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The task of next Point-of-Interest (POI) recommendation aims to recommend a list of POIs for a user to visit at the next
timestamp based on his/her previous interactions, which is valuable for both location-based service providers and users. Recent
state-of-the-art studies mainly employ recurrent neural network (RNN) based methods to model user check-in behaviors
according to userâĂŹs historical check-in sequences. However, most of the existing RNN-based methods merely capture
geographical inluences depending on physical distance or successive relation among POIs. They are insuicient to capture
the high-order complex geographical inluences among POI networks, which are essential for estimating user preferences.
To address this limitation, we propose a novel Graph-based Spatial Dependency modeling (GSD) module, which focuses on
explicitly modeling complex geographical inluences by leveraging graph embedding. GSD captures two types of geographical
inluences, i.e., distance-based and transition-based inluences from designed POI semantic graphs. Additionally, we propose a
novel Graph-enhanced Spatial-Temporal network (GSTN) which incorporates user spatial and temporal dependencies for next
POI recommendation. Speciically, GSTN consists of a Long Short-Term Memory (LSTM) network for user-speciic temporal
dependencies modeling and GSD for user spatial dependencies learning. Finally, we evaluate the proposed model using three
real-world datasets. Extensive experiments demonstrate the efectiveness of GSD in capturing various geographical inluences
and the improvement of GSTN over state-of-the-art methods.

CCS Concepts: · Information systems→ Data mining; Spatial-temporal systems; Recommender systems.

Additional Key Words and Phrases: Next Point-of-Interest Recommendation, LSTM, Graph Embedding

1 INTRODUCTION

In recent years, Location-Based Social Networks (LBSNs) such as Foursquare and Gowalla have become popular
in our daily life. As a bridge between online social media and the physical world, LBSNs provide a platform for
users to share with friends their locations and attach relevant information. The huge number of accumulated
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check-in sequences facilitates the understanding of user mobile behaviors and preferences for Points-of-Interest
(POIs), e.g., shopping malls and museums. One signiicant task in this ield is to recommend the next POI based
on historical check-in sequences, which plays an important role for both users and LBSNs service providers.
Thus, POI recommendation gains great attention from researchers in the last few years [5, 18, 39].

The task of next POI recommendation is proposed to achieve accurate personalized POI recommendation
[3, 14]. It focuses on recommending next POI that users tend to visit. As a natural extension of general POI
recommendation, next POI recommendation task considers user check-ins as successive sequences, which aims
to capture user dynamic preferences. One of the most distinguished features of next POI recommendation is that
geographical inluences serve as key factors for recommendation[13, 23, 41]. For example, a POI with a long
physical distance is less attractive to users due to the physical restriction. These constraints dramatically increase
the diiculty of next POI recommendation.
In the current literature, Recurrent Neural Network (RNN) framework has been widely applied to model

sequential data and thus become a mainstream approach for next POI recommendation [2, 9, 19, 34]. However,
classical RNN architectures, like vanilla RNN and Long Short-Term Memory (LSTM), were primarily proposed
to capture relations from successive sequences and they fail to handle geographical inluences. Researchers
concentrate on integrating various spatial information into RNN architectures to improve model performance.
Existing methods for next POI recommendation can be roughly grouped into two paradigms. With the assumption
that users prefer to visit neighboring POIs with close physical distance, the irst type of methods endeavors
to depict geographical adjacency among POIs. Spatio-Temporal Gated Network (STGN) [39] and Hierarchical
Spatial-Temporal LSTM (HST-LSTM) [15] explicitly leverage physical distances between POIs as model inputs.
Ke et al. [26] proposes a geo-dilated LSTM to exploit geographical inluences among non-successive POIs by
constructing a novel distance-based input set. The second type of methods assumes that POIs within the same
check-in sequences possessing great inluence on each other, implicitly modeling these co-occurring relations.
For example, Spatial Temporal RNN (ST-RNN) [18] focuses on extracting spatial information using spatial and
temporal transition matrices. Time-LSTM [43], LSPL [32], and TMCA [16] extend LSTM to characterize user
dynamic preferences for next POI recommendation.
Although the aforementioned models acquire signiicant improvement of next POI recommendation perfor-

mance, they are subject to quantized mapping methods which directly convert spatial interval and successive
relation into discrete features. Most of them (such as STGN and HST-LSTM) only simply compute physical
distances between successive check-ins within sequences as input to model geographical inluences. However, the
underlying structure of real-world data is often highly non-linear and hence hardly be accurately approximated
by linear calculation. We argue that these methods may fall short in capturing high-order geographical inluences.
As shown in Figure 1, general user check-in locations consist of diferent functional sites such as restaurants,
entertainment sites, etc. Assuming that a userâĂŹs current location is a restaurant and he/she have inished the
lunch, it is quite possible for the user to visit an entertainment site rather than another restaurant due to intrinsic
characteristics of POIs, despite the industrial site is closer to the user’s current location than the entertainment
site. Moreover, the range of user check-in behaviors is limited [22]. Users may present less interest in a distant
popular entertainment site due to the physical distance. In such situations, it is insuicient to fully capture
complex geographical inluence among POIs only leveraging physical distance or successive relation.

In this paper, we aim to explicitly capture diferent high-order geographical inluences among POIs. To this end,
we propose a Graph-based Spatial Dependency modeling (GSD) module based on graph embedding. POI semantic
graphs that relect the pair-wise relation among POIs are constructed as inputs of GSD, which enable GSD to
learn various kinds of geographical latent representations based on both successive and non-successive visited
POIs. Besides, the POI semantic graphs we constructed are from a global view (i.e., contained all POIs in datasets),
which prevents the GSDmodule from only capturing shallow inluences between successive Check-ins. In speciic,
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Fig. 1. An illustration of a user’s check-in sequence. The next visited POI of users is influenced by both physical distance and

intrinsic characteristics of POI. Dashed arrows point to candidate POIs and the solid arrow points to the actual next visited

POI.

we capture distance-based and transition-based geographical latent representations to model corresponding
geographical inluences respectively.
Moreover, we fuse geographical representations learned by GSD as spatial dependencies with temporal

dependencies learned by LSTM-based method and thus propose a novel Graph-enhanced Spatial-Temporal
Network (GSTN) for next POI recommendation. Speciically, GSTN utilizes an LSTM variant named Time-
LSTM to capture user-speciic temporal dependencies and then fuses both spatial and temporal dependencies
to recommend POIs that users are most likely to visit in the next timestamp. We validate the efectiveness of
GSTN on three real-world datasets from Gowalla, Foursquare and Brightkite. Extensive experimental results
demonstrate that our proposed GSTN model is able to improve the performance of next POI recommendation.

The main contributions of this paper are summarized as follows:

• We propose to explicitly model highly complex geographical inluences for fully utilizing spatial dependen-
cies in next POI recommendation. Speciically, we design a novel GSD module based on graph embedding
to capture high-order complex geographical inluences among POIs. Two POI semantic graphs are designed
to learn distance-based and transition-based geographical latent representations for each POI.
• We propose a novel GSTN model for next POI recommendation. GSTN focuses on integrating spatial
dependencies of POIs and temporal dependencies of users for comprehensively estimating user preferences.
A novel spatial-temporal attention aggregation module is designed to efectively integrate spatial and
temporal dependencies.
• We conduct extensive experiments on three real-world LBSN datasets. The results show that our proposed
approach outperforms other baseline methods with regard to diferent metrics.

The remainder of this paper is organized as follows. We irst give a brief review of related work in Section
2. Then we formulate the next POI recommendation problem and notations we deined in Section 3. In Section
4, we introduce the proposed GSTN model with detailed descriptions of each module we designed. Extensive
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experiments are given in Section 5 to evaluate the efectiveness of GSTN. Conclusions and future work are
discussed in Section 6.

2 RELATED WORK

2.1 Next POI Recommendation

The next POI recommendation task aims to recommend the next possible visited POI for users, which is based
on their historical check-in sequences of his/her visited POIs with geographic information and gentle time
constraints. Traditional methods for next POI recommendation include Matrix Factorization (MF) based methods,
Markov Chain (MC) based methods and geographical representation learning methods.
Most of traditional methods are based on MF [25] approach to achieve recommendation. The main purpose

of MF is to factorize the user-POI interaction matrix into two-low rank matrices which can be approximately
considered as user and item latent representation respectively. However, Factorization based methods neglect the
temporal relation among check-ins, it is hard for them to recommend appropriate next visited POI.
Due to the prominent capture ability of user sequential mobility patterns, MC becomes one of the widely

used methods. MC based methods leverage the estimated transition probability generated by past check-ins to
recommend the next visited POI. A state-of-the-art method here for next POI recommendation is Factorizing
Personalized Markov Chains (FPMC) [24], which employs POI transition matrix and matrix factorization to model
transition relation among successive check-ins and user general preferences. FPMC model transition matrix as
irst-order MC, which considers the relation between current POI and previous one. Based on FPMC, Factorizing
Personalized Markov Chains with Localized Regions (FPMC-LR) [3] further introduces region restriction to only
consider POIs within the deined region as candidates. De et al. [17] breaks the regional restriction and employs
FPMC to model long-term and short-term preferences of users for next POI recommendation.
In addition, with the development of representation learning in recent years, geographical representation

models that depict geographical inluence among POIs are proposed in this ield[1, 4, 7, 33, 42]. They have
demonstrated that the usage of POI geolocation information to be beneicial for estimating user preferences.
A recently proposed GeoIE model [30] is closely related to our GSTN model due to the usage of geographical
inluence types. GeoIE exploits ingoing and outgoing inluences to characterize each speciic POI and generate
recommendation lists for users based on inner-product results of geographical inluences. Our proposed GSTN
has several signiicant diferences. First, GSTN focuses on recommending next POI for users, it is a method for
sequential POI recommendation. Whereas GeoIE aims to infer user potential interests in unvisited POIs, it is for
non-sequential POI recommendation and does not model the sequential dependency at all. Second, GSTN learns
geographical latent representations through novel proposed GSD module while GeoIE models geographical
inluences resorting to inner-product. The algorithm and optimization objectives exist noticeable diferences
between both methods. Third, only GSTN proposes to integrate spatial and temporal information for user
preference estimation. GeoIE merely leverages geographical inluences for POI recommendation. Our experiment
results also demonstrate that only utilizing geographical inluences is insuicient for next POI recommendation.

2.2 Recurrent Neural Network based Recommendation

RNN is a successful tool to handle complex dependencies in long-range sequences and has shown state-of-
the-art performance in recommendation systems and mobility prediction [31, 35, 36]. Existing methods make
a great efort to leverage spatial and temporal information for next POI recommendation. STRNN [18] irstly
incorporates RNN units with temporal and spatial matrices which are parameterized by speciic spatial and
temporal distances among nearby POIs in check-in sequences. STRNN also proposes to adopt linear interpolation
to alleviate the problem of over-abundant parameters. HST-LSTM [15] extends all of the three gates in LSTM
cells to utilize spatial-temporal distances as inputs. Besides, HST-LSTM proposes a hierarchical structure for
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LSTM to capture user dynamic preferences. Time-LSTM [43] equips LSTM with additional time gates to capture
interval information between successive items for sequential recommendation. Inspired by Time-LSTM, STGN
[39] further integrates additional time gates and physical distance gates into LSTM structure to explicitly model
spatial-temporal distance between successive check-in activities for next POI recommendation. To jointly model
the long- and short-term preferences, Su et al. [39] develop the state-of-the-art Long- and Short-Term Preference
Modeling (LSTPM) model which utilizes a context-aware network architecture to explore temporal and spatial
relations between previous and current trajectories.
Though these methods efectively involve spatial factors for user preference estimation, they simply adopt

shallow quantized mapping methods to capture geographical inluences and cannot completely beneit from
spatial dependencies. The modeling capability of RNN-based structure for temporal and spatial dependencies is
overlooked to some extent[11]. To address this limitation, we explicitly capture highly non-linear geographical
inluences among successive and non-successive POIs that are extracted via graph embedding and then integrate
spatial and temporal dependencies for user preference estimation.

3 PROBLEM FORMULATION

In this section, we give the relevant notations and formalize the problem deinition of next POI recommendation
as follows.

Deinition 1. (Point-of-Interest) A POI is a spatial site (e.g., a restaurant) associated with two attributes: a
unique identiier l and geographical coordinates (lonдitude, latitude ) tuple, i.e., (lon, lat ).
Deinition 2. (Check-in sequence) In a typical next POI recommendation scenario, LetU = {u1,u2, ...,uM }

denotes the set of all users and L = {l1, l2, ..., lN } denotes the set of all POIs. The historical check-in sequence of
user u is deined as Hu

= {(lui , tlui ) |i = 1, 2, · · · ,n}, where n is the number of check-in behaviors of user u. Each

tuple (lui , tlui ) represents the i
th check-in behavior of user u ∈ U with POI lui ∈ L and timestamp tlui .

Deinition 3. (Distance-based graph) A weighted undirected POI semantic graphGD = (V ,ED ,AD ), where
V represents the set of all POIs, i.e,V = L. ED ∈ V ×V is the set of edges in the graphGD . The set of ED includes
an edge eDi, j

that describes the distance-based relation between vertices vi and vj . AD ∈ RN×N represents a
weighted adjacency matrix where the value of ADi j

measures distance-based relation between POI li and lj .
Deinition 4. (Transition-based graph) Aweighted directed POI semantic graphGT = (V ,ET ,AT ), whereV

and ET are the set of POIs and edges inGT respectively. The value ofATi, j in thematrixAT denotes transition-based
relation between POI li and lj , if ATi, j , 0 then eTi, j ∈ ET and vice versa.

Problem Statement. Given a set of POIs L and a set of users U , each u ∈ U has check-in sequence Hu .
The task of next POI recommendation aims to recommend the most interesting POI for user u ∈ U at the next
timestamp. Speciically, The goal of our model is to estimate user preferences for candidate POIs based on check-in
sequences. Furthermore, we generate a top-k recommendation list by ranking the estimated preferences of all
candidate POIs in the descending order.

4 GRAPH-ENHANCED SPATIAL-TEMPORAL NETWORK

In this section, we describe the proposed GSTN model in detail. Figure 2 depicts the overall architecture of GSTN.
In what follows, we elaborate on the main components of our model, including (1) graph-based spatial dependency
modeling module, which learns both distance-based and transition-based geographical latent representations to
capture spatial dependencies; (2) user-speciic temporal dependency modeling module, which explores temporal
dependencies from historical check-in sequences; (3) spatial-temporal attention aggregation module, which
adaptively aggregate relevant geographical latent representations to update spatial dependencies; (4) prediction
module, which integrates spatial and temporal dependencies for estimating user preferences.
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Fig. 2. The overall Architecture of GSTN. Spatial dependency modeling is conducted based on two kinds of POI semantic

graphs proposed in the paper. Temporal dependency modeling is conducted based on Time-LSTM. ST (i.e., spatial-temporal)

atention aggregation adopts atention mechanism to refine geographical influences. Both spatial and temporal dependencies

are integrated to estimate user preference.

4.1 Graph-based Spatial Dependency Modeling

Empirically, user preferences for individual POIs are limited by geographical constraints. To fully depict complex
geographical inluences, we capture diferent types of geographical latent representations based on POI semantic
graphs. Speciically, two types of geographical latent representations are learned in this module including
distance-based geographical latent representation and transition-based geographical latent representation.

4.1.1 Distance-based geographical latent representation. The irst law of geography [28] points out that łnearby
things are more related than distance thingž. Some studies [6, 37, 38] also show that check-in behaviors of users
present aggregation in geographical space, i.e., the next check-in behavior generally occurs in the place close
to the current check-in place. Figure 3(a) illustrates how distance information of POIs is used to construct the
distance-based graph. We irst calculate the physical distance between POIs from their unique location and
construct a symmetrical graph GD = (V ,ED ,AD ), the entry of AD is deined as:

ADi, j
=





exp (−
dist (li , lj )

2

2σ 2
), 0 < dist (li , lj ) < ∆d

0, otherwise

(1)

where dist (li , lj ) is the Euclidean distance between POI li and lj , the value of ADi, j
is calculated by a Gaussian

kernel if dist (li , lj ) less than distance threshold ∆d . We employ Gaussian kernel function since it not only maps
features to high dimensional space but also depicts the inverse correlation between geographical distance and
users’ visited intent, i.e., users are less interested in a distant POI.
Based on the distance-based graph GD , we utilize graph embedding to capture distance-based geographical

latent representation d ∈ Rk of each POI, where k is the dimension of latent representation. Compared with

ACM Trans. Knowl. Discov. Data.



Graph-enhanced Spatial-temporal Network for Next POI Recommendation • 1:7

�5

�2 �3

�4
�1�(����(�1, �5)) �(����(�4, �5))

�(����(�1, �5)) �(����(�1, �5)) �(����(�1, �5))
(a) Distance-based Graph

�1 �5

�2 �3

�4����(�3, �5)
����(�4, �5)

����(�4, �3) ����(�3, �4)����(�1, �2)����(�2, �1)
����(�2, �3)

(b) Transition-based Graph

Fig. 3. Illustration of two types of POI semantic graphs. f (·) represents Gaussian kernel function.

directly utilizing distance between successive check-ins, graph embedding methods adopt non-linear aggregation
functions to learn representation of each POI many times, which enables GSD module to capture high-order and
non-linear geographical inluences. Inspired by [27], for any two connected POIs li and lj in GD , the conditional
probability p1 (li |lj ) can be deined as follows:

p1 (li |lj ) =
exp (dT

i
dj )

∑
lk ∈V exp (dT

i
dk )
, (2)

Furthermore, its empirical probability can be deined as:

p̂1 (li |lj ) =
ADi, j∑

lk ∈V ADi,k

, (3)

To learn the optimal latent representations of POIs, we adopt KL-divergence to minimize the distance between p1
and p̂1. Speciically, we omit some constants and minimize the following loss function:

L1 = −
∑

eDi, j ∈ED
ADi, j

logp1 (li |lj ), (4)

4.1.2 Transition-based geographical latent representation. Intrinsic characteristics of POIs are signiicant factors
that afect user preferences. For example, the frequency of (wine bar - entertainment site) is higher than the
frequency of (wine bar - industry site). Figure 3(b) illustrates how transition information is used to construct
the transition-based graph, we consider the user check-in sequence H as one type of transition relation among
diferent POIs and encode it with directed graphGT = (V ,ET ,AT ), where eTi, j ∈ ET describe the direct transition
relation from li to lj . The entry of AT is deined as:

ATi, j = f req(li , lj ), (5)

where f req(li , lj ) is the transition frequency between POI li and lj among all users. We only count transition
records with time interval less than 5 days since successive check-ins with long time interval may not be
correlated.
Inspired by [30], we model the intrinsic characteristics of each POI through two transition-based inluences,

i.e., ingoing and outgoing inluences. Ingoing inluence represents the capacity of a POI to spread visitors to
others and outgoing inluence represents the capacity of a POI to receive visitors from others. We utilize the
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transition-based graphGT as input to capture those inluences. Speciically, for each POI li inGT , The probability
p2 (li |lj ) of transition from POI lj to li is deined as follows:

p2 (li |lj ) =
exp (дT

j
hi )

∑
lk ∈V exp (дT

k
hi )
, (6)

where д ∈ Rk is the latent representation of outgoing inluence and h ∈ Rk is the latent representation of ingoing
inluence. Similar to the distance-based latent representation part, the empirical probability of transition between
POI li and POI lj and the loss function is given as:

p̂2 (li |lj ) =
ATi, j∑

lk ∈V ATi,k

, (7)

L2 = −
∑

eTi, j ∈ET
ATi, j logp2 (li |lj ), (8)

To be mentioned, when the number of edges in GT and GT is large, updating all the trainable parameters of
spatial dependency modeling module through loss functions L1 and L2 (i.e., Eq. (4) and Eq. (8)) is costly. Hence,
following the idea of Wang et al. [30], we adopt the approach of negative sampling and modify L1 and L2 as
follows:

L1 = −
∑

eDi j ∈ED
ADi, j

{loдσ (dTj di ) +
∑

k ∈NEG (i )

[loдσ (−dT
k
di )]}, (9)

L2 = −
∑

eTi j ∈ET
ATi, j {loдσ (дTj hi ) +

∑

k ∈NEG (i )

[loдσ (−дT
k
hi )]}, (10)

where σ (·) is the sigmoid function. NEG (i ) represents the negative sampling set relative to POI li , which includes
the whole non-adjacent node of POI li . To be mentioned, we select diferent negative samples for distance-based
and transition-based modeling modules respectively. The number of negative samples is set to 5.

4.2 User-specific Temporal Dependency Modeling

When modeling temporal dependencies of users, an intuitive method is to selectively extract the most signiicant
information from check-in sequences of users. Therefore, we focus on modeling temporal dependencies via
LSTM-based methods that solve the problem of gradient vanishing and can capture long-term preferences. First,
we encode all the POIs in set L into X = {xi |i = 1, 2, · · · ,N } using an embedding layer, where xi ∈ Rk is a k
dimension embedding vector for the POI li ∈ L. Speciically, x is randomly initialized and is trainable in the
networks.

Intuitively, users prefer to visit a nearby POI rather than a remote POI. It is a reasonable assumption that the
last POI is a signiicant factor that afects the next recommendation. In this light, we utilize Time-LSTM [43] to
encode the whole information in check-in sequences. Figure 4 illustrates the structure of Time-LSTM. Given an
input xut at timestamp t , the output of Time-LSTM hidden layer hut is calculated as following functions:

ĉt = tanh(Wcxx
u
t +Wchht−1 + bc ), (11)

T1t = σ (Wx1x
u
t + σ (∆ttWt1 ) + b1), s .t .Wt1 ≤ 0, (12)

T2t = σ (Wx2x
u
t + σ (∆ttWt2 ) + b2), (13)

c̃t = (1 − it ⊙ T1t ) ⊙ ct−1 + it ⊙ T1t ⊙ σ (ĉt ), (14)

ct = (1 − it ) ⊙ ct−1 + it ⊙ T2t ⊙ σ (ĉt ), (15)

hut = ot ⊙ tanh(c̃t ), (16)
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Fig. 4. The structure of Time-LSTM[43]

where it , ot , ct represent input gate, output gate and cell state of LSTM respectively. ∆t is the time interval
between two adjacent check-ins. Two novel time gates,T1t andT2t are designed to emphasize the inluence of
current interest on the next POI. The constraintWt1 ≤ 0 characterizes the negative correlation between inluence
of last POI lt−1 on current POI recommendations i.e., if lt−1 is visited within a long time, it should have little
inluence on current POI recommendations.
Note that users’ interests are constantly shifting over time in real-life scenarios, check-in behaviors a long

time ago might rarely imply current user preferences. Besides, mining special temporal features from the whole
check-ins is costly and ineicient. Therefore, we truncate the historical sequences and only consider the most
recent twenty visited records as model input.

4.3 Spatial-Temporal Atention Aggregation

Considering that the input of GSD module (i.e., distance-based and transition-based graphs) are constructed
from all users’ check-ins, the two types of geographical latent representations modeled by GSD module mainly
represent geographical inluences from a global view. However, diferent users may have their own intrinsic
preferences for POIs. Besides, the same user may have diferent preferences for the same POIs at diferent
timestamps. To accurately aggregate relevant geographical latent representations, we design a spatial-temporal
attention aggregation module to learn user personalized preferences for geographical inluences of each visited
POI.
To provide personal information for diferent users, We utilize the hidden state hut learned by Time-LSTM

to depict the intrinsic preference of user u at timestamp t , and guide the aggregation of geographical latent
representations. Speciically, for distance-based representations of user check-in sequence (d1,d2, · · · ,dt ) and
outgoing inluence representations of user check-in sequence (д1,д2, · · · ,дt ), we adopt attention mechanism
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[29] to calculate user personal geographical latent representations as follows:

du =

t∑

i=1

αi (Wd1
di ), (17)

дu =

t∑

i=1

βi (Wд1дi ), (18)

where du,дu represents user personal distance-based and outgong inluence latent representations respectively.
Wd1

,Wд1 ∈ Rk×k are trainable weight matrices. αi , βi are weight coeicients that are calculate as follows:

αi = so f tmax (
(Wd2

hut )(Wd3
di )

T

√
k

), (19)

βi = so f tmax (
(Wд2h

u
t )(Wд3дi )

T

√
k

), (20)

whereWd2
,Wd3

,Wд2,Wд3 ∈ Rk×k are trainable weight matrices, k is the dimension of latent representations.
Figure 5 illustrates this module. To be mentioned, hut is utilized to calculate the weight coeicient of each
geographical latent representation, which enable GSTN to model user dynamic preferences on geographical
inluences at diferent timestamp.
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After the attention aggregation operation, we combine the global and the personal part to compute the
geographical inluences of visited POIs in check-in sequence Hu of a given user u to a target POI as follows:

Id = d
T
u dj +

1

|Hu |
∑

lk ∈Hu

dT
k
dj , (21)

It = д
T
u hj +

1

|Hu |
∑

lk ∈Hu

дT
k
hj , (22)

where Id represents the distance-based inluence of Hu to the destination lj , It represents the transition-based
inluence of Hu

t to the destination lj , |Hu | represents the length of check-in sequence. Since the characters of
each visited POI relect user preferences in varying degrees, all of them may have implicit inluences for target
POI lj . Thus, we compute the average of inner product results as global part in Eq. (21) and (22).

4.4 Prediction and Optimization

4.4.1 User preference estimation. We recommend the next POI for users using the obtained Time-LSTM hid-
den state hut and geographical latent representations of both distance-based and transition-based inluences.
Speciically, The probability ŷt+1ui , j

of user ui visiting lj in timestamp t + 1 is calculated as follows:

r t+1ui , j
= xTj h

u
t + Id + It , (23)

ŷt+1ui , j
=

exp (r t+1ui , j
)

∑
lk ∈L exp (r

t+1
ui ,k

)
, (24)

where r t+1ui , j
is the estimated preference of ui for lj . Especially, temporal dependencies are represented with the

hidden state extracted from user check-in sequences and multiplying it by target POI embedding x j . Spatial
dependencies are represented with Id and It , which inluence user preferences from physical distance and
geographical characteristic aspects respectively. Thus, we emphasize that our estimation fuses both temporal and
spatial dependencies.

4.4.2 Optimization. To optimize all parameters θ used for preference estimation, we construct a cross entropy-
based loss based on ground truth visited POI, which is given as:

L3 = −
∑

ui ∈U

∑

t ∈Hu

∑

k ∈{j }∪NEG (j )

(yt+1
ui ,k

loд(ŷt+1
ui ,k

) + (1 − yt+1
ui ,k

)loд(1 − ŷt+1
ui ,k

)) + λ | |θ | |2, (25)

where yt+1
ui ,k

is the ground truth visited probability of u in timestamp t + 1, which equals to 1 if k = j and 0 for
otherwise. λ | |θ | |2 represents L2-regularization used for preventing overitting.
So far, we have three loss functions in the proposed model. We adopt Adam optimizer to optimize all the

trainable parameters by minimizing these loss functions. Although these two graph embedding modules can
be optimized separately and then combined the learned latent representations into the prediction phase. This
two-phase training generally results in irreversible information loss. For the information lost in the irst phase,
it cannot be recovered in the second phase. Therefore, we design an end-to-end model to integrate these two
parts. Speciically, we utilize the joint learning method to iteratively optimize these three loss functions. Detailed
description is provided in Algorithm 1.

5 EXPERIMENT

In this section, we conduct experiments on three real-world LBSN datasets to evaluate the performance of
GSTN. We irst briely introduce the three datasets, baseline methods and evaluation metrics. Then we compare
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Algorithm 1: training procession of GSTN

Input : check-in sequences H = {Hu1 ,Hu2 , · · · ,Hun }, Gd , Gt , learning rate {l1, l2, l3}, epoch_size,
batch_size, λ

Output : learned GSTN model

1 Initialize parameters θ = {V ,G,H ,W∗,b∗}
2 while iter ≤ epoch_size do
3 while batch < train_size//batch_size + 1 do
4 Sample from distance graph Gd ;
5 Optimize loss function L1 and update V ;
6 end

7 while batch < train_size//batch_size + 1 do
8 Sample from transition graph Gt ;
9 Optimize loss function L2 and update G, H ;

10 end

11 while batch < train_size//batch_size + 1 do
12 Compute htu based on Eq. (16);
13 Estimate user preference ŷt+1ui, j

based on Eq. (24);

14 Optimize loss function L3 and Update θ ;
15 end

16 end

Table 1. Statistic of Datasets

Statistics Foursquare Gowalla Brightkite

#user 2,321 10,162 1,850
#POIs 5,596 24,250 1,672
Avg.# check-ins per user 83.6 44.97 140.12
Avg.# check-ins per POI 34.7 18.8 155.04

GSTN with these state-of-the-art baselines and present the experiment results. Finally, we analyze the impact of
hyperparameters on model performance.

5.1 Experimental Setup

5.1.1 Datasets. We use three widely used real-world datasets from Gowalla, Foursquare and Brightkite for
evaluation, which are collected from Liu et al.[20] and Zhao et al.[39]. The detailed statistic information is
illustrated in Table 1.

(1) Foursquare1: The Foursquare dataset contains check-ins generated by Foursquare users whose home are
in Singapore from August 2010 to July 2011. The dataset includes 194108 check-in records by 2321 users and 5596
POIs.

1https://sites.google.com/site/yangdingqi/home/foursquare-dataset
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(2) Gowalla2: The Gowalla dataset contains check-ins collected from Gowalla users in California and Nevada
from February 2009 to October 2010. The dataset includes 456988 check-in records by 10162 users and 24250 POIs.

(3) Brightkite3: The Brightkite dataset contains check-ins collected from global Brightkite users from May
2008 to October 2010. The dataset includes 259219 check-in records by 1850 users and 1672 POIs.

We sort each user’s check-in sequences in chronological order. Each dataset is divided into train and test sets.
The irst 70% check-ins of each user is taken as the training set and the last 20% check-ins is taken as test set, the
remaining 10 % is taken as validation set.

5.1.2 Baselines. To evaluate the efectiveness of our model, we compare GSTN with the following representative
work for next POI recommendation.

• MF [25] is one of the classical conventional methods and has been widely used in recommendation tasks.
• GeoIE [30] is one of the state-of-the-art model for POI recommendation.
• FPMC [24]is the state-of-the-art MC-based model for recommendation tasks. It fuses multiple interaction
inluences into Markov Chain algorithm for better recommendation performance.
• LSTM [10] is a variant of RNN model with LSTM cell, which leverages three additional gates to capture
long-term dependencies. It shows superiority in handling sequential data.
• TMCA [16] is a LSTM-based method which incorporates multiple kinds of contexts for next POI recom-
mendation. For fairness of comparison, we remove the POI categories information since no other methods
utilize it.
• HST-LSTM [15] combines standard LSTM model with specially design spatial-temporal factor to mitigate
data sparsity problem. We remove the hierarchical extension since no session information in our application
scenario.
• Time-LSTM [43] is a state-of-the-art LSTM-based method for successive recommendation. It models the
long and short time context among check-ins through two temporal gates. We adopt the third version since
it achieves the best performance on both the original study and our study.
• STGN [39] is a state-of-the-art LSTM-based method. It equips LSTM with time and distance gates to
considers both spatial and temporal intervals between successive check-ins.
• ARNN [8] is a state-of-the-art LSTM-based method. It leverages category information to construct a
knowledge graph for next POI recommendation.
• LSTPM [26] is a state-of-the-art LSTM-based method, which captures long-term and short-term preferences
with a nonlocal network and a geo-dilated RNN respectively.

To be mentioned, we don’t compare our model with several classical next POI recommendation models such
as ST-RNN and PRME, since it has been widely proved that our recurrent baselines adopted in our experiments
surpass these methods.

5.1.3 Evaluation Metrics. To evaluate the performance of our proposed GSTN and baselines described above, we
employ two widely used evaluation metrics: Recall@K and Normalized Discounted Cumulative Gain (NDCG@K ).
Recall@K measures the number of correct POIs in the top-k rank list. Noted that it is only one ground truth for
each instance in next POI recommendation tasks, Recall@K is 1 if the target POI presents in the ranking list
of top-k recommendation POIs and 0 otherwise. NDCG@K is used to measure the quality of ranking lists. We

2http://snap.stanford.edu/data/loc-gowalla.html
3http://snap.stanford.edu/data/loc-brightkite.html
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Fig. 6. Loss variations of three datasets

compute NDCG@K for each instance as follows:

NDCG@K =





1

loд2 (Ranki + 1)
, Ranki ≤ K

0, Ranki > K

(26)

where Ranki represents the position of target POI li in the ranking list. The overall Recall@K and NDCG@K

are evaluated as the average value of all test instances. These evaluation metrics relect the comprehensive
recommendation ability of each model.

In this paper, we report Recall@K and NDCG@K with the popular K ∈ {2, 5, 10}. Each metric is calculated 10
times and averaged. We show the training loss and validation loss variations in Figure 6.

5.1.4 Setings. For FPMC, HST-LSTM, TMCA, Time-LSTM, STGN and LSTPM we obtain the source codes
from the authors or open-source projects. We implement the remaining methods ourselves. For all base-
lines, We perform proper hyper-parameter tuning by the grid search strategy. We search the learning rate
in {0.01, 0.005, 0.001, 0.0005, 0.0001}, the coeicients λ of l2 regularization in {10−3, 10−4, 10−5}, the dropout rate in
{0, 0.1, 0.2, 0.3, 0.4, 0.5}. In our model, the sequence length is ixed to 20 and the distance threshold is set as 1 km,
we will give analysis about these two hyper-parameters in the following section. In training process, all weight
variables are randomly initialized with uniform distribution. The number of dimensions of latent representation
is ixed to 64 and the number of negative samples K is set as 5. The hidden state and cell state are initialized as
zero. We optimize our proposed three loss functions in section 4 with Adam optimizer. The learning rate is set as
0.001. The coeicients λ is set as 10−4. The batch size is set as 128. In evaluation process, we employ all POIs
in set L as candidates for each testing instance and rank them based on the calculated user preferences. We
implement our model using Tensorlow library v1.11.

5.2 Performance Comparison

The recommendation performance of diferent methods on three datasets in terms of Recall@K and NDCG@K

are illustrated in Table 2. We also conduct a two-tailed T-test with the p-value of 0.05 to show the signiicance of
performance gain of GSTN. From the experiment results, we have following observations:

• Compared with conventional recommendation methods including MF and FPMC, RNN-based methods
achieve superior performance in general. It indicates that the capability of RNN in capturing sequential
patterns is useful for modeling dynamic user preferences.
• Time-LSTM, TCMA, HST-LSTM, STGN, ARNN and LSTPM achieve better performance compared with
LSTM. This demonstrates the efectiveness of leveraging spatial and temporal dependencies. Note that there
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Table 2. Performance comparison of diferent approaches in terms of Recall@K and NDCG@K. Bold scores are the best

results for each metric, while the second best scores are underlined. Improvement indicates the relative improvements of our

model over the best baselines. ∗ represents significance level p-value< 0.05 of comparing GSTN with the best baseline.

Foursquare

Metrics MF FPMC GeoIE LSTM Time-LSTM TMCA HST-LSTM STGN ARNN LSTPM GSTN Improve

Recall@2 0.0925 0.1217 0.1202 0.1296 0.1518 0.1536 0.1426 0.14 0.1402 0.1639 0.1832∗ 11.77%

Recall@5 0.1418 0.2014 0.1856 0.1948 0.2222 0.2233 0.2116 0.2062 0.2056 0.2484 0.2713∗ 9.21%

Recall@10 0.1816 0.2512 0.2431 0.2522 0.2788 0.2832 0.2703 0.2655 0.2661 0.3231 0.3416∗ 5.72%

NDCG@2 0.0811 0.1032 0.1013 0.1141 0.1354 0.1369 0.1286 0.124 0.1164 0.1456 0.1622∗ 11.4%

NDCG@5 0.1032 0.1449 0.1355 0.1449 0.167 0.1683 0.1601 0.1537 0.1565 0.1832 0.2019∗ 10.2%

NDCG@10 0.1175 0.1568 0.1481 0.1634 0.1853 0.1876 0.1783 0.1729 0.1762 0.2074 0.2246∗ 8.29%

Gowalla

Metrics MF FPMC GeoIE LSTM Time-LSTM TMCA HST-LSTM STGN ARNN LSTPM GSTN Improve

Recall@2 0.0824 0.0836 0.1038 0.1049 0.1112 0.1103 0.1088 0.1097 0.1069 0.1321 0.139∗ 5.22%

Recall@5 0.1238 0.1322 0.1349 0.1566 0.1659 0.172 0.1654 0.1703 0.1552 0.1883 0.2146∗ 13.96%

Recall@10 0.1611 0.1715 0.1802 0.2026 0.2324 0.2283 0.2148 0.2262 0.2096 0.2498 0.2791∗ 11.73%

NDCG@2 0.0727 0.0744 0.0802 0.092 0.0926 0.097 0.0913 0.0956 0.0961 0.1087 0.1201∗ 10.48%

NDCG@5 0.0912 0.0953 0.1078 0.1152 0.1233 0.125 0.1192 0.1228 0.1155 0.1376 0.1541∗ 13.22%

NDCG@10 0.1033 0.1055 0.1126 0.1299 0.1411 0.1427 0.1356 0.1408 0.1378 0.1642 0.1749∗ 6.51%

Brightkite

Metrics MF FPMC GeoIE LSTM Time-LSTM TMCA HST-LSTM STGN ARNN LSTPM GSTN Improve

Recall@2 0.502 0.5724 0.5703 0.5879 0.6527 0.6353 0.6303 0.6601 0.6372 0.6471 0.6984∗ 9.6%

Recall@5 0.5767 0.6868 0.6561 0.6780 0.7164 0.6722 0.6856 0.6997 0.6866 0.7338 0.7671∗ 4.53%

Recall@10 0.6205 0.7297 0.7078 0.7386 0.7532 0.7131 0.7318 0.7365 0.7365 0.7638 0.8008∗ 4.84%

NDCG@2 0.4824 0.5268 0.5352 0.5358 0.5971 0.5563 0.5443 0.5541 0.5458 0.6217 0.6619∗ 6.46%

NDCG@5 0.5116 0.5669 0.5743 0.5642 0.6473 0.633 0.6158 0.6261 0.6146 0.6667 0.6945∗ 4.17%

NDCG@10 0.5487 0.6034 0.5911 0.6284 0.6580 0.6487 0.6526 0.6556 0.6471 0.6864 0.7047∗ 2.67%

is no additional POI category information in our application scenario and other baselines, For fairness, we
don’t construct knowledge graph in ARNN. Time-LSTM performs worse than TMCA, HST-LSTM, STGN
and LSTPM since it only models temporal dependencies and ignores spatial dependencies. In contrast, other
methods achieve considerable performance by integrating both spatial and temporal information into the
LSTM architecture. However, TMCA, HST-LSTM and STGN only utilize the distance information between
successive POIs as model input, which is not suicient to depict the complex geographical inluences. To
conquer this problem, GSTN leverage the newly proposed GSD module to explicitly model the spatial
dependency among POIs, which enables GSTN to achieve superior performance compared with these
state-of-the-art methods.
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Table 3. Performance comparison of diferent approaches with SW-EVAL strategy. Bold scores are the best results for each

metric, while the second best scores are underlined. Improvement indicates the relative improvements of our model over the

best baselines. ∗ represents significance level p-value< 0.05 of comparing GSTN with the best baseline.

Foursquare Gowalla Brightkite

Metrics TMCA STGN LSTPM GSTN TMCA STGN LSTPM GSTN TMCA STGN LSTPM GSTN

Recall@2 0.1402 0.1324 0.1572 0.1682∗ 0.1418 0.1391 0.1524 0.1634∗ 0.6685 06844 0.6852 0.7355∗

Recall@5 0.2074 0.1743 0.2328 0.2496∗ 0.2003 0.2029 0.2136 0.2423∗ 0.7108 0.7442 0.7621 0.7868∗

Recall@10 0.2533 0.2345 0.3031 0.3168∗ 0.2677 0.2698 0.2910 0.3166∗ 0.7536 0.7758 0.7917 0.8361∗

NDCG@2 0.1152 0.0982 0.1328 0.1460∗ 0.1274 0.1303 0.1358 0.1508∗ 0.6146 0.6518 0.6528 0.7091∗

NDCG@5 0.1421 0.1324 0.1674 0.1811∗ 0.1565 0.1579 0.1711 0.1866∗ 0.6587 0.6822 0.6852 0.7325∗

NDCG@10 0.1648 0.1558 0.1913 0.2028∗ 0.1839 0.1866 0.1947 0.2109∗ 0.6803 0.6953 0.7043 0.7431∗

• Meanwhile, we observe that the overall performance of all methods on Gowalla is lower than that on
other datasets, which is caused by the high data sparsity of Gowalla and thus more diicult to model user
preferences from check-in sequences. In this case, additional geographical information can signiicantly
improve performance. We also observe that the performance gains provided by GSTN over these baselines
are slightly higher over Gowalla than over Foursquare and Brightkite. This further veriies that GSTN can
capture more geographical inluences from sparse data compared with other methods.
• For enhancing the ability of the next POI recommendation, LSTPM utilizes a geo-dilated RNN to exploit
geographical inluences among non-successive POIs as short-term preferences. By comparison with other
baselines, LSTPM achieves better performances on the whole evaluation metrics, which strongly illustrates
the importance of capturing highly non-linear geographical inluences among POIs. However, LSTPM only
utilizes RNN based method to implicitly model the geographical inluences within successive check-ins and
overlook the geographical inluences among neighboring POIs. In contrast, GSTN captures geographical
latent representations based on distance-based and transition-based graphs, which enable it to capture
geographical inluences among successive and non-successive POIs thoroughly.
• Our proposed GSTN consistently achieves the best performance over three datasets. In particular, GSTN
gains signiicant improvement over the best baseline LSTPM on all datasets respectively (e.g., 5.72%, 11.73%
and 4.84% in term of Recall@10). We credit this improvement to the proposed GSD module which enables
GSTN to efectively capture distance-based and transition-based geographical inluences among successive
and non-successive POIs from POI semantic graphs for next POI recommendation. Moreover, GSTN adopts
a novel spatial-temporal attention aggregation module to integrate spatial and temporal dependencies,
which further improves the performance of recommendation.

Moreover, we also adopt the Sliding-Window temporal splitting evaluation (SW-EVAL) strategy[12] to thor-
oughly verify the efectiveness of GSTN. SW-EVAL proposes to split the training set, validation set and test set
according to timestamps of check-ins, which may avoid unfair biases when comparing diferent recommendation
methods. For each dataset, we use the check-ins of each user in the irst 70% timestamp of the whole dataset as
training set and the check-ins of in last 20% timestamp as test set, the remaining 10% as the validation set. We
show the results in Table 3. With the SW-EVAL strategy, GSTN still achieves the best performance compared
with state-of-the-art methods, which further conirms the superiority of GSTN.
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Fig. 7. Ablation test results on three datasets

5.3 Ablation Study

To assess the contribution of each component in GSTN to the performance gains, we further conduct ablation
tests. We remove each component at a time and obtain four variants as follows.

• GSTN-nG This variant removes GSD and only considers temporal dependencies.
• GSTN-nGD This variant removes distance-based inluence and only considers transition-based inluence
and temporal dependencies.
• GSTN-nGT This variant removes transition-based inluence and only considers distance-based inluence
and temporal dependencies.
• GSTN-nA This variant removes the spatial-temporal attention aggregation module and only retains the
simple additional aggregation of distance-based and transition-based inluence.

Figure 7 shows the results of ablation tests on three datasets. From the overall results, we have following
observations. First, GSTN-nG always achieves the worst performance over each dataset. The considerable decrease
in performance of GSTN-nG compared with GSTN demonstrates that the necessity of spatial dependencies for
next POI recommendation. It also further veriies that our proposed GSD module can improve performance by
capturing high non-linear geographical inluence from diferent views.
Second, without considering transition-based inluence, GSTN-nGT achieves low performance. This result

indicates that intrinsic characteristics of POIs do afect the intention of users for the next visited POI, and GSTN
can explicitly model this inluence from the transition-based graph efectively. we also notice that leveraging
transition-based latent representations obtains considerable performance improvement over Gowalla. One
possible reason is that the average check-ins of each POI over Gowalla is low. It is insuicient for LSTM-based
methods to model user preferences from sparse successive check-ins, while introducing transition-based latent
representations can alleviate this problem efectively.
Third, comparing GSTN and GSTN-nGD , performance degradation is observed after removing the distance-

based graph. It indicates that distance-based inluences are important factors to infer user preferences. GSTN
adopts the graph structure to capture efective latent representations of distance-based inluences, which con-
tributes to the performance gains. Noticed that GSTN-nGD is less competitive than GSTN-nGT over all datasets.
The possible reason is that the transition-based inluence between successive POIs could be learned from sequential
patterns captured by LSTM network to some extent.
Finally, we ind GSTN-nA always achieves better performance compared with GSTN-nGD and GSTN-nGT .

Considering GSTN-nA leverages both the two types of geographical inluences proposed in this paper through
additional aggregation. This result further veriies that the signiicance of utilizing multiple diferent geographical
inluences and the efectiveness of our proposed GSD module for capturing geographical inluences. However,
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Fig. 8. Efect of check-in sequence length ∆l

although GSTN-nA outperforms all state-of-the-art baselines, it is inferior to GSTN that includes the attention
aggregation module. It suggests the necessity of considering user preferences for geographical inluences.
Moreover, we notice that the attention module leads to relatively high performance gains over Brightkite dataset.
One possible reason is that Brightkite dataset includes suicient check-ins for each user, which makes it is easier
for GSTN to capture user preferences on geographical inluences through the attention module.

5.4 Influence of Hyper-parameter

To investigate the impact of diferent critical hyper-parameter settings, we vary check-in sequence length ∆l ,
distance threshold ∆d and time intervals of transition records ∆t to evaluate our proposed model on Foursquare
and Gowalla respectively.

we irst vary the check-in sequence length ∆l from 5 to 40, the result is shown in Figure 8. We can observe that
the performance improves with the increase of the check-in length within a certain range. The best performance
over Foursquare is achieved when ∆l is set to 30 and then decreases. We attribute the performance degradation
of further increasing check-in length to excessive noises brought by irrelevant histories. Besides, The best
performance over Gowalla is obtained when ∆l is set to 20. The diference in optimal sequence length between the
two datasets is due to their property. In order to keep consistency, we set check-in length to 20 in our experiments.

Next, we vary the distance threshold ∆d in the distance-based graph from 0.5km to 4km. Figure 9 shows
the results. Compared with check-in length, our proposed model is less sensitive to ∆d . In speciic, the best
performance is obtained when ∆d is set to 1km. Relatively huge performance degradation is observed when ∆d is
set to 4km or higher, which is consistent with our intuition, i.e., the inluence between two distant POIs is small.
This result demonstrates that setting ∆d to 1km is suicient for capturing distance-based geographical inluences.

Finally, we investigate the efectiveness of diferent time intervals of transition records ∆t . This hyper-parameter
determines how many transition records are used to construct the transition-based graph. For example, if ∆t = 5,
all records with time intervals less than 5 days will be counted. Figure 10 shows the results. Our results demonstrate
that the time interval between successive check-ins is important for modeling geographical inluences, which is
consistent with several previous work[21, 40]. Speciically, GSTN achieves the best performance when ∆t is set to
5 over Foursquare, further increased ∆t may include irrelevant noises. For Gowalla dataset, the best performance
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is achieved when ∆t = 7. Considering the data in Gowalla is relatively sparse, we attribute this diference to the
inherent properties of datasets.

6 CONCLUSION AND FUTURE WORK

In this work, we proposed a graph-enhanced spatial-temporal network that captures the spatial and temporal
dependencies for next POI recommendation. Diferent from prior methods that only consider spatial features
by integrating distance intervals into LSTM architecture, we further propose to model various high-order
geographical inluences as spatial dependencies. Speciically, we irst design a GSD modeling module that
leverages POI semantic graphs to capture transition-based and distance-based inluences and learns latent
representations for POIs. Meanwhile, we employ time-LSTM to obtain user-speciic temporal dependencies.
Extensive experiments on three datasets demonstrate the efectiveness of GSTN. For future work, we will further
explore other context information, i.e., POI category and social network besides the spatial-temporal dependencies
to improve the performance of the next POI recommendation.
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