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Abstract

Tumor heterogeneity is prevalent in both treatment-naive and end-stage metastatic castration-
resistant prostate cancer (PCa), and may contribute to the broad range of clinical presentation,
treatment response, and disease progression. To characterize molecular heterogeneity associated
with de novo metastatic PCa, multiplatform single cell profiling was performed using high
definition single cell analysis (HD-SCA). HD-SCA enabled morphoproteomic and
morphogenomic profiling of single cells from touch preparations of tissue cores (prostate and bone
marrow biopsies) as well as liquid samples (peripheral blood and bone marrow aspirate).
Morphology, nuclear features, copy number alterations, and protein expression were analyzed.
Tumor cells isolated from prostate tissue touch preparation (PTTP) and bone marrow touch
preparation (BMTP) as well as metastatic tumor cells (MTCs) isolated from bone marrow aspirate
were characterized by morphology and cytokeratin expression. Although peripheral blood was
examined, circulating tumor cells were not definitively observed. Targeted proteomics of PTTP,
BMTP, and MTCs revealed cell lineage and luminal prostate epithelial differentiation associated
with PCa, including co-expression of EpCAM, PSA, and PSMA. Androgen receptor expression
was highest in MTCs. Hallmark PCa copy number alterations, including PTEN and ETV6
deletions and NCOA2 amplification, were observed in cells within the primary tumor and bone
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marrow biopsy samples. Genomic landscape of MTCs revealed to be a mix of both primary and
bone metastatic tissue. This multiplatform analysis of single cells reveals several clonal origins of
metastatic PCa in a newly diagnosed, untreated patient with polymetastatic disease. This case
demonstrates that real-time molecular profiling of cells collected through prostate and bone
marrow biopsies is feasible and has the potential to elucidate the origin and evolution of metastatic
tumor cells. Altogether, biological and genomic data obtained through longitudinal biopsies can be
used to reveal the properties of PCa and can impact clinical management.
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Introduction

Despite early detection and aggressive intervention, prostate cancer (PCa) is the third-
leading cause of death among men in United States, with an estimated 160 000 new cases
and approximately 26 000 annual deaths in 2017 [1, 2]. Multiple therapeutic agents have
been shown to improve overall survival in end-stage metastatic castrate-resistant PCa
(mCRPC). Additionally, recent clinical trials have provided evidence that use of
combination therapies, including docetaxel, with first-line androgen deprivation therapy
(ADT), significantly increases overall survival in de novo metastatic patients [3, 4].
However, not all patients respond to combination therapy, and it is unknown whether or not
the efficacy of combinatorial approaches can be optimized based upon biological and
genomic features of the tumor.

Intra-patient spatiotemporal molecular profiling has the potential to provide treatment
response signatures, insight into heterogeneity, and prognostic information for patients with
metastatic PCa. While primary tumor and metastasis biopsies provide information about
tumor type, grade, and pathological features, information on heterogeneity, clonality, and the
likelihood of treatment response is limited. In contrast, liquid biopsies provide access to
circulating tumor cells (CTCs) from routine peripheral blood (PB) samples, disseminated
tumor cells (DTCs) or metastatic tumor cells (MTCs) from the bone marrow aspirates
(BMA), and cell-free DNA (cfDNA) [5]. DTCs and MTCs describe two different clinical
stages in PCa. DTCs describe tumor cells present in bone marrow of a patient without
clinical bone metastatic whereas MTCs are tumor cells found in bone marrow of a patient
with clinical bone metastasis [5]. Comprehensive analysis of these specimens will provide
an in depth assessment of tumor heterogeneity and clonality and may lead to improved
prognostication and prediction of treatment efficacy. Many new technological advances
allow for high-resolution single cell analysis and when combined with rare cell detection,
provide clinical insights that may impact clinical management.

We have previously developed and technically validated the high definition single cell
analysis (HD-SCA) workflow for enumeration, morphoproteomic, and morphogenomic
characterization of rare cells in order to identify and quantify cellular heterogeneity [5-9,
18]. The workflow utilizes single-cell profiling to characterize CTCs, DTCs, and MTCs
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followed by genomic and proteomic characterization that can be correlated with morphology
data [6, 7, 10]. CFDNA extraction from a liquid biopsy prior to HD-SCA sample processing
allows for genomic assessment of circulating tumor DNA (ctDNA) found in both PB and
BMA. The same multiplatform single-cell analysis can be used not only for liquid biopsy
samples, but also for genomic and proteomic characterization of primary and metastatic
tissue preparation [9]. Additionally, as demonstrated by our recently published data, the HD-
SCA platform can be adapted to the fluid form of BMA, allowing characterization and
comparison of circulatory and bone marrow cancer cells [5]. Carlsson et a/ demonstrated the
value of non-guided BMA as a feasible and cost-effective procedure for longitudinal
sampling during cancer progression and treatment similar to current clinical practice in the
liquid malignancies [11].

In this report, we used the HD-SCA workflow to characterize cancer cells in a patient with
newly diagnosed de novo polymetastatic PCa. Single-cell morphoproteomic and
morphogenomic analysis allowed direct comparison of solid phase primary and metastatic
tissue tumor cells with those extracted from liquid biopsies. The clinical utility of liquid
biopsy (CTC, DTC, MTC, and/or ctDNA) lies in the ability to illuminate indicators of
treatment response/resistance that may guide therapeutic selection. This report demonstrates
that genomic and proteomic data collected from the HD-SCA workflow provides
information on heterogeneity, clonality, and marker expression that may influence
prognostication and treatment response in patients harboring lethal PCa.

Material and methods

Specimen collection and HD-SCA sample preparation

The patient is a 73 year-old African—-American male diagnosed with de novo polymetastatic
PCa via prostate needle biopsy (PNBX) within the Greater Los Angeles Veterans’ Affairs
Healthcare System. PB and bone marrow aspiration/biopsy were collected at the time of
diagnostic PNBX and placed into 10 ml cfDNA BCT Streck tubes (STRECK, Omaha, USA,
Cat#62790315). Approximately 12 prostate tissue cores were obtained in a random fashion
from the right and left base, mid-gland, and apex under transrectal ultrasound guidance.
Prostate tissue touch preparation (PTTP) was performed with each biopsy core by gentle
rolling onto glass slides prior to formalin fixation and paraffin embedding (FFPE). A
standard percutaneous bone marrow biopsy and aspiration were performed at the right
posterior iliac crest. The bone marrow core was gently rolled onto a glass slide to prepare
bone marrow touch preparation (BMTP). Samples were shipped overnight to the Kuhn
laboratory at the University of Southern California, Los Angeles, CA, USA. Upon arrival of
PB and BMA samples in Streck tubes, red blood cells were lysed, and remaining cells were
plated on a custom-made adhesive glass slide (Marienfeld, Lauda-Kdnigshofen, Germany)
as a monolayer of 3.0 x 108 nucleated cells [5]. Unstained slides were covered with
coverslips and stored at —80 °C before analysis (figure 1). All touch preparation slides were
air dried, blocked with 7% BSA in PBS, and stored in =80 °C until processing.

Detailed sample processing procedures have been described previously [7]. Briefly, two
slides per sample were stained using four fluorescent markers. Cell nuclei were identified
using DAPI (4’,6-Diamidino-2-Phenylindole, Dihydrochloride, Cat#D1306, Invitrogen,
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Waltham, MA). Epithelial cells were identified using a mix of cytokeratin (CK) 19 (1:100;
Dako, Carpinteria, USA, Cat#M0888) and pan-CK antibodies (1:100; Sigma-Aldrich, St.
Louis, USA, Cat#C2562) with an Alexa Fluor 555 secondary antibody (Invitrogen,
Carlsbad, USA, Cat#A21127). An anti-CD45 Alexa Fluor 647—-conjugated antibody (1:125;
Biorad, Hercules, USA, Cat#MCA87A647X) was used as a leukocyte exclusion marker. An
androgen receptor (AR) rabbit monoclonal antibody (1:250; Cell Signaling Technology,
Danvers, USA, Cat#5153) and Alexa Fluor 488 secondary antibody (Invitrogen, Carlsbad,
USA, Cat#A11034) were used for evaluation of AR levels in cells [5, 10] (figure 1).

Candidate cell imaging and morphological analysis

PB and BMA slides were imaged at 10x magnification using automated high-throughput
microscopy. Candidate cells were computationally identified and semi-manually classified
using morphology and DAPI*/CK*/CD45~ expression criteria as previously established
(figure 1) [12, 13]. PTTP and BMTP were manually imaged at 10x and 40x magnification.
AR expression and localization were reviewed and quantified using average fluorescent
intensity within a fixed-size circle centered around the cell [14]. The threshold for AR
positivity was defined as a signal more than 6 standard deviations over the mean signal
intensity (SDOM) observed in the surroundings leukocytes (background). For morphometric
analysis of candidate cells, nuclear area and nuclear circularity was measured using DAPI
intensity within a fixed-size circle centered around the cell using image object features from
the EBImage R package [15].

Single-cell next-generation sequencing and analysis

Single cells from PB, BMA, PTTP, and BMTP were isolated and underwent genomic
amplification as previously described [16, 17] (figure 2(a)). In short, tumor cells were
isolated off the slides using a robotic micromanipulator system and placed in individual
tubes for whole genome amplification (Sigma-Aldrich, St. Louis, USA, Cat#WGA4). Prior
to cell capture, PTTP and BMTP slides were incubated with dispase type 11 (1:1000;
ThermoFisher, Waltham, USA, Cat#17105041) and collagenase (1:1000; ThermoFisher,
Waltham, USA, Cat#17018029) in PBS at 37 °C for 30 min. PTTP and BMTP slides were
washed with PBS twice for 3 min, and individual cells or cell clusters from PTTP and
BMTP were isolated and extracted in the same manner. Following DNA purification, 50 ng
of DNA was sonicated to 200 bp fragments in AFA fiber pre-slit snap-cap microtubes
(Covaris, Woburn, USA, Cat# 520077) with the Covaris S2 using the following setting:
intensity of 5, 10% duty cycle, 200 cycles per burst, 3 min treatment time, and temperature
less than 7 °C. Sonicated DNA was used for library construction with the DNA Ultra
Library Prep Kit and Multiplex Oligos for Illumina (New England Biolabs, Ipswich, USA,
Cat#E7370 and E7600). Copy number alteration (CNA) profiles and heatmaps were created
as previously described, with R unsupervised hierarchical clustering using the Ward method
and Euclidian distance to distinguish subclones [16, 17].

CfDNA next-generation sequencing and analysis

PB and BMA were fractionated by centrifugation at 2000 g for 10 min at RT, 2 ml of plasma
were collected from each sample, and the removed plasma volume was reconstituted to its
original concentration with 1 x PBS. Plasma was spun at 14 000 g for 10 min at RT and
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supernatant was stored at =80 °C for future analysis. CFDNA was extracted with the
QlAamp Circulating Nucleic Acid Kit (Qiagen, Hilden, Germany, Cat# 55114) according to
the manufacturer’s instructions. lllumina libraries were constructed from 5 ng cfDNA using
the NEBNext Ultra II DNA Library Prep Kit and Multiplex Oligos for Illumina according to
the manufacturer’s instructions (New England Biolabs, Ipswich, USA, Cat#E7370 and
E7600) as seen in figure 2(a). CNA profiles were created as described under single-cell next-
generation sequencing and analysis.

Single-cell targeted proteomic analysis

Previously identified candidate cells from BMA, PTTP, and BMTP slides were subjected to
protein analysis using Fluidigm Hyperion Imaging System (IMC) (Fluidigm, San Francisco,
USA). Slides were washed in PBS to remove cell media before secondary staining. Slides
were stained with 21 markers out of the 40 available channels to detect the expression of
leukocyte, epithelial, endothelial, and prostate cell protein markers (table 2). Slides were
blocked using 1% BSA with 0.2 mg mI~1 mouse 1gG Fc fragment (Thermofisher, Waltham,
USA, Cat#31205) in PBS for 60 min at 37 °C. The MaxPar™ metal-labeled antibody
cocktail was prepared in 0.1% Tween and 1% BSA in PBS with antibodies from Fluidigm
according to the manufacturer’s dilutions. Antibody cocktail was added to each slide for 90
min at room temperature and washed with PBS twice for 3 min. IR-193 DNA intercalator
(Fluidigm, San Francisco, USA, Cat#201192 A) was added to slides for 30 min at room
temperature. Slides were washed with PBS twice for 3 min and dipped in ddH,0 for 5 s to
remove salt. Slides were dried for 2 h and stored at room temperature until IMC runs [18].

Laser ablation with time-of-flight detection and analysis was performed using the IMC as
seen in figure 2(b). A 400 zm x 400 um region of interest around each cell of interest was
ablated aerosolizing a 1 um? area/pulse (200 Hz), followed by ionization and quantification
in the CyTOF Helios instrument. lon mass data were collected, resulting in the construction
of 1 zm? resolution images depicting the tumor cells of interest and surrounding white blood
cells (WBC) as reference. For BMA, this section encompasses the MTC of interest and the
surrounding WBCs totaling approximately 500 cells. For BMTP and PTTP, the ablated area
contained hundreds to thousands of cells, depending on cell density and the size of the
imprint.

A four-level scoring system was developed where 0 is below limit of detection (LOD), 1 is
at LOD, and 2-3 is above. The LOD for each marker was set as equal to signal to noise ratio
(S/N) = 3 or standard deviation of mean (SDOM) > 3.3. A score of 1 was given to cells
exceeding the LOD, a score of 2 was given to signals with S/N of 7-20 or SDOM > 6, and
finally a score of 3 was assigned to signals of S/N > 20 or SDOM > 12.

Results and discussion

Single cell morphometric analysis of identified tumor cells

To examine intra-patient heterogeneity at time of diagnosis, samples were collected from a
patient with de novo polymetastatic PCa. During a routine examination in 2016, the patient
was found to have an elevated serum prostate specific antigen (PSA) level of 234 ng ml~1,
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which triggered a diagnostic workup for PCa. A bone scan demonstrated widespread
metastatic disease involving skull, bilateral ribs, multilevel lumbar spine, and pelvic bone.
Diagnostic PNBX revealed highgrade PCa with a Gleason score of 8 (4 + 4) in 9 of 12
biopsy cores. Immunohistochemistry (IHC) staining of FFPE PNBX and bone marrow
biopsy core revealed adenocarcinoma that expressed AR and PSA (figure 3).

For the HD-SCA workflow, PB, BMA, and bone marrow tissue (BMT) were collected at the
time of PNBX. Following processing and staining as described in Materials and Methods,
we identified and categorized candidate cells from PB and BMA using a semi-automated
reporting system. Candidate cells were evaluated based on DAPI*/CK*/CD45™ criteria and
marked as CTCs in PB and MTCs in BMA [6, 7]. Enumeration of tumor cells revealed a
high count of MTCs and lack of CTCs. Counts for CTCs in PB and MTCs in BMA were 0
cells mI~1 and 3673 cells mI~1, respectively (figure 4(a)). The HD-SCA threshold for a
positive sample is =1 cell per case based on previous studies, making BMA positive for this
patient [23, 24]. MTCs were detected as both single cells and clusters of 2-5 cells (25%), 6—
10 cells (3%), and 11 + cells (1%) (figure 4(a)).

AR expression was observed in both BMTP and PTTP via IHC analysis (figure 3). Single-
cell morphometric analysis of MTCs revealed AR expression localized to the nucleus (figure
4(b)). Despite observed heterogeneity in AR expression, AR staining was confined to the
nucleus as expected, regardless of expression levels (figure 4(b)). To further confirm nuclear
localization, detailed confocal images were acquired (figure 5(a)). We observed marked
heterogeneity across MTCs in nuclear area, nuclear circularity, CK stain intensity SDOM,
and AR expression SDOM (figure 5(b)), revealing several MTC subclones. Collectively,
these data demonstrate that tumor heterogeneity can be detected at a morphometric level
using measurements such as protein expression and nuclear features.

Single cell and cfDNA genomic analysis using CNA

To explore tumor heterogeneity on a molecular level, we selected a total of 73 single cells
for CNA analysis from 3 sample types: BMA (n=22), BMTP (n=17), and PTTP (n=32).
This analysis included WBC as controls (2 from BMA). CNA profiles of tumor cells in
prostate tissue (PT) and BMT showed prostate-specific alterations across the genome as well
as clonality, which we analyzed further (figure 6). Table 1 summarizes all observed
alterations with their frequency in MTCs, BMTP, and PTTP and their function and
implications in cancer. We define clonality as two or more cells that share two or more
genomic alterations. Alterations of tumor suppressor genes such as PTEN, RB1, and TP53
have been shown to contribute to tumor and metastatic development as well as invasiveness
[19, 20]. PTEN deletion was observed in 77% (17/22) and 34% (11/32) of MTCs and PTTP,
respectively. Partial chromosome 13 loss was observed in 23% (4/17) of BMTP, resulting in
at least hemizygous loss of RB1. TP53 loss was observed in 68% (15/22) of MTCs and 82%
(14/17) of BMTP. No TP53 deletion was observed in PT; thus, TP53 loss may have been
acquired after the cancer cells left the PT and settled in the BM. Research has shown that in
the absence of or dysregulation of TP53, DNA damage and spindle damage occur, resulting
in polyploidy in tumor cells [21]. 64% (14/22) of MTCs have four copies of each
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chromosome and are thus polyploid. Regardless of this increase in DNA content, they
remain clonal and share common alterations with the rest of the tumor cells.

Genomic alterations affecting DNA repair pathways like ATM, BRCA1, BRCA2, CDK2,
and MLH1 have been shown to affect sensitivity to platinum-based treatment in metastatic
PCa patients [22]. Investigation of these alterations in this patient revealed genomic changes
in DNA repair pathway genes. Deletions affecting ATM were found in 77% (17/22), 94%
(16/17), and 47% (15/32) of MTCs, BMTP, and PTTP, respectively. Next, we investigated
BRCAL and detected a deletion in 9% (2/22), 29% (5/17), and 9% (3/32) of MTCs, BMTP,
and PTTP, respectively. We found partial chromosome 13 loss in 23% (4/17) of BMTP,
resulting in at least hemizygous loss of BRCA2. CDK2 gene deletions were also detected at
frequencies of 36% (8/22), 23% (4/17), and 9% (3/32) of MTCs, BMTP, and PTTP,
respectively. MLH1 deletion was only detected in BMTP and PTTP at frequencies of 2%
(3/17) and 19% (6/32), respectively. Collectively, these data demonstrate multiple genomic
alterations associated with DNA damage repair. These alterations were identified in a subset
of tumor cells and required single-cell analysis for detection. Furthermore, we found the
frequency of tumor cells harboring genomic aberrations to be increased in bone marrow
tumor cells relative to prostate resident cells. This genomic heterogeneity and low frequency
of alterations would have been overlooked in bulk analysis, demonstrating the power of
single-cell sequencing.

Next, we focused on PCa specific alterations, such as in chromosome Xq12 where the AR
gene resides. We did not observe focal amplification of the AR gene locus in any sample but
noted a whole-chromosome gain of the X chromosome in 6% (1/17) and 3% (1/32) of
BMTP and PTTP, respectively. In addition, NCOA2 (AR co-regulator) amplification was
detected in 68% (15/22), 100% (17/17), and 28% (9/32) of MTCs, BMTP, and PTTP,
respectively [20]. MYC amplification was observed in 12% (2/17) and 3% (1/32) of BMTP
and PTTP, respectively [20]. All cells with MY C amplification have NCOA2 amplification
as well. Consistent with published data showing that NCOA2 and MYC on 8g13 and 8q24
function as driver oncogenes, we observed an increased frequency of amplifications of these
genes in MTCs compared to primary tumors [20, 23]. Thus, our observation of AR
expression in MTCs and BMTP is likely linked to NCOA2 and MY C gene amplification in a
majority of these cells. AR plays a major role in disease initiation as well as progression and
is a target of first-line therapy in PCa. AR overexpression in PCa is well documented, and
AR gene amplification or mutation are linked to castration-resistant PCa, which is believed
to be a result of treatment pressure as opposed to natural disease evolution [20, 24].
Consequently, samples collected from a metastatic hormone-naive PCa patient may present a
higher expression of AR but not a genomic amplification, as seen here.

Other alterations observed include a loss in ERCC3, a DNA helicase that is involved in DNA
damage repair. Studies have shown that an age-related decline in this gene leads to declining
repair capacity in cells and may lead to development of cancer [25]. The gain in NFxB2
observed in this patient has been demonstrated to contribute to tumorigenesis by uncoupling
the normal mode of regulation in immune regulation and inflammation [26]. We also
detected deletion of transcription factor ETV6 in 45% (10/22), 41% (7/17), and 6% (2/32) of
MTCs, BMTP, and PTTP, respectively. Studies have shown that ETV6 is deleted in 25% of
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PCa and is involved in tumor development and proliferation as an oncogene [27]. One of the
most common forms of alterations in PCa is a loss of chromosome 8p encoding NKX3.1, a
transcription factor suppressing cell growth in PT [28]. In this patient, NKX3.1 loss was
observed in 73% (16/22), 94% (16/17), and 50% (16/32) of MTCs, BMTP, and PTTPs,
respectively. Other observed gene deletions important for PCa initiation and progression
include MEEKZ1, KRAS, and BCL2. Amplifications of the MET tyrosine kinase, BRAF
threonine/serine kinase, and the methyltransferase and transcription suppressor EZH2 were
also observed across MTCs, BMTP, and PTTP.

Comparison of PTTP, BMA, and BMTP CNAs across sample types enabled construction of
a phylogenetic tree demonstrating heterogeneity as well as common patterns of CNAs
between tumor cells in prostate and bone marrow (figure 6). Clones of tumor cells can be
divided into three groups: clonal cells consisting of PCa hallmark genomic alterations
residing in the PT (clone 1), tumor cells with a minimal number of CNAs (clone 2), and
tumor cells similar to clone 1 and with additional CNAs residing only in the bone marrow
(clone 3).

Amplification of chromosome 10p and loss of chromosome 16p distinguish two subclones
contained in clone 3. Within the primary and MTCs additional sub-clonal populations were
identified: a subclone of cells with a deletion in chromosome 2, a subclone with focal
deletions in chromosome 5, a subclone with an amplification in chromosome 9, and a
subclone with a deletion in chromosome 16. This heatmap also demonstrates the
development of subclones just within prostate cells and those exclusive to the metastatic site.
CNAs only in BM (MTCs and BMTP) included a deletion in chromosome 1 and
amplifications in chromosomes 4, 10, and 14. An alteration unique to PTTP included the
deletion in chromosome 4.

A single dominant clone was identified in all three compartments (BMA, BMTP, and PTTP)
and was traced back to a few cells (9/32) in the primary tumor (figure 7). Based on genomic
profiles, these cells did not share all of the CNAs of the clonal BM population (figure 6). At
its origin in the primary tumor, the clonal population included losses in chromosomes 8p,
10, 11q, and 14q. MTCs in the BM descending from this clone gained additional alterations
such as amplifications in 4q, 10q, and 14q as well as losses in 1p and 17p. In addition,
MTCs from the BM aspirate gained additional alterations seen in the BM biopsy, such as
gain in 10p. These changes can be tracked from PT to BMT. Further examination revealed
subclones in the PTTP cells that have developed independently; for example, cells in PTTP
with a gain in chromosome 9q were not found in the BM cells. Similarly, subclones in
MTCs with a loss in chromosome 16p were observed that were not otherwise found in
BMTP cells.

The HD-SCA genomic analysis extends beyond rare cells. Plasma was isolated from both
PB and BMA for CNA analysis of cfDNA. Analysis of cfDNA from PB plasma finds shared
genomic alterations of cfDNA with both MTCs and BMTP (figure 8). A detailed analysis
revealed that the PB plasma profile is more closely related to tumor cells in the MTC than
the BMTP sample. Deletions in chromosomes 1, 6, 10, 11, and 14 as well as amplifications
in chromosomes 4, 8, and 10 in PB ctDNA matched with those found in the clonal

Converg Sci Phys Oncol. Author manuscript; available in PMC 2020 July 15.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Malihi et al.

Page 9

population (figure 8). For ctDNA from BMA, CNA comparison revealed features present in
both BMTP and MTCs. Such features included deletions in chromosomes 6 and
amplifications in chromosomes 8, 10, and 11. Using in-house software, the fraction of tumor
DNA to normal DNA in plasma can be estimated by comparing the amplitude of
amplification and deletions of cfDNA to those observed in a single tumor cell where the
gains and losses fall in integer steps. PB cfDNA consisted of 75% (3:1 ratio of tumor:
normal) ctDNA whereas BMA cfDNA consisted of 50% ctDNA (1:1 ratio of tumor:
normal). Thus, the data demonstrate that analysis of cfDNA in the liquid biopsy enables
detection of genomic alterations that are present in both primary and metastatic tissue.

Targeted proteomics reveals origin of cells in BM

To generate single-cell targeted proteomic data we selected MTCs, PTTP, and BMTP tissue
imprints for analysis. We have previously validated a panel of 21 protein markers including a
comprehensive leukocyte, epithelial, endothelial, and prostate protein panel for analysis
(table 2). A total of 13 MTCs immobilized on a glass slide, 12 BMTP tissue imprints, and 19
PTTP tissue imprints were stained and laser ablated for analysis. Each region of interest was
scanned for ablation by the Fluidigm Hyperion Imaging System using a highly focused,
pulsed laser that atomizes and ionizes a 1 zm? region and the resulting ions are introduced
into the inductively coupled plasma time-of-flight mass spectrometer [18, 29, 30]. The ion
count for each pulse is reconstructed into a 1 zm?2 images, and ion count for each protein is
scored. The scores for each single MTC as well as BMTP and PTTP tissue imprints are
demonstrated as a heatmap in figure 9(a).

Targeted proteomics of MTCs, BMTP, and PTTP revealed co-expression of epithelial
cellular adhesion molecule (EpCAM), PSA, and prostate specific membrane antigen
(PSMA) in a majority of cells. E-Cadherin was expressed in 23% (3/13), 67% (8/12), and
100% (19/19) of MTCs, BMTP, and PTTP, respectively. CK8/18 was expressed in 38%
(5/13), 100% (12/12), and 84% (16/19) of MTCs, BMTP, and PTTP, respectively. Evaluation
of these markers in MTCs, PTTP, and BMTP revealed epithelial and prostatic cellular origin
consistent with luminal PCa. Expression level of PSA and PSMA varied both within and
between tissue sections. Expression of EpCAM, PSA, and PSMA was consistent across all 3
sample types, but expression of CK8/18 and E-Cadherin was mainly observed in BMTP and
PTTP. Such observation may be due to microenvironmental pressures. Once MTCs reach
their final destination in the bone marrow, that new microenvironment may lead to higher
expression of CK8/18 and E-Cadherin. Examination of EpCAM also revealed higher
expression in PTTP than BMTP, suggesting that once MTCs have established a BM
metastasis, moderate EpCAM expression may be sufficient [31].

The prostate consists of both epithelial and stromal cells where the stromal cells express
mesenchymal markers such as Vimentin [32]. We observed a mix of stromal and epithelial
cells in some of the PTTP sections as seen by both EpCAM and Vimentin expression in
different parts of the tissue (figure 9(b)). Expansion of our proteomic panel to include
proteins such as NKX3.1, ERG, ATM, PTEN, and other markers could help further stratify
the subclones of tumor cells. Heterogeneity of protein expression between each cell or cell
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cluster was visible even within each sample type in the same patient, revealing the power of
single-cell data to study variability.

Conclusion

Assessment of liquid and solid biopsies from a patient with de novo polymetastatic PCa
using single-cell technology revealed tumor heterogeneity, protein expression variability,
and genomic clonality at the intra and inter-biopsy level. Such high-content extraction is
feasible with a single cell biology research workflow that preserves morphology and
molecular integrity following preservation of cells, identification, and enumeration. This
preservation and maintenance of identity through the workflow enables genomic and
proteomic analysis using CNA and protein expression, which can be correlated through the
morphology. A detailed study of the dominant clonal population revealed modifications such
as amplifications in NCOA2 and MYC and deletions in ETV6, PTEN, and TP53, among
others. Genomic clonality was demonstrated both within and between each biopsy source
(MTCs, BMTP, and PTTP). Tumor heterogeneity via protein expression has also been
demonstrated in this patient. Proteomic analysis data shows heterogeneity in expression level
of EpCAM, PSA, and PSMA within and across all three sample types.

Deletions in genes such as BRCA1, BRCA2, CDK2, and MLH1 revealed dysfunction in the
DNA repair pathway. Many of these genes are candidate targets for therapeutics, and prior
knowledge of such gene alterations may be relevant when it comes to choosing the optimal
combination therapy. For other therapeutic targets such as PTEN and MYC, having
knowledge of both genomic and proteomic status of these genes may lead to optimal
combination therapy and personalized medicine for each patient.

We also identified specific gene alterations that are found only in BM while some are shared
across all three compartments (BMA, BMTP, PTTP). Similar to Klein et a/, our results show
that once cells leave the primary tumor and enter the circulation and BM, they acquire
independent alterations [33]. Using our single-cell analysis, we were able to demonstrate the
same independent evolution in MTCs and BMTP. Such details can be revealed through
single-cell study approaches where non-dominant molecular features are detected rather than
masked by the dominant population, as is the case in bulk sampling. Information on such
detailed features of each compartment (PT versus BM) may influence therapeutic
recommendations in the future.

We used liguid biopsy as a source for both cellular and acellular tumor associated
components. PB and BMA ctDNA analysis revealed a CNA profile similar to that of the
dominant clonal population in BMT. CfFDNA analysis has the potential for evaluation and
close monitoring of tumor evolution and progression of the dominant clone when CTCs
and/or MTCs are not available for analysis.

Cell lineage of MTCs and BMTP cells can be traced back to the primary tumor based on
their genomic profile [34, 35]. Interestingly, we observed genomic heterogeneity not only
between but also within each compartment. Detailed evaluation of individual CNAs revealed
the rise of several small sub-clonal populations within each compartment, demonstrating
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independent evolution at each site. Tumor lineage of the dominant clonal population
revealed that this population started in PT, gained additional alterations as a MTC, and
evolved with additional genomic modifications once metastasized. This lineage resulted in a
vast genomic diversity with sub-clonal populations within each compartment in this patient
case study.

In conclusion, these results demonstrate the high content characterization that can be
obtained using the HD-SCA workflow for profiling of liquid and solid biopsies. Using
previously published data as validation, BMA was shown to be a feasible and applicable
approach and provides additional opportunities for analysis in advanced PCa [5]. BMAs are
easier and more cost-effective to obtain compared to image-guided biopsies and can be
collected repeatedly during treatment cycles and progression. Longitudinal sampling and
assessment provides critical insights into treatment response and allow monitoring of disease
progression. Using morphology to integrate genomics and proteomics of single cells
throughout the workflow maintains the single cell identity of CTCs, MTCs, and cells
isolated from solid tissues. This viable, longitudinal approach has the potential to support
treatment decisions throughout the disease course, an important precision medicine
objective. Future studies include comprehensive investigation of a broader cohort of both
treatment-naive organ-confined PCa patients as well as additional metastatic cases to further
characterize the biology of metastatic tumors.
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Figurel.
HD-SCA platform for morphoproteogenomic profiling of liquid biopsy. PB and BMA

samples are initially spun down for plasma extraction. Next, they undergo red blood cell
lysis before plating approximately 3 million nucleated cells on each slide. Prepared slides
are stored at —80 °C until needed for fluorescent antibody staining. Stained slides are first
morphometrically profiled using automated digital microscopy at 10 x magnification,
followed by classification by a technical analyst. Identified tumor cells are then re-imaged at
40 x magnification and proceed for genomic CNA or targeted protein analysis via imaging
mass cytometry.
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(a) Single cell and cfDNA genomic preparation for next-generation sequencing and CNA
analysis. Single cells are extracted from slides with a robotic micromanipulator prior to
whole genome amplification and DNA purification followed by Illumina DNA library
preparation for sequencing. CfDNA is extracted from plasma and Illumina DNA libraries are
constructed similarly to single cells. CNA profiles are created using the human genome as
reference where copy number is calculated then displayed as the ratio to the median. (b)
Targeted proteomic analysis via IMC. Slides previously labeled with fluorescent antibodies
are stained with 21 metal-conjugated antibodies. Regions of interest are laser ablated with
plasma ionization and ions are detection using Cytometry by Time of Flight (CyTOF)
technology. Rasterized images are generated from ion count data, and protein expression on
tumor cells are scored for expression levels.
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Figure 3.
IHC staining of FFPE PT from diagnostic PNBX and BMT from bone marrow biopsy. IHC

staining for AR and PSA were performed on both PT and BMT samples. Samples were
imaged using a light microscope at 10 and 20x objective. Staining results were reported as
positive or negative for each marker.
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Figure 4.
(a) MTC enumeration in BMA. Total counts are reflected by cluster group size. The y~axis

reflects the number of cells within each cluster group and the x-axis reflects each cluster
group category including single cells, cluster of 2 cells, cluster of 3-5 cells, cluster of 6-10
cells, and clusters of 11 and more cells. Overall, 3673 cells mI~1 were detected in BMA. (b)
AR expression heterogeneity in MTCs. Each row shows both composite and individual
DAPI, CK, CD45, and AR channel for each cell. DAPI is shown in blue, CK in red, AR in
white, and CD45 in green. AR expression was located in the nucleus in both single cells and
cell clusters despite differences in expression levels. Other single cells or cell clusters had no
AR at all, showing heterogeneity in MTCs.
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(a) Confocal images of MTCs. Nuclear localization and heterogeneity of AR expression are
shown in three different clusters of MTCs. DAPI is shown in blue, CK in red, AR in white,
and CD45 in green. Some clusters were entirely AR-positive or AR-negative while others
presented mixed expression within the cluster. (b) Morphometric analysis of MTCs in BMA.
A wide range of nuclear area, nuclear circularity, CK intensity SDOM, and AR intensity
SDOM was displayed, highlighting the ability to detect tumor heterogeneity through
morphometric measurements. The distribution of cells is shown along the y~axis for nuclear
area, nuclear circularity, CK intensity SDOM, and AR intensity SDOM.
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Heatmap and phylogenic tree of CNAs across the entire population of cells from MTC,
PTTP, and BMTP. Sample type and clones are identified using color key. Three clones were
identified: clone 1 consisting of prostate cells with hallmark alterations, clone 2 with few
CNAs, and clone 3 of bone marrow specimens with additional alterations from that of clone
1. Key genes such as MYC, NCOA2, PTEN, and TP53 are highlighted by chromosome

location across clone and sample type.
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Figure7.

Cell lineage of dominant clone starting from the primary tumor. Cells in the bone marrow
gained additional alterations, such as losses in chromosomes 1 and 17 as well as
amplifications in 4q, 10q, and 14q as they evolved from PT. A subpopulation within the
MTC was distinguished by the addition of a loss in 16p, and BMTP cell exhibited a 10p
gain. Deviations from the original dominant population are highlighted with amplifications
in red and deletions in blue. Through this analysis, the lineage of the cancer cells can be
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tracked from PT to MTCs to BMT. DAPI is shown in blue, CK in red, AR in white, and
CD45 in green.
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Figure8.

CNA profile comparison of PB and BMA ctDNA to MTCs and BMTP cells. Genomic
alterations in cfDNA analysis match CNA of domianant clonal poplation in BMTP and
MTCs. Common amplifications across profile types are highlighted in red while common
deletions are shown in blue.
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Figure9.
(@) Four-level scoring heatmap for IMC analysis of single MTC and tissue imprints of

BMTP and PTTP. Each protein is scored by ion count, and the LOD is determined by a
signal-to-noise (S/N) ratio = 3 or a standard deviation of the mean (SDOM) above 3.3. For
each marker, below the LOD is a 0, above the LOD isa 1, a S/N ratio between 7 and 20 or
SDOM > 6 isa 2, and a S/N ratio above 20 or SDOM above 12 is a 3. (b) Composite images
comparing fluorescent imaging to IMC analysis of all three sample types. The first panel on
the left shows fluorescent images with DAPI in blue, CK in red, and CD45 in green. All
subsequent panels are IMC-generated composite images showing DAPI in blue followed by
two different markers in red and green. EpCAM confirmed epithelial character of most of
the cells while PSA and PSMA verified the prostatic source of the samples. Vimentin (VIM)
expression in regions of PTTP highlighted the stromal cells of the prostate.
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