containing n, +n, observations while reduc-
ing the number of subgroups from (v + 1) to v. Note that the formula (4) expresses
sum of the squares of contrast between groups identified with subscripts s and .
In analysis of variance contrast is defined as linear function of object means
of known constant coefficients sum of which is equal to 0. In other words, if vector
c= [cl,c2,~-~,cp]’, where f=1cs =0, expresses estimated contrast (comparison)
between means (components of vector a) established as c’a then sum of squares
calculated for the following hypothesis:

Hy:c'a=0 (6)

is equal to
Q =a'c[c'Cc] ic'a (7)

where C is a matrix such that the covariance matrix of vector a is equal to s2C.
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In particular case, if ¢g = 1 and ¢, = —1 while other coefficients are zero, then O
expresses the sum of squares of F statistic which tests equality of means calculated
for subgroups s and 7. Mindful of the relationship tém_p = Fg 1,n—p ONE may apply
Student’s ¢ statistic instead of F statistic to test hypothesis expressed by formula (6).
Note that Student’s test may be one-sided, i.e. may verify hypothesis written as:

Hy:c'a<0 (®)

Ifso, then testing statistic takes the form of lemp = ’ % and consequently the null
Se
hypothesis formulated in equation (8) should be rejected on the significance level a,
. . Q
if temp > tagn—p Or by analogy if. Fprpp = 2 > Fogin—p-

Example 2
Consider data from Table 4 to introduce procedure described above. Table
4 presents ANOVA results obtained for experiment carried out for 5 corn cultivars.
The experiment was performed in completely random design with 6 replications.
Corn yield expressed in kilograms per plot (experimental unit) was a depend-
ent variable. Mean yields per plot are presented in Table 5. Assuming the exist-
ence of 5 subgroups (each cultivar corresponds to separate subgroup) matrices
of Fisher distances (tab. 6) between subgroup means may be determined according
to the formula (4). As a final result two subgroups (Tab. 7) are obtained with Fisher
distance equal to:
24-6-(99.4 — 71.75)%
- 24+6

= 3669.708 )

Table 4

Analysis of variance for experimental data

Source | df | SS MS | Fomp | p-value
Objects 4 5267.9284  1316.9821 190.3427 2.49E-18
Residual 25 172.9751 6.9190

Table 5

Object means values (n; = 6)

<U

Objects|5|2|l|4|3

Means 107.75 105.65 97.15 87.05 71.75 93.87




38 Zbigniew Laudanski, Dariusz R. Mankowski, Leszek Sieczko...

Table 6
Matrix of Fisher distances

Step 1
Object 2 1 4 3
5 13.23 337.08 1285.47 3888.00
2 X 216.75 1037.88 3447.63
1 x x 306.03 1935.48
4 x x x 702.27

Step 11
Object 1 4 3
52 364.81 1544.49 4886.01
1 X 306.03 1935.48
4 X X 702.27

Step 111
Object 1,4 3
52 1278.96 4886.01
1,4 x 1656.49

Table 7
Mean values of groups

Groups (1,2,4,5) (3) y
Means 99.40 71.75 93.87
n 24 6 30

Results presented in extended ANOVA table (tab. 8) for this experiment show that
5 corn cultivars form 4 homogeneous groups. Mean yields calculated separately
for cultivar 5 and 2 do not differ significantly between each other, while mean yield
representing these two cultivars differs significantly from mean yields observed
in other three cultivars each of which forms a separate homogeneous group. Table
9 presents a series of contrasts which exhausts the set of all possible orthogonal
contrasts available for this experiment. Fisher distance corresponds to the sum
of squares calculated for the contrast of compared objects. Different distance meas-
ures eg. Euclidean distance allows to obtain the same or a different set of orthogonal
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contrasts. For example, formula (9) for computing the square Euclidean distance

takes the following form:
Q = (99.4 — 71.75)% = 764.5225. (10)
Table 8
Complex/extended analysis of variance for experimental data
Source | df | SS | MS | Fomp | p-value
Objects 4 5267.928 1316.982 190.343 2.49E-18
H,: Test subjects do not form a homogeneous groups
2 groups 1 3669.708 3669.708 530.381 2.37E-18
3 groups 1 1278.960 1278.960 184.847 4.73E-13
4 groups 1 306.0301 306.0301 44.230 5.72E-07
5 groups 1 13.230 13.230 1.9121 0.179
Residual 25 172.975 6.919
Table 9
Set of orthogonal contrasts

Objects BB ERE ss

Contrast 1 -1 0 0 1 13.230

Contrast 2 0 0 -1 0 306.030

Contrast 3 -1 0 1 -1 1278.960

Contrast 4 1 -4 1 1 3669.708

Example 3

Consider experiment conducted in randomized complete blocks where effect
of corn cultivar on yield per plot was studied. Results of ANOVA for experimen-
tal data, extended by orthogonal contrasts, are presented in Table 10. The analysis
showed that 8 corn varieties formed 4 homogeneous groups regarding mean yield
per plot. Mean yields calculated for each cultivar, homogeneous groups obtained
according to proposed method and well known multiple comparison procedures
are summarized in Table 11. It should be noted that standard multiple compari-
son procedures resulted in inseparable homogeneous groups. Complete separation
of homogeneous groups is rarely attainable in practice, particularly if a large number
of analyzed objects (means) is taken into account. The application of orthogonal
contrasts enables complete separation of homogeneous groups (mutually independ-

ent) in each case.
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Table 10
Complex analysis of variance for experimental data
Source | df | SS | MS | Fomp | p-value
Blocks 2 5.643 2.821 0.0595 0.94247
Cultivars 7 2347.247  335.321 7.0776 0.00099
Test subjects do not form a homogeneous groups
2 groups 1 1476.056  1476.056  31.1549 0.00007
3 groups 1 601.142 601.142 12.6882 0.00313
4 groups 1 223.414 223.414 4.7156 0.04757
5 groups 1 43.867 43.867 0.9259 0.35226
6 groups 1 2.160 2.160 0.0456 0.83398
7 groups 1 0.327 0.327 0.0069 0.93497
8 groups 1 0.282 0.282 0.0059 0.93986
Residual 14 663.291 47.378
Table 11
Homogeneous groups
' B Orthogonal Newman— .
Cultivar Vi contrasts Tukey Keuls Duncan | Bonferroni | Scheffe | Student
method
1 104,87 a a a a a a a
4 104,40 a ab ab ab ab ab ab
8 94,43 b abc abc b abc ab
6 93,23 b abc abc b abc ab
2 87,73 c abc be be abc ab be
7 87,30 [ be be be abc ab bc
3 82,83 c ¢ c c be b ¢
5 73,60 d c c c c b c
Example 4

An experiment discussed by Wagner (1977) will be used to present direct compar-
ison of method based on minimal orthogonal contrasts with procedure based
on minimal within-group sum of squares. The experiment concerned 14 cultivars
of sugar beet and was realized in completely randomized block design with 6 repli-
cations. Sugar yield was a dependent variable and mean yields (dt/ha) obtained
for each cultivar are presented in Table 12. Table 13 presents results of ANOVA,
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extended by orthogonal contrasts for experimental data. Comparison procedure
based on minimum within-group sum of squares resulted in 3 homogeneous groups
of object means, while application of Tukey procedure allowed to obtain 2 homo-
geneous groups (Wagner, 1977). Method of minimal orthogonal contrasts based
on Fisher distance between object means resulted in distinguishing 4 homogeneous
groups (Tab. 14). Thus the most numerous group discussed by Wagner (1977) had
been split into 2 separate subgroups (group 1 and 2 in Tab. 15). It is not difficult
to note that the application of orthogonal contrasts resulted in considerable span
of mean sugar yields observed between groups, whereas within each group object
means calculated for cultivars were concentrated around group mean.

Table 12

Mean yield values of compared beet cultivars

Cultiv. 1|2|3|4|5|6|7|8|9|10|11|12|13|14

Yield 98.36 100.87 107.58 102.32 105.11 106.13 102.03 102.29 100.58 84.11 95.52 101.91 96.44 103.05

Table 13

Complex analysis of variance for experimental data

Source | df | SS MS Fomp p-value
Blocks 5 193.05 38.61 2.175 0.067615
Cultivars 13 2610.79 200.83 11.314 3.53E-12
H,: Test subjects do not form a homogeneous groups

2 groups 1 1725.174 1725.174 97.193 1.56E-14
3 groups 1 569.553 569.553 32.087 3.62E-07
4 groups 1 244.935 244.935 13.799 0.000425
5 groups 1 22.658 22.658 1.276 0.262796
Within groups 9 48.470 5.386 0.303 0.971258

Residual 65 1153.75 17.75
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Table 14
Fishers distances matrix
Object 11,13 1 2,4,7,8,9,12,14 | 3,5,6
10 563.588 609.188 1654.880 2210.453
11513 X 22.658 323.167 762.855
1 x x 64.471 281.791
2,4,7,8,9,12,14 X X X 244.935
Object 1,11,13 2,4,7,8,9,12,14 3,5,6
10 721.616 1654.880 2210.453
1,11,13 x 326.570 812.250
2,4,7,8,9,12,14 x x 244.935
Object 1,11,13 2,3,4,5,6,7,8,9,12,14
10 721.616 1985.187
1,11,13 x 569.553
Object 1,2,3,4,5,6,7,8,9,11,12,13,14
10 1725.174
Table 15
Means division into homogenous groups
Group 1
Cultivar | 3 | 6 | 5 |
Yield 107.58  106.13  105.11 106.27
Group 2
Cultivar | 14 |4 | 8 |7 | 12 |2 | 9
Yield 103.05  102.32 10229 102.03 101.91 100.87 100.58 | 101.86
Group 3
Cultivar | 1 | 13 | 1 |
Yield 98.36 96.44 95.52 96.77
Group 4
Cultivar | 10 |
Yield 84.11 84.11
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CONCLUSIONS

The alternative multiple comparison procedure incorporating orthogonal contrasts
to determine homogeneous groups of objects undergone analysis of variance enables
complete separation of analyzed object means that means within homogeneous
groups do not differ significantly between each other but between-group means
(centroids) are significantly different. Moreover, significant association of group
variation relative to the total object variation ensures optimal separation of object
means into distinct homogeneous groups. Proposed procedure may be applied
for each linear ANOVA model and analysis of covariance of classified data.

Commonly used multiple comparison procedures are based generally on compar-
ing the distances between means calculated for pairs of objects relative to the appro-
priate error that results from covariance matrix of these means (thus they correspond
to the matrix of experimental design). Although these procedures are very useful
for comparison selected objects to each other (answering the question: does cultivar
A differ significantly from cultivar B in terms of mean value of studied feature)
applying them to split objects into homogeneous subgroups results in an approx-
imate picture of possible separation, especially if number of objects is large.
The procedure discussed in this paper consists in determination of orthogonal
contrasts between means according to the criterion of minimum contrast and it
seems to meet the expectations of practitioners.
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