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1. Introduction
Pyroxenites generally occur as veins or dykes in 
peridotites related to ophiolites and represent up to 
5% of all ultramafic bodies (Pearson and Nowell, 2004; 
Downes, 2007; Van Acken et al., 2010). However, these 
subject pyroxenites have been found in relationship with 
the abyssal peridotites, which are extremely rare (Dantas 
et al., 2007; Van Acken et al., 2010). Despite the fact that 
the pyroxenites represent a very small portion of the 
upper mantle, essential information is provided within 
on the petrological and dynamic processes of the Earth. 
This includes crustal recycling and melt-rock interaction 
in order to interpret the different tectonic environments 
(Downes, 2007; Gonzaga et al., 2010; France et al., 2015).
The origin of the pyroxenite is still debated, supporting an 
enormous scope of theories, which are often reciprocal. 
Previous studies proposed the following to clarify the 
origin of the mantle pyroxenites: (1) metamorphic 
resolution of the peridotites (Dick and Sinton, 1979), (2) 
crystal precipitation of silicate magmas derived from the 
asthenosphere (Loubet and Allegre, 1982), (3) remnants of 
the subducted oceanic lithosphere (Allegre and Turcotte, 

1986), and (4) high pressure crystal segregates of melting 
subducted oceanic crust (Pearson et al., 1993). Numerous 
studies examined the pyroxenite developments in the 
mantle, including the collaboration between peridotite and 
penetrating melt or the response amongst the peridotite 
and liquefied subducted lithosphere (Yaxley and Green, 
1998; Garrido and Bodinier, 1999; Santos et al., 2002; 
Bodinier and Godard, 2003; Brooker et al., 2004; Berly et 
al., 2006; Downes, 2007; Van Acken et al., 2010; France et 
al., 2015).

The pyroxenite veins/dykes in the mantle peridotites 
were interpreted by crystallization products of the mantle 
melts, indicating partial melting of the host peridotites 
(Menzies and Allen, 1974; Buchl et al., 2004). However, 
the variety of origins suggest that each can be generated 
in different tectonic environments through various 
petrologic processes. 

In this paper, the mineral geochemical characteristics 
of the Ulaş (Sivas, mid-Turkey) clinopyroxenite dykes 
and the host rocks are demonstrated. This provides the 
first operation of petrogenesis, which is compared with 
the typical supra-subduction zone (SSZ) and abyssal 
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pyroxenites, related to host peridotites. The objective of 
this study is to identify whether the pyroxenite occurred 
in an SSZ setting and to determine any differences to 
typical pyroxenites. Detailed mineral major and trace 
element data were obtained and interpreted on a series of 
numerical diagrams of melt-rock interaction processes in 
order to better understand the petrological mechanisms of 
origin.

2. Geological setting
In the Anatolian sector of the Alpine–Himalayan Orogenic 
Belt included in the study area, the ophiolitic rocks of 
Turkey are the ruins of the Tethyan ophiolites (MTA, 
2002). These ophiolitic rocks are found in tectonic units 
of Turkey, from south to north, composed of Taurides, 
Anatolides, Pontides, and the Border Folds (Ketin, 1983; 
Okay and Tüysüz, 1999), as shown in Figure 1a.

The Sivas basin is a residual basin between the Tauride 
and Pontide platforms (Cater et al., 1991; Poisson et al., 
1996) and is 60 km long and 30 km wide, formed over 
the course of the closure of the northern branch of the 
Neo-Tethys within the early Tertiary (Yılmaz and Yılmaz, 
2006). The ophiolitic units, previously called the Divriği 
ophiolite (Yılmaz et al., 2001; Yılmaz and Yılmaz, 2004), 
bear ultramafics mostly of Cretaceous age transported 
in soils that are ubiquitous and stretch over hundreds of 
kilometers in Turkey, especially in the Sivas region (MTA, 
2002), as shown in Figure 1b. This region is composed of 
autochthonous platform carbonates, ophiolitic mélange, 
metamorphic sole, ophiolitic rocks, volcano-sedimentary 
units, granitoid rocks, and sediments (Yılmaz et al., 2001; 
Yılmaz and Yılmaz, 2004; Parlak, 2016). The mantle 
tectonites of this ophiolite are composed of harzburgite 
containing dunitic lenses with chromite pods (Parlak, 
2016). The widespread harzburgites were cut by pyroxenite 
and diabasic (partly gabbroic) dykes at different levels 
(Bilici, 2015; Parlak, 2016).

In the study area (southeastern Ulaş, Sivas), the dark 
red, partly altered dunites were preserved in narrow fields 
within the harzburgitic peridotites. The harzburgites are 
more widespread than other ultramafics, which are cut by 
thin, coarse-grained, and grayish green-black pyroxenitic 
dykes as well as less dioritic, diabasic dykes several meters 
thick. Observed pyroxenite dykes have been mapped 
locally, in the study area around the Yaycı Mountain, as 
shown in Figure 2 (Bilici, 2015).

3. Analytical methods
Representative minerals were selected from the 
harzburgite and clinopyroxenite samples. A series of 
thin sections of these lithologies were examined under 
a polarizing microscope to determine the common 

textural and mineralogical properties of the rock varieties. 
The major oxide analyses of olivine, clinopyroxene, 
orthopyroxene, and chromian spinels were performed 
on polished thin sections at the Electron Microprobe 
Laboratory of the University of Maine (Orono, ME, 
USA). All element analyses were applied by energy-
dispersive X-ray spectroscopy (EDX) using EDS and WDS 
detectors attached to a Cameca SX 100 scanning electron 
microscope. The accelerating voltage was 15 kV and the 
beam current was 3.3 nA with a 0.6-μm beam diameter. 
The detection limits were ∼0.01% and accuracy was better 
than 5%. Cationic ratios of elements were calculated on 
the basis of 6 oxygen atoms and 32 oxygen atoms assuming 
pyroxene and spinel stoichiometry, respectively. 

On the other hand, the trace and rare earth element 
concentrations of clinopyroxenes were detected in situ for 
single mineral phases using the LA-ICP-MS method at the 
University of Houston (Houston, TX, USA). The system 
combines a 193-nm Ar-F Excimer laser ablation system 
and a quadrupole ICP-MS with collision and reaction cell 
in pulse counting mode. Laser ablation was applied at a 
constant point on the mineral surface at a fluence of 20 J 
cm–2, a stroke repetition rate of 10 Hz, and a typical point 
diameter of 60–120 µm.
 
4. Results
4.1. Field observations and petrography
The pyroxenites generally occur as dykes with varying 
sizes having relatively sharp contacts with the host 
harzburgitic peridotites (Figures 3a–3d). No lherzolites 
have been observed in the study area. Although the 
degree of serpentinization of the host peridotites is quite 
intensive, the pyroxenite dykes remain fresh and visually 
distinguishable, pyroxene-rich in composition (Figures 
3a–3c). The variable thickness of these pyroxenite dykes 
ranges from about 50 cm–1 m to about 5–10 m in length. 
(Figure 3c). Dunite and chromitite bodies are locally 
observed near these pyroxenite dykes (Figure 3d). 

The mineral paragenesis of the clinopyroxenites 
comprises coarse euhedral crystals of clinopyroxene and 
rare orthopyroxene, which define it as a cumulate texture. 
The intercumulus space is occupied by fine-grained 
mosaic olivine and rarely by spinel. Based on the modal 
analysis with point counting on the thin sections, the 
pyroxenite samples from various levels of the harzburgitic 
peridotite suite can be defined as clinopyroxenites or 
olivine clinopyroxenites. 

The harzburgites show typical porphyroclastic texture 
with >80 vol. % olivine and orthopyroxene, and also <3 vol. 
% cpx and ~1–2 vol. % chromian spinels and serpentine 
minerals (Figures 4a and 4b). The major mineral 
assemblages of the clinopyroxenites are dominated by 
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Figure 1. (a) Distribution of ophiolite belts in Turkey and tectonic map of the northeastern Mediterranean region showing the major 
sutures and continental blocks (modified from MTA (2002) and Okay and Tüysüz (1999)), (b) Geological map of the Ulaş (Sivas) area 
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Figure 2. Detailed geological map of the study area (southeastern Ulaş, Sivas) (Bilici, 2015).
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Figure 3. Field photographs showing the relationship between pyroxenite dykes and host peridotites (a–c). Pyroxenite dykes 
occur in variable thickness; (d) field view of the pyroxenite, harzburgite, and dunite with chromitite bodies.

clinopyroxene (>80 vol. %) with small amounts olivine–
orthopyroxene (1–5 vol. %) and chromian spinel (~1 vol. 
%) and alteration minerals, such as serpentine minerals 
(Figures 4c–4f). Microscopic studies show that olivines in 
the studied clinopyroxenites are serpentinized and appear 
interstitially between clinopyroxenes (Figures 4c and 4d). 
The texture of these dykes is granular with large subhedral 
clinopyroxene crystals (Figures 4c–4f).  
4.2. Mineral chemistry
4.2.1. Olivine
Results of the olivine analyses representing the 
clinopyroxenites and host harzburgite are given in Table 
1. Olivines in the harzburgite samples show higher Fo-
number than those in the clinopyroxenite samples and 
range from 90.34 to 91.82 and 88.20 to 88.83, respectively. 
Similarly, NiO (wt. %) contents of olivines are very low 
and show a decrease towards the clinopyroxenites from 
the harzburgites. The Fo-number and NiO contents of 
all olivine grains exhibit a positive correlation from the 

clinopyroxenites to the harzburgites (Figure 5). The 
Fo-number vs. NiO diagram shows that olivines in the 
harzburgite plot mostly within the mantle olivine array 
and are comparable with those from the upper mantle 
peridotites. However, in the same diagram, the olivines 
in the clinopyroxenites have lower NiO contents (<0.2 wt. 
%) when compared with the other SSZ clinopyroxenites 
(Figure 5).
4.2.2. Orthopyroxene 
Results of the major element analyses of orthopyroxenes 
are given in Table 2. The clinopyroxenite dykes contain 
very low modal orthopyroxene mineral abundance 
relative to the harzburgites. All of these orthopyroxenes 
are enstatite in composition in both rock types (Figure 
6a). Although the Mg-number of orthopyroxenes in the 
clinopyroxenite ranges from 0.91 to 0.95, these values 
show a wider range in harzburgites (i.e. 0.89–0.94). The 
Al2O3 contents of orthopyroxene are low in both the 
harzburgites and the clinopyroxenites, ranging from 0.79 
to 2.26 (wt. %) and from 1.24 to 2.44 (wt. %), respectively. 
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Figure 4. Photomicrographs from the harzburgite (a and b) and pyroxenite (c–f) of the study area 
(a, c, and e: crossed-nicol in polarized light; b, d, and f: plane polarized light; Abbreviations: spl: 
chromian spinel; ol: olivine; opx: orthopyroxene; cpx: clinopyroxene; spt: serpentine).

Overall, the harzburgites and the clinopyroxenites display 
similar distribution in the Mg-number vs. Al2O3 diagram 
and are comparable with other SSZ peridotites and 
clinopyroxenites (Figure 6b).
4.2.3. Clinopyroxene 
All clinopyroxenes in both rock types have limited 
compositional variations (Table 2). Most of the analyzed 
clinopyroxenes are diopside in composition except 
for two samples, which are in augite composition in 
the clinopyroxenites. Generally, it can be said that the 

Mg-numbers of clinopyroxenes decrease towards the 
harzburgites from the clinopyroxenites. The Al2O3 
contents of all clinopyroxenes are low concentrations and 
range between 0.61 and 2.45 (wt. %) in the harzburgites 
and between 0.01 and 5.88 (wt. %) in the clinopyroxenites. 
Similarly, the Cr2O3 contents of clinopyroxenes range from 
0.23 to 1.21 (wt. %) and from 0.00 to 1.12 (wt. %) in the 
harzburgites and the clinopyroxenites, respectively. Based 
on the increasing Mg-number, overall, the Al2O3 and Cr2O3 
contents of clinopyroxenes decrease from the harzburgites 
to the clinopyroxenites (Figures 6c and 6d). In this regard, 
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all clinopyroxenes differ from residual abyssal peridotite 
clinopyroxenes (Seyler et al., 2003) except for two 
samples in augite composition (Figure 6e). Moreover, the 
Al2O3 and Cr2O3 contents of most clinopyroxenes in the 
clinopyroxenite show close distribution with secondary 
clinopyroxene (compared with Nozaka (2005), Seyler 
et al. (2007), and Wojtulek et al. (2016)). However, the 
harzburgitic clinopyroxenes exhibit modified characters 
(Figure 6e).   

The rare earth element (REE) contents of 
clinopyroxenes in the clinopyroxenite samples have low 
concentrations (Table 3). The chondrite-normalized REE 
patterns of clinopyroxenes in the clinopyroxenite exhibit a 
flat-shape pattern from MREE to HREE and depletion in 
LREE (Figure 7).

4.2.4. Spinel
Analyzed chromian spinel compositions from the 
clinopyroxenites and host harzburgites are presented 
in Table 4. The variations in cationic ratios and oxides 
such as Mg-number and Cr-number along with the Fe3+-
number and TiO2 contents of the chromian spinels from 
the Ulaş ultramafic rocks are illustrated in Figures 8–11. 
In general, spinels show slightly higher Cr-number in the 
clinopyroxenites than that of the harzburgites, ranging 
between 0.57 and 0.65 and 0.46 and 0.65, respectively. 
In contrast, the Mg-number of chromian spinels 
decreases towards the clinopyroxenite (0.30–0.34) from 
the harzburgites (0.52–0.70). In the Mg-number vs. Cr-
number diagram, chromian spinels in the harzburgites 
and the clinopyroxenites are clustered in different fields and 

Table 1. Representative major element analyses (in wt. %) of olivines from the Ulaş ultramafics (Hrz: harzburgite; Pyrx: pyroxenite; Ol: 
olivine).

Sample Ol. Ol. Ol. Ol. Ol. Ol. Ol. Ol. Ol. Ol. Ol. Ol. Ol. Ol.
Rock type Hrz. Hrz. Hrz. Hrz. Hrz. Hrz. Hrz. Hrz. Hrz. Hrz. Hrz. Hrz. Hrz. Hrz.
SiO2 41.16 41.82 41.16 41.44 41.03 41.27 41.09 41.31 41.15 41.71 41.23 41.54 41.67 41.14
TiO2 0.00 0.00 0.02 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00
Al2O3 0.00 0.00 0.02 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00
Cr2O3 0.01 0.07 0.00 0.07 0.01 0.30 0.01 0.03 0.05 0.02 0.07 0.00 0.01 0.07
FeO 8.93 8.87 8.97 9.05 8.69 8.03 8.47 8.88 8.81 9.04 8.78 7.74 9.19 9.29
MnO 0.14 0.16 0.15 0.13 0.16 0.09 0.05 0.14 0.16 0.18 0.18 0.11 0.16 0.12
MgO 49.61 48.64 49.37 48.73 49.41 50.08 49.69 48.67 49.25 48.84 48.89 48.76 48.50 48.72
CaO 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00
Na2O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NiO 0.41 0.39 0.40 0.42 0.38 0.42 0.46 0.44 0.48 0.41 0.40 0.48 0.36 0.42
Total 100.27 99.95 100.07 99.86 99.68 100.19 99.78 99.47 99.90 100.22 99.55 98.64 99.89 99.76
Fo 90.83 90.72 90.75 90.56 91.02 91.75 91.27 90.72 90.88 90.59 90.85 91.82 90.39 90.34
Sample Ol. Ol. Ol. Ol. Ol. Ol. Ol. Ol. Ol. Ol. Ol. Ol. Ol. Ol.
Rock type Hrz. Hrz. Hrz. Pyrx. Pyrx. Pyrx. Pyrx. Pyrx. Pyrx. Pyrx. Pyrx. Pyrx. Pyrx. Pyrx.
SiO2 41.19 41.39 41.58 39.64 39.32 39.39 40.08 39.28 38.10 40.49 38.09 39.18 38.71 39.95
TiO2 0.00 0.00 0.00 0.05 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.00 0.02
Al2O3 0.02 0.01 0.01 0.02 0.05 0.04 0.01 0.03 0.03 0.03 0.05 0.02 0.03 0.01
Cr2O3 0.06 0.02 0.01 0.02 0.02 0.03 0.12 0.01 0.05 0.12 0.08 0.01 0.09 0.04
FeO 8.81 8.92 8.52 10.52 10.84 10.53 10.99 10.44 10.78 10.20 10.76 10.45 10.71 10.54
MnO 0.15 0.15 0.11 0.18 0.05 0.14 0.26 0.20 0.21 0.09 0.07 0.09 0.16 0.15
MgO 49.57 48.69 48.82 46.24 47.11 46.76 46.05 46.35 46.36 45.49 46.05 45.27 45.16 45.24
CaO 0.00 0.00 0.02 0.03 0.03 0.04 0.01 0.01 0.02 0.01 0.05 0.03 0.01 0.01
Na2O 0.00 0.00 0.00 0.01 0.02 0.03 0.01 0.01 0.01 0.04 0.02 0.02 0.01 0.02
NiO 0.42 0.44 0.48 0.00 0.01 0.01 0.00 0.02 0.01 0.00 0.01 0.01 0.02 0.00
Total 100.22 99.62 99.55 96.66 97.44 96.97 97.53 96.34 95.57 96.46 95.17 95.08 94.91 95.94
Fo 90.93 90.68 91.08 88.68 88.57 88.78 88.20 88.79 88.46 88.83 88.41 88.54 88.26 88.44
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Table 2. Representative major element analyses (in wt. %) of pyroxenes from the Ulaş ultramafics (Opx: orthopyroxene; Cpx: 
clinopyroxene).

Sample Opx. Opx. Opx. Opx. Opx. Opx. Opx. Opx. Opx. Opx. Opx. Opx. Opx. Opx.

Rock type Hrz. Hrz. Hrz. Hrz. Hrz. Hrz. Hrz. Hrz. Hrz. Hrz. Hrz. Hrz. Hrz. Hrz.

SiO2 57.56 55.84 57.23 56.36 56.66 56.72 57.58 56.89 56.46 56.96 56.37 56.57 56.66 56.84

TiO2 0.04 0.05 0.03 0.01 0.00 0.03 0.01 0.07 0.01 0.06 0.03 0.00 0.05 0.06

Al2O3 1.92 1.52 1.79 1.78 1.94 1.81 1.76 1.58 1.81 1.56 1.84 1.94 2.01 0.79

Cr2O3 0.57 0.64 0.44 0.99 0.36 0.34 0.55 0.40 0.54 0.71 0.63 0.63 0.72 0.68

FeO 6.36 6.42 6.11 6.31 6.36 6.41 6.46 6.45 6.84 6.85 7.12 7.26 7.02 7.13

MnO 0.13 0.15 0.17 0.21 0.18 0.16 0.17 0.17 0.15 0.16 0.14 0.19 0.20 0.15

MgO 32.96 34.64 33.54 33.59 33.68 33.56 32.48 33.62 33.44 32.89 32.41 33.01 32.83 32.78

CaO 0.48 0.77 0.64 0.76 0.64 0.71 0.88 0.76 0.66 1.10 0.73 0.65 0.59 0.78

Na2O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

K2O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Total 100.02 100.03 99.95 100.01 99.82 99.74 99.89 99.94 99.91 100.29 99.27 100.25 100.08 99.21

Mg # 0.90 0.94 0.91 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.89 0.89 0.89 0.89

Sample Opx. Opx. Opx. Opx. Opx. Opx. Opx. Opx. Opx. Opx. Opx. Opx. Opx. Opx.

Rock type Hrz. Hrz. Hrz. Hrz. Hrz. Hrz. Hrz. Hrz. Hrz. Hrz. Hrz. Hrz. Hrz. Hrz.

SiO2 57.13 56.88 57.23 56.81 56.37 56.34 56.84 56.21 56.53 56.62 57.74 56.32 56.64 55.93

TiO2 0.01 0.00 0.00 0.01 0.02 0.01 0.06 0.05 0.03 0.07 0.00 0.01 0.03 0.06

Al2O3 1.82 2.03 1.95 2.26 1.22 2.04 1.85 1.96 1.55 1.51 1.35 1.44 1.52 1.19

Cr2O3 0.79 0.74 0.68 0.98 0.74 0.66 0.57 0.69 0.32 0.44 0.53 0.31 0.57 0.85

FeO 6.65 6.47 6.02 6.27 6.43 5.43 5.81 6.03 5.92 5.77 5.87 6.58 5.69 5.99

MnO 0.14 0.14 0.17 0.12 0.14 0.16 0.16 0.12 0.15 0.10 0.19 0.14 0.16 0.18

MgO 32.73 32.59 32.86 32.68 33.62 34.00 33.28 33.74 33.24 34.56 33.15 34.52 33.08 34.55

CaO 0.79 0.88 0.64 0.85 0.83 0.67 1.16 0.89 0.52 0.87 0.69 0.61 0.78 0.84

Na2O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

K2O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Total 100.06 99.73 99.55 99.98 99.37 99.31 99.73 99.69 98.26 99.94 99.52 99.93 98.47 99.59

Mg # 0.90 0.90 0.91 0.90 0.91 0.92 0.91 0.91 0.91 0.93 0.91 0.93 0.91 0.94
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Table 2. (Continued).

Sample Cpx. Cpx. Cpx. Cpx. Cpx. Cpx. Cpx. Cpx. Cpx. Cpx. Cpx. Cpx. Cpx. Cpx.

Rock type Hrz. Hrz. Hrz. Hrz. Hrz. Hrz. Pyrx. Pyrx. Pyrx. Pyrx. Pyrx. Pyrx. Pyrx. Pyrx.

SiO2 53.83 54.26 53.81 54.31 53.48 53.25 55.44 55.63 55.58 55.61 54.80 55.68 53.79 53.24

TiO2 0.02 0.06 0.07 0.03 0.06 0.09 0.00 0.01 0.04 0.04 0.05 0.01 0.15 0.12

Al2O3 1.77 1.41 1.96 1.68 2.38 2.45 0.02 0.03 0.04 0.85 1.30 0.77 5.88 5.88

Cr2O3 0.94 0.99 1.21 0.94 1.12 0.76 0.00 0.00 0.01 0.29 0.59 0.18 1.08 1.12

FeO 2.16 2.15 2.22 2.26 1.90 1.86 0.07 0.06 0.10 2.46 2.59 2.49 3.48 3.68

MnO 0.06 0.13 0.11 0.14 0.11 0.10 0.00 0.03 0.00 0.10 0.06 0.07 0.06 0.09

MgO 17.65 17.15 16.22 17.47 16.77 17.48 18.43 18.60 18.63 18.32 18.25 18.50 21.45 21.18

CaO 23.61 23.89 24.37 23.19 23.41 23.98 25.87 25.70 25.73 24.69 23.87 24.12 12.97 13.07

Na2O 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.02 0.02 0.05 0.07 0.08 0.73 0.75

K2O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Total 100.04 100.04 99.97 100.02 99.23 99.97 99.88 100.08 100.16 102.44 101.61 101.92 99.63 99.20

Mg # 0.94 0.93 0.93 0.93 0.94 0.95 1.00 1.00 1.00 0.93 0.93 0.93 0.92 0.91

Sample Cpx. Cpx. Cpx. Cpx. Cpx. Cpx. Cpx. Cpx. Cpx. Cpx. Cpx. Cpx. Cpx. Cpx.

Rock type Pyrx. Pyrx. Pyrx. Pyrx. Pyrx. Pyrx. Pyrx. Pyrx. Pyrx. Pyrx. Pyrx. Pyrx. Pyrx. Pyrx.

SiO2 54.45 54.51 54.75 54.60 54.59 55.14 57.97 54.69 54.71 55.06 54.89 54.52 54.64 55.02

Al2O3 0.03 0.04 0.10 0.03 0.07 0.06 0.03 0.05 0.01 0.10 0.07 0.03 0.04 0.03

TiO2 1.29 1.30 1.32 1.30 1.26 1.15 1.24 1.33 1.30 1.27 1.19 0.81 1.32 1.28

Cr2O3 0.58 0.57 0.58 0.55 0.56 0.57 0.40 0.55 0.61 0.49 0.41 0.21 0.60 0.60

FeO 2.52 2.65 2.52 2.54 2.61 2.33 7.30 2.65 2.66 2.51 2.52 2.39 2.62 2.61

MnO 0.15 0.08 0.10 0.08 0.09 0.10 0.15 0.10 0.11 0.09 0.10 0.10 0.11 0.09

MgO 18.58 18.31 18.25 18.10 18.23 18.39 34.83 18.39 18.12 18.30 18.20 18.14 18.26 18.31

CaO 22.82 23.99 23.84 23.95 23.83 24.50 0.75 23.65 23.85 24.26 24.23 24.31 23.87 23.69

Na2O 0.08 0.09 0.06 0.08 0.09 0.09 0.02 0.07 0.09 0.07 0.09 0.06 0.11 0.09

K2O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Total 100.51 101.55 101.59 101.27 101.33 102.34 102.74 101.50 101.48 102.17 101.75 100.57 101.62 101.77

Mg # 0.93 0.93 0.93 0.93 0.93 0.93 0.90 0.93 0.92 0.93 0.93 0.93 0.93 0.93
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Figure 5. NiO vs. Fo-number diagram for olivine from the Ulaş (Sivas) ultramafic rocks 
(olivine field of the clinopyroxenite from Solomon Islands is taken from Berly et al. (2006), 
peridotitic olivine field of the Cabo Ortegal is taken from Girardeau and Ibarguchi (1991), 
and mantle olivine array from Takahashi et al. (1987)).

Table 3. Representative rare earth element analysis (in ppm) of clinopyroxenes in the pyroxenites from the Ulaş ultramafics.

Sample Cpx. Cpx. Cpx. Cpx. Cpx. Cpx. Cpx. Cpx. Cpx.

Rock type Pyrx. Pyrx. Pyrx. Pyrx. Pyrx. Pyrx. Pyrx. Pyrx. Pyrx.

La 0.012 0.006 0.018 0.007 0.009 0.011 0.007 0.007 0.007
Ce 0.029 0.030 0.033 0.029 0.034 0.029 0.024 0.027 0.028
Pr 0.008 0.004 0.008 0.008 0.009 0.007 0.006 0.006 0.006
Nd 0.074 0.068 0.072 0.074 0.059 0.079 0.075 0.065 0.042
Sm 0.070 0.055 0.050 0.067 0.079 0.058 0.038 0.057 0.061
Eu 0.024 0.029 0.034 0.028 0.025 0.033 0.026 0.028 0.027
Gd 0.109 0.142 0.114 0.120 0.127 0.138 0.115 0.134 0.133
Tb 0.027 0.030 0.029 0.030 0.027 0.025 0.025 0.030 0.033
Dy 0.211 0.201 0.235 0.195 0.259 0.182 0.202 0.224 0.196
Ho 0.050 0.048 0.046 0.055 0.052 0.050 0.054 0.054 0.050
Er 0.146 0.142 0.145 0.165 0.154 0.150 0.149 0.120 0.138
Tm 0.019 0.022 0.019 0.022 0.024 0.022 0.022 0.018 0.024
Yb 0.166 0.135 0.129 0.113 0.174 0.122 0.141 0.154 0.150
Lu 0.020 0.019 0.019 0.020 0.023 0.021 0.017 0.021 0.019
Sr 4.080 3.530 4.010 3.480 4.040 3.830 3.430 3.310 3.440
Zr 0.207 1.117 0.099 0.113 0.116 0.110 0.113 0.110 0.102
Zr/Sm 2.957 20.309 1.980 1.687 1.468 1.897 2.974 1.930 1.672
Sr/Nd 55.135 51.912 55.694 6.486 68.475 48.481 45.733 50.923 81.905
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compared with the known SSZ peridotites and clinopyroxenites 
(Figure 9). The TiO2 contents of spinels are in a narrow range 
between 0.00 and 0.21 (wt. %) in the harzburgites and 0.09 and 
0.22 (wt. %) in the clinopyroxenites. Additionally, there is a slight 
positive correlation between TiO2 contents and Cr-number 
of spinels from the harzburgites towards the clinopyroxenites 
(Figure 10). In general, the Fe3+-number of spinels in the 
clinopyroxenite is higher than that from the host harzburgites 
(Figure 11).

5. Discussion
5.1. Origin of the clinopyroxenite dykes 
Mantle pyroxenites are generally composed of all pyroxenite 
types, such as clinopyroxenite, orthopyroxenite, and websterite. 

However, only the clinopyroxenites were found in the 
harzburgitic host rock of this investigation. The current 
chemical data from the main minerals (ol, opx, cpx, and 
Cr-spinel) in the studied clinopyroxenite dykes and host 
harzburgites revealed differences to the subduction-related 
origin. Furthermore, the presence of spinel, together with 
absence of plagioclase and garnet, in the pyroxenites and 
host rocks confined the depth of the pyroxenite formation 
to be within the spinel–peridotite stability field (Berly et 
al., 2006). Field studies showed that the clinopyroxenites 
occur mainly as dykes within the host harzburgites (Figure 
3). This revealed that each was formed in an SSZ mantle 
wedge, supported by evidence of infrequent orthopyroxene 
crystals of mantle affinity in the studied clinopyroxenites.

Table 4. Representative major element analysis (in wt. %) of spinels from the Ulaş ultramafics (Spl: spinel).

Sample Spl. Spl. Spl. Spl. Spl. Spl. Spl. Spl. Spl. Spl. Spl. Spl. Spl. Spl.

Rock type Hrz. Hrz. Hrz. Hrz. Hrz. Hrz. Hrz. Hrz. Hrz. Hrz. Hrz. Hrz. Hrz. Hrz.

SiO2 0.01 0.02 0.00 0.00 0.04 0.00 0.00 0.03 0.02 0.00 0.00 0.00 0.02 0.00

TiO2 0.01 0.01 0.03 0.04 0.03 0.07 0.09 0.00 0.00 0.03 0.06 0.02 0.04 0.03

Al2O3 23.69 26.71 26.00 27.38 23.45 26.79 28.21 27.05 28.89 31.06 27.23 29.34 22.64 18.89

Cr2O3 41.35 41.48 43.08 41.93 41.01 41.12 41.18 42.92 40.87 40.52 40.57 39.74 44.57 46.00

FeO 18.91 16.32 17.38 17.04 17.02 16.67 16.50 17.05 18.64 17.19 18.31 19.47 20.59 20.54

MnO 0.33 0.27 0.31 0.31 0.22 0.28 0.29 0.30 0.33 0.27 0.27 0.29 0.24 0.18

MgO 12.74 14.47 13.24 12.55 13.21 15.84 13.69 13.35 11.96 11.64 14.00 14.43 11.96 15.25

CaO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Total 97.04 99.28 100.04 99.25 94.98 100.77 99.96 100.70 100.71 100.71 100.44 103.29 100.06 100.89

Fe+3 0.79 0.52 0.34 0.07 0.67 0.89 0.23 0.23 0.08 -0.38 0.67 0.77 0.69 1.73

Cr # 0.54 0.51 0.53 0.51 0.54 0.51 0.49 0.52 0.49 0.47 0.50 0.48 0.57 0.62

Mg # 0.60 0.65 0.60 0.57 0.63 0.70 0.61 0.60 0.54 0.52 0.63 0.62 0.55 0.69

Sample Spl. Spl. Spl. Spl. Spl. Spl. Spl. Spl. Spl. Spl. Spl. Spl. Spl. Spl.

Rock type Hrz. Hrz. Hrz. Hrz. Hrz. Hrz. Hrz. Hrz. Pyrx. Pyrx. Pyrx. Pyrx. Pyrx. Pyrx.

SiO2 0.06 0.02 0.03 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TiO2 0.04 0.07 0.05 0.06 0.03 0.04 0.05 0.21 0.12 0.16 0.14 0.09 0.19 0.22

Al2O3 22.40 22.18 22.06 20.37 21.41 27.00 26.32 26.55 19.86 18.29 17.90 20.01 16.04 19.31

Cr2O3 44.59 45.15 44.97 37.96 45.48 40.81 40.81 33.91 39.39 43.50 41.01 40.27 42.89 39.52

FeO 20.04 20.65 20.14 21.91 20.36 21.42 20.71 22.76 34.76 33.16 33.76 31.49 33.39 34.63

MnO 0.23 0.23 0.31 0.35 0.29 0.24 0.18 0.37 0.50 0.63 0.45 0.68 0.55 0.61

MgO 13.38 12.01 15.36 11.93 12.63 11.47 11.74 15.31 6.74 6.27 6.32 7.01 6.98 5.89

CaO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.07 0.17 0.08 0.18 0.11

Total 100.74 100.31 102.92 92.58 100.20 100.98 99.83 99.11 101.51 102.08 99.75 99.63 100.22 100.29

Fe+3 0.96 0.71 1.43 1.65 0.90 0.50 0.52 2.04 2.08 1.62 1.96 1.65 2.14 1.91

Cr # 0.57 0.58 0.58 0.56 0.59 0.50 0.51 0.46 0.57 0.61 0.61 0.57 0.64 0.58

Mg # 0.61 0.55 0.68 0.59 0.58 0.52 0.54 0.68 0.32 0.30 0.31 0.34 0.34 0.29



395

BİLİCİ and KOLAYLI / Turkish J Earth Sci

          field

Arc related crustal

0.7 0.8 0.9 1
Mg # (Cpx)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
r 2

O
3

(w
t.

%
)

n
C

px

    from

Arc-related crustal

1 0.95 0.9 0.85 0.8 0.75
Mg # (Opx)

0

2

4

6

8

10

A
l 2O

3
(w

t.
%

)
n

O
px

    from
Arc-related crustal

1 0.95 0.9 0.85 0.8 0.75 0.7
Mg # (Cpx)

0

1

2

3

4

5

6

7

A
l 2O

3

 

(w
t.

 

%
)

 

n

 

C
px

50 50
45 45

20 20

5 5

En Fs

Wo

0 1 2 3 4 5 6
Al2O3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

C
r 2

O
3
(w

t.
%

)
n

C
px   

a

b c

d

e

Figure 6. (a) Pyroxene nomenclature diagram for the pyroxenes from the studied ultramafic rocks (after Morimoto et al. (1988)); 
Al2O3 vs. Mg-number diagram for orthopyroxene (b) and for clinopyroxene (c); (d) Cr2O3 vs. Mg-number diagram for clinopyroxene 
(references of the fields after Berly et al. (2006); (e) Cr2O3 vs. Al2O3 (wt.%) diagram for clinopyroxenes (fields of residual clinopyroxenes 
after Seyler et al. (2003), field of replaced clinopyroxenes after Seyler et al. (2007), field of secondary clinopyroxenes after Nozaka (2005)).
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In a plot of Fo-number vs. NiO, olivines from the 
harzburgites showed higher NiO content than those of 
the clinopyroxenites and a plot within the “mantle olivine 
array” indicated a residual source for the harzburgites, 
comparable with peridotitic olivines from the Cabo 
Ortegal peridotites (Girardeau and Ibarguchi, 1991). In 
contrast, olivines from the clinopyroxenites had very low 
NiO content and also showed a different distribution to the 
other SSZ clinopyroxenites, especially when compared to 
the Solomon Islands clinopyroxenites (Berly et al., 2006), 
as in Figure 5.

The major element contents of ortho-clinopyroxenes 
from the clinopyroxenite and host harzburgite were 
evaluated together. In a plot of Mg-number vs. Al2O3 
(Figure 6b), orthopyroxenes showed Al2O3 depletion 
towards the clinopyroxenites from the harzburgites, 
indicating Al2O3 extraction during partial melting 
compatible with the melting trend (Page et al., 2008) and 
orthopyroxene fractionation trend (Varfalvy et al., 1996, 
1997). Moreover, the host harzburgites resembled the 
fore-arc (SSZ) peridotites and the clinopyroxenites that 
show an affinity to the mantle pyroxenites rather than 
the arc-related crustal pyroxenites by orthopyroxene 
chemistry (Figure 6b). The high Mg-number and low 
Al2O3 contents of clinopyroxenes exhibit a trend as a 
result of partial melting (Figure 6c). Clinopyroxenes from 
the host harzburgites plot within the fore-arc peridotite 
field suggested by Page et al. (2008) prominently differ 
from the Izo-Bonin fore-arc peridotites proposed by 
Parkinson and Pearce (1998). Clinopyroxenes from the 
clinopyroxenites have higher Mg-numbers than the host 
harzburgites, a few of which were similar to the mantle 
pyroxenites (Figure 6c). However, in the Cr2O3 content 
vs. Mg-number diagram, most clinopyroxenes from the 
clinopyroxenites plot were within the mantle pyroxenite 
field. In this same diagram, clinopyroxenes from the host 
harzburgites showed a very similar distribution to the Izo-
Bonin fore-arc peridotites (Figure 6d). Generally, the high 
Mg-number of clinopyroxenes in the clinopyroxenites is 
associated with the high degree of partial melting of the 
host harzburgites. Furthermore, the Cr2O3 and Al2O3 
contents of clinopyroxenes in the clinopyroxenite and 
the host harzburgites saw major elements decrease and 
exhibit a positive correlation towards the harzburgites 
from the clinopyroxenites (Figure 6e). Conversely, two 
clinopyroxene samples with high Al2O3 contents showed 
abyssal character, indicative of residual clinopyroxene in 
the clinopyroxenites. Overall, clinopyroxenes from the 
clinopyroxenites with lower Cr2O3 and Al2O3 content than 
modified clinopyroxenes in the host harzburgites displayed 
secondary clinopyroxene characteristics, as suggested by 

Nozaka (2005) and Wojtulek et al. (2016); see Figure 6e.
Trace element contents of clinopyroxenes are crucial 

in defining the origin of mantle pyroxenites. Many studies 
show that clinopyroxene is the main mineral for REE, 
and its pattern reflects the whole rock in the absence of 
garnet (Garrido et al., 2000). In the presence of garnet, the 
REE would be distributed between garnet and pyroxene. 
The REE pattern of clinopyroxenes from the studied 
clinopyroxenites showed similar patterns to that of 
clinopyroxene from the SSZ and fore-arc ophiolite (Figure 
7). These were depleted in LREE to MREE and HREE, as 
compared to those of abyssal clinopyroxenes (Johnson 
et al., 1990), and instead exhibited a pattern closer that 
of SSZ clinopyroxenes (Bizimis et al., 2000) rather than 
fore-arc clinopyroxenes (Parkinson et al., 1992). Slight 
La enrichments of clinopyroxene in the clinopyroxenite 
support this similarity, as in Figure 7. The slight upward 
inflection of La could also be clarified by a melt percolation 
event.

The high Cr-number of spinels indicated that the 
peridotites formed within a supra-subduction setting 
(Bonatti and Michael, 1989; Wang et al., 2001). The Fo 
content of olivines and the Cr-number of spinels are 
essential indicators of the partial melting degree for 
mantle peridotite and are used to differentiate tectonic 
environments (Dick and Bullen, 1984; Arai, 1994; Pearce 
et al., 2000; Tamura and Arai, 2006). Under this criteria, 
spinels from the clinopyroxenites and the host harzburgites 
show similar formation to the subduction-related mantle 
rocks (Figure 8). Additionally, mid-ocean ridge (MOR) or 
similar zone (fracture) peridotites have a Cr-number lower 
than 0.6, whereas SSZ peridotites have Cr-numbers up to 
0.8 (Dick and Bullen, 1984; Arai, 1994; Kelemen et al., 1995; 
Gaetani and Grove, 1998; Choi et al., 2008; Kaczmarek 
et al., 2015). A typical subduction-related harzburgite, 
considered to have formed by 20%–25% partial melting, 
contains olivine with higher forsterite content (Parkinson 
and Pearce, 1998). The high Fo-number of olivines and 
relatively high Cr-number of spinels support the depletion 
trend of the studied harzburgites as a product of high-
degree partial melting (25%) and denote similarity with 
the fore-arc (SSZ) and less so with the abyssal peridotites 
(Figure 8). However, relatively high Cr-numbers of spinels 
and low Fo-numbers of olivines from the clinopyroxenites 
plot outside of the olivine spinel mantle array (OSMA) 
indicated an eventual fractional crystallization from a 
magma with MORB-like affinity or initiation of boninitic 
affinity in the SSZ (Figure 8). The low Mg-number of 
spinels in the clinopyroxenite shows closer distribution 
to the SSZ clinopyroxenite field (Figure 9). An important 
feature to note is that the Mg-number of MORB-spinels 
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Figure 7. Chondrite-normalized REE patterns for clinopyroxenes from the clinopyroxenites of 
Ulaş (Sivas) ultramafic rocks. For comparison, a range of clinopyroxene REE pattern from abyssal 
peridotite (Johnson et al., 1990), from suprasubduction peridotite (Bizimis et al., 2000) and from 
fore-arc peridotite (Parkinson et al., 1992) is shown. Normalizing values of REE for chrondrite are 
taken from Sun and McDonough (1989). 

Figure 8. Compositional relationship between forsterite content of olivine and Cr-number of chromian spinels of the studied Ulaş 
ultramafic rocks on the olivine-spinel mantle array (OSMA) diagram of Arai (1994) (abyssal peridotite field from Dick and Bullen 
(1984), forearc peridotite field from Ishii et al. (1992), Parkinson and Pearce (1998), and Pearce et al. (2000). 
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is higher when compared to the cumulates of the Alpine-
type ophiolites and the mantle peridotites (Lee, 1999). 
Hence, the high Cr-number and low Mg-number of the 
spinels in the studied pyroxenites indicate a subduction-
related origin, and an extensive re-equilibration between 
the pyroxenites and the mantle peridotites.
5.2. Effects of the melt–peridotite interactions on the 
pyroxenite formation 
The melt–rock interaction is a key factor in the 
compositional evolution of both melt and host rock in the 

mantle (Kelemen, 1990; Edwards, 1995; Varfalvy et al., 
1996; Kelemen et al., 1997; Garrido and Bodinier, 1999; 
Bodinier et al., 2004; Batanova et al., 2011). The Al and Ti 
contents of chromian spinels are also very useful metrics 
in order to understand the characteristics of the parental 
melts of the spinels and the tectonic environment in which 
these melts were generated (Zhou et al., 1996; Melcher 
et al., 1997; Uysal et al., 2007; Rollinson, 2008; Page and 
Barnes, 2009; Gonzalez-Jimenez et al., 2011; Zaccarini et 
al., 2011; Uysal et al., 2012). 

In the present study, spinel mineral chemistry was used 
to investigate the reactions between the melts forming the 
clinopyroxenite dykes. The significant reduction of olivine 
compositions (Fo and NiO) in the clinopyroxenite can be 
explained by a compositional change during fractional 
crystallization of magma or melt interaction with the host 
rocks over the course of dyke growth. Laukert et al. (2014) 
proposed that the presence of olivine in the pyroxenite 
would demonstrate a relatively low melt/rock ratio, 
whereas the absence of olivine indicates the final reaction 
components at high melt/rock ratios.
The TiO2 content and other minor elements of spinels are 
sensitive monitors of melt–rock interaction and denote 
larger variations than the major elements during the 
partial melting of peridotites and fractional crystallization 
processes (Arai, 1992; Dare et al., 2009). Additionally, 
the TiO2 content of spinels shows initial records of the 
impregnating melts as opposed to the primary structure 
of the host rocks (Cannat et al., 1990), because the 
impregnating melts are generally richer in concentrations 
than the nonreacted peridotites (Pearce et al., 2000; 
Whattam et al., 2011). In general, low TiO2 content 
(<0.2 wt.%) spinels are considered to be plagioclase-free, 
depleted peridotites that do not react with MORB-like 
melts at low-P (Dick, 1989; Seyler and Bonatti, 1997). 
Spinels in the host harzburgites surrounding the dykes 
also have TiO2 content (>0.1 wt. %) that is higher than the 
background harzburgite. This result could be explained 
by the reaction between the intruding melts and the host 
rocks. Plots of spinel Cr-number vs. spinel TiO2 (Figure 
10) demonstrate that spinels from the host harzburgite 
underwent intensive melt–rock interactions with a Ti-rich 
melt, subsequent to having undergone 25% partial melting. 
Spinels from the clinopyroxenite were similar those of the 
host harzburgites and reflect a melt–rock reaction trend 
towards an SSZ reaction field more than a MORB reaction 
field (Figure 10). 
The high Fe3+-number of spinels indicated subduction-
related melts, because of the presence of water associated 
with an SSZ setting, which promotes oxidizing conditions 
relative to MORB melts (Arai, 1992). The melt–rock 
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chromian spinel from the studied Ulaş ultramafic rocks (fields 
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taken from Tamura and Arai (2006). SSZ pyroxenite field is taken 
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reaction effect in MOR and SSZ settings is shown through 
the Fe3+-number and TiO2 (wt.%) contents of spinels 
from the clinopyroxenites and host harzburgites in Figure 
8. Spinels from the SSZ harzburgites have higher Fe3+-
numbers (0.06) than abyssal harzburgites (0.03) (Dare 
et al., 2009). Although the obtained data of spinels in 
the harzburgites showed a wide range of Fe3+-numbers 
and indicated both SSZ and abyssal characteristics, the 
low Fe3+-numbers of these spinels show that reacting 
melts were more SSZ-like than MORB-like (Figure 
11). Spinels in the clinopyroxenite that had higher Fe3+-
numbers and low TiO2 (wt. %) content in a narrow range 
indicate formation from SSZ-like melt interactions. This 
is compatible with the isolated dyke geochemistry of 
Divriği ophiolite (Parlak et al., 2006), where the diabasic 
isolated dykes cut the mantle tectonites, and were ascribed 
to subsequent magmatism fed by melts that occurred 
within an asthenospheric window caused by slab break-
off, shortly before the settlement of the ophiolite onto the 
Tauride Platform. Hence, the clinopyroxenite dykes within 
the host harzburgite are thought to have crystallized from 
this SSZ-type magma with similar conditions.
5.3. Comparison with the arc-related (SSZ) and abyssal 
pyroxenites
Occurrences of the pyroxenites remain controversial in 
different tectonic environments. The pyroxenite dykes can 
be formed through various mechanisms, depending on 
the tectonic setting or formation and a detailed study with 

field evidence, petrography, and geochemistry is required 
in every individual case in order to understand the origins 
thoroughly. 

Within this context, the pyroxenites and associated 
peridotites were discussed in many studies on the arc-
related settings, including the Beni Bousera massif, Morocco 
(Pearson et al., 1993), the Alaskan complexes (DeBari and 
Coleman, 1989), the North America–Canada ultramafics 
(Snoke et al., 1981), the Europe and northwestern Africa 
ultramafics (Downes, 2007), the pyroxenites from Cabo 
Ortegal, Spain (Girardeau and Ibarguchi, 1991; Santos 
et al., 2002), the Andong Ultramafic Complex in Korea 
(Whattam et al., 2011), the Ronda peridotite massif in 
Spain (Marchesi et al., 2012), the intraoceanic arc-related 
cumulates in southern New Zealand (Spandler et al., 
2003), the Solomon Islands pyroxenites (Berly et al., 2006), 
pyroxenite dykes in the North Qaidam Peridotites, China 
(Xiong et al., 2014), and the Marum ophiolite complex, 
Papua New Guinea (Kaczmarek et al., 2015). 

In contrast, the investigations on abyssal pyroxenites 
are more limited (Dick et al., 1984, 2010; Fujii, 1990; 
Kempton and Stephens, 1997; Hellebrand et al., 2005; Arai 
and Takemoto, 2007; Dantas et al., 2007; Warren et al., 
2009; Seyler et al., 2011; Laukert et al., 2014).

In general, when all of the studies are examined in terms 
of mineral chemistry, it can be seen that the arc-related 
and abyssal pyroxenites differ in terms of formation. The 
low Cr-number (20–30) of spinels and relatively low Mg-
number (90) of clinopyroxenes are characteristic properties 
of abyssal pyroxenites and the presence of websterites at 
lower melt/peridotite ratios, signifying the products of 
melt–rock interaction. However, the high Cr-number of 
spinels and high Mg-number of clinopyroxene are typical 
of arc-related (SSZ) pyroxenites. The clinopyroxenites can 
be considered melt-dominated systems with high melt/
peridotite ratios (Van Acken, 2008).

In the present study, the mineral chemistry of the 
clinopyroxenites within the host harzburgites indicates 
that these pyroxenites have a similar affinity to the SSZ 
pyroxenites with relatively high Cr-numbers of spinels 
and high Mg-numbers of clinopyroxenes (Figure 6). 
Furthermore, the REE concentrations of clinopyroxenes 
from the clinopyroxenites were consistent with the SSZ 
pyroxenites (Figure 7). The high Sr/Nd and low Zr/Sm 
ratios in these clinopyroxenes suggest crystallization from 
LREE-enriched melts of a subduction zone (Figure 12), 
and these ratios show a similar distribution to the Cabo 
Ortega pyroxenites reported by Downes (2007).
6. Concluding remarks
Field observations and petrographic properties show that 
clinopyroxenite dykes occur within the harzburgite from 
Ulaş District, as part of the Divriği ophiolite. A detailed 
mineral geochemical investigation of the clinopyroxenites 
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Figure 12. Sr/Nd vs. Zr/Sm ratios in clinopyroxenes from 
pyroxenite in the studied Ulaş ultramafic rocks (after Downes 
(2007)).
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and the host peridotites was evaluated using petrological 
interpretation of different diagrams presenting the obtained 
analytical data. The sharp margins with the host harzburgites 
together with the mineral geochemical evidence suggested 
that the pyroxenite dykes were generated through a series of 
petrological processes, including fractional crystallization 
and melt–rock reactions. The dykes may have been formed 
by a focused flow of melts during the migration towards 
the crust in the mantle section of this ophiolite. The results 
have shown that these clinopyroxenites formed as a product 
of fractional crystallization from magma of relatively high-
grade partial melting of the host harzburgite, which reacted 
with the SSZ-type melts in the mantle wedge of a subduction 
zone. Consequently, the compositions of spinels and other 

silicate minerals suggest that the clinopyroxenites were 
derived from a nonboninitic SSZ type-magma that resulted 
from slab breakoff. This situation could be explained by 
the close proximity of the Cr-numbers of spinels in both 
lithologies.
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