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Abstract. In engineering industry, control of manufactured parts is usually done on a coordinate measuring
machine (CMM), a sensor mounted at the end of the machine probes a set of points on the surface to be
inspected. Data processing is performed subsequently using software, and the result of this measurement
process either validates or not the conformity of the part. Measurement uncertainty is a crucial parameter
for making the right decisions, and not taking into account this parameter can, therefore, sometimes lead to
aberrant decisions. The determination of the uncertainty measurement on CMM is a complex task for the
variety of influencing factors. Through this study, we aim to check if the uncertainty propagation model
developed according to the guide to the expression of uncertainty in measurement (GUM) approach is
valid, we present here a comparison of the GUM and Monte Carlo methods. This comparison is made to
estimate a flatness deviation of a surface belonging to an industrial part and the uncertainty associated to

the measurement result.

Keywords: CMM uncertainty, flatness uncertainty, GUM uncertainty, Monte Carlo method

1 Introduction

In mechanical industry, control of manufactured parts is
usually done by a coordinate measuring machine (CMM),
with a sensor mounted at the end of the machine. A set of
data points are palpated on the surface to be inspected;
software processing of the data sets to estimate the flatness
default of this element. The result of this measurement
process either validates or not the conformity of the part.
Measurement uncertainty is a critical parameter to make
the right decisions. Therefore, not taking into account this
setting can sometimes lead to aberrant decisions. The es-
timation of measurement uncertainty is essential for high
quality part production and the determination of this pa-
rameter in a CMM is a complex task, given the diversity
of influences. Many studies have focused on the estima-
tion of uncertainty associated with the measurement re-
sult. Sladek presents in reference [1] a method of estimat-
ing the measurement uncertainty by Monte Carlo method
based on the model of the virtual machine. Wen proposes
in reference [2] an evaluation process and verification of
flatness related to the GPS standard, taking into account
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the associated uncertainty. Flatness error is calculated us-
ing a mathematical model based on a genetic algorithm.
Forbes presents in reference [3] the various approaches for
estimating measurement uncertainties, and demonstrates
that the GUM method and Monte Carlo method pro-
vide approximate solutions to Bayesian method. Balsamo
et al. [4] evaluates the uncertainty of CMM through Monte
Carlo simulations. Kruth [5] presents a method for esti-
mating the uncertainty of measurement on a CMM and
the Monte Carlo simulation shows that the sample size
taken from a surface is a factor that influences the mea-
surement uncertainty. Cui et al. [6], present the evaluation
datum by using both the least squares method and the
genetic optimization algorithm. Their computation un-
certainties to flatness and roundness were compared with
each other using the sample data from a coordinate mea-
surement. Cox et al. [7], define the GUM as an approxima-
tive method for the evaluation of uncertainty and explain
that a Monte Carlo method is an effective and versatile
tool for determining the PDF for the measurands. This
method provides a consistent Bayesian approach to the
evaluation of uncertainty. Yang et al. [8], estimate the un-
certainty of task-specific laser tracker measurements by
using the GUM and the Monte Carlo method, a case
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Fig. 1. Flatness deviation.

study involving the uncertainty estimation of a cylindric-
ity measurement process was illustrated. The results in-
dicate that the Monte Carlo method is a practical tool
for applying the principle of propagation of distributions
and does not depend on the assumptions and limitations
required by the law of propagation of uncertainties. Diaz
et al. [9], have shown that a data processing algorithm can
contribute significantly to the total measurement error of
a CMM.

All the methods proposed, treat the estimation of mea-
surement uncertainty of CMM, these studies assume that
the coordinates of the measured points are not affected
with error, which is not true on a CMM. They also es-
timate the uncertainty measurement by one or the other
method.

In this paper, we present a comparative study between
two methods for estimating the measurement uncertainty
associated to the flatness error. The first is based on the
GUM approach defined in the guideline [10], a model is
developed according to this approach, which takes into
account the uncertainty coordinate’s data points, while
the second is a numerical method of Monte Carlo (MCM)
defined in Supplement 1 of the GUM [11].

In this article, we have also presented a method to
calculate how the uncertainty coordinate’s data points are
propagated through to uncertainties associated with the
parameters describing the fitted surface.

2 Mathematical modeling of the flatness
of a surface

Flatness is defined in ISO 1101 [12], as the minimum dis-
tance, between two parallel planes P1 and P2 containing
all sampled points (see Fig. 1).

From data sets of points, taken on a mechanical part in
CMM, the software associated with the machine, assesses
a substitute feature of the measured surface by applying
the least squares or minimax criteria; the parameters of
the associated feature are used in a calculation step, to
estimate the flatness error.

77 represents the direction of the normal vector, to the
substitute feature (plane in our case), M and m are the
two extreme points of the measured points in this direc-
tion. This is shown in Figure 2.
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The flatness error, can be estimated from the
expression:
dp = | Mm. il (1)
T — T Ny
dp = 1| Ym —Ym Ny
Zm — ZM n,

= [(®m — 20)ne + (Ym — Yar)ny + (2m — 201)002] -
(2)

The parameters estimation of the substitute plan, is made
according to the model shown in Figure 3; the model is
based on the orthogonal distance regression (ODR) [13]
and provides, the parameter of the substitute feature and
the associated uncertainties. This estimation, takes into
account the uncertainties of the coordinate’s data points.
A method is developed in reference [14], which gives more
details about the algorithm and the adopted approach.
We have given in the Appendix an overview of the method
used (Fig. 3).

2.1 Standard uncertainty on the coordinates of points

The uncertainty of a point acquisition is not generally con-
stant and depends on the position of the measured point.
The evaluation of this uncertainty requires repeatability
and reproducibility tests which are complicated proce-
dures and demand a good knowledge of the machine. Some
simplifications can be made initially; one of the relations
commonly used is illustrated by the following form [15]:

V@ ; G.IF -

(3]

where “a” and “b” are constants, and “k” the coverage
factor defined by the law of the selected distribution.
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This standard uncertainty is defined for each axis of the
machine. By making the assumption that the distribution
of these errors follows a normal law with null average and
o = u as the standard deviation, one will have o, as the
standard deviation of the distribution along axis x, o, for
axis y and o, for axis z. This is shown in Figure 4.

The weighting is introduced to compensate for the
case where the measuring accuracy is not the same for
all points. This is especially the case in a CMM, since the
uncertainty in the coordinates depends on the value read
on the rules of the machine.

For each measured point of coordinate (z;, s, ;)T one
applies a weighting w;. This weighting is in the form w; =
= . The number « is used to represent the importance of
almeasuring point in relation to another. In this case one
will take @ = 1 which means that all the measured points
have an equal importance.

For each observation 7, there will be a matrix of order
weighting (3, 3) given as follows:

A 00
0 7 0 (4)
0 0 =%

3 Propagation of uncertainty models

Y = f(X;) is a function of several variables, and X, is
defined as random variables with X as a mean value and
o, as standard deviation. The output Y has Y as a mean
value and o, as standard deviation. The determination of
uncertainty propagation mechanism is to seek the estima-
tor Y and the variance V(Y); this can be illustrated by
Figure 5.
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Among the different approaches for the mechanism of
uncertainty propagation, we can cite.

— The law of propagation of uncertainty GUM.
— The Monte Carlo method.

3.1 The law of propagation of uncertainty GUM

This law is based on a Taylor expansion of the function
Y = f(X) in the first order. The variance of the output
Y is expressed by the following formula:

X COV(Xi,Xj). (5)

This law is defined in the Guide to the Expression of Un-
certainty in Measurement [10]. It allows us to estimate the
variance of the output Y from the knowledge of variance
of the input variables Xj.

3.1.1 Generalized model propagation

This is the generalization of the equation (5) for sev-
eral output variables Y. For a vector function Y =
(X1, X2, X5,...,X,), we have the following;:

x cov(X;, X;)

kK of o
;Z <6Xi>x—u <a—‘Xj)X—M cov(X;, X;)

j=1
=JnJt,
where
-—u = X represents the estimator of vector
X(X1,Xo,...,X,)

— J is the Jacobian matrix,

MV C(Y) represents the variance-covariance matrix of

vector Y,

— {2 represents the matrix of variance covariance of pa-
rameters n, m, and M. This matrix is given below:
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and

var(ng) cov(ng,ny) cov(ng,n.)
[n7] = | cov(ng, ng)

var(ny) cov(ny,n.) [. (6)

cov(n,,ng) cov(n,,n,) var(n,)
This general law of uncertainty propagation, can be writ-
ten in the following condensed form:

MVC(Y)=JJT. (7)

This formulation, will be subsequently adopted to ex-
press the uncertainty propagation, from the parameters
of the substitute feature to the flatness error. The model
based on this formulation is described in detail in refer-
ences [14,16]. The inputs and outputs of model are shown
in Figure 6.

3.2 Monte Carlo method

The Monte Carlo method, is a general method, used to
estimate the uncertainty propagation. This approach, can
be used in many situations, where the GUM uncertainty
framework is difficult or infeasible to apply, such as those
in which the models are very complicated. The partial
derivatives of the model are difficult to obtain.

The MCM reconstitute artificially a random phe-
nomenon, by simulating a fictitious sample given from
the input variables. We must, therefore, define the prob-
ability densities, of each input variable to be propagated,
to obtain the probability density function of the output
variable.

This method, can serve as a validation approach, for
the law of propagation of uncertainty, by making a com-
parison of results.

3.3 Validation of the GUM approach by Monte Carlo
simulation

The proposed approach by the Supplement 1 of the
GUM [11] on numerical methods has the following ob-
jective: determining whether the coverage intervals ob-
tained by the GUM uncertainty framework and MCM are
in agreement with a numerical tolerance. This document,
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describes a procedure to valid the GUM as follows:

— Apply the GUM uncertainty framework; the result of
GUM propagation uncertainty is in the form y £+ U (y).

— Apply the adaptive Monte Carlo procedure; the Monte
Carlo simulation generates a distribution with y as the
mean value and u(y) as standard deviation.

For comparison:

— Form a numerical tolerance ¢ associated with u(y). We
express the degree of approximation in the form:

£ = (1/2)107 (8)

— Compare the coverage intervals obtained by the
GUM uncertainty framework and MCM to determine,
whether the required number of correct decimal digits
in the coverage interval provided by the GUM uncer-
tainty framework has been obtained. Specifically, de-
termine the following quantities:

- dlow = |y - U(y) - ylow|7
— dhigh = |y + U(Y) — Ynigh| 9)

where yiow and Ynigh are two limits of the Monte Carlo
distribution calculated for a 95% confidence interval.
Then if both dlow and dhigh, are no larger than £, the
comparison is favourable and the GUM uncertainty
framework, has been validated in this instance (see
Fig. 7).

This validation process will be used to verify in Section 4.3
the developed algorithm based on the GUM uncertainty.

4 Application in dimensional metrology

The surface of an industrial part was measured in 24
points. The surface to be controlled is placed on the table
of the machine with an approximate direction carried by
the vertical axis z of the machine. The data sets points
are given in Table 1.

By applying the least squares criterion, the estimate
of the substitute plan gives us the results in Table 2.

Where A (x4, ya, 24)" is a point of the substitute fea-
ture and 7 (ng, ny, n.)" the normal vector to this surface.
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Table 1. Data points.

x y z x Y z
24.921 —29.972 —0.002 25.006 —10.003  —0.008
—20.204 —30.002 —0.004 —24.764 0.008 —0.006
—15.013 —30.011 —0.004 —20.111 0.002 —0.005
—-9.999 —-30.018 —0.004 20.000 —0.004  —0.009
—4.962  —30.027 —0.006 —9.985 30.001 —0.006
—0.025 —30.034 —0.005 —4.984 30.000 —0.007
4.992 —30.006 —0.006 —0.034 30.003 —0.007
10.041 —30.000 —0.005 5.017 29.997 —0.006
—20.218  —9.995  —0.008 9.978 30.001 —0.005
—15.006 —10.002 —0.007 14.996 30.000 —0.007
15.015 —-9.998  —0.009 19.972 30.002 —0.004
19.978 —10.002  —0.009 25.031 29.999 —0.003

Table 2. Parameters of substitute plane.
Plane Parameters +Uncertainties

24 points in mm in pm

TA —0.00833 0.754

YA —2.08583 0.754

zZA —-0.00592 0.754

Ng 0.0000377561 0.070

Ty 0.0000019717 0.046

n. 0.9999999929 0.377

Table 3. The two extreme points to the substitute feature.

x y z
m  -20.218 -9.995 -0.0080
M 25.0310 29.999 -0.0030

4.1 Result of the law of propagation of uncertainty
GUM

From the expression of the flatness error given by equa-
tion (7), we estimated the variance associated to the flat-
ness error by V(dp) = J§2JT. The Jacobian matrix is
given as follows:

J_ Odp % ddp Odp Odp Odp Odp Odp ddp

= 10
Ong Ony On, Oxy, Oy Ozm Oxnr Oyn Oz (10)
with

dp o odp_ o 0dp_
on, =Tm M5 8ny =Ym —YM; on. = Zm M3
8dp_n.6dp_n.6dp_n.

8]}m o 8ym B ' 8Zm -

Odp Odp odp
Oxm " Oym " 0zpm " (11)

The two extremes points’ m and M from the data sets
along the normal direction n™ are given in Table 3.

The results obtained, by using the law of propagation
of uncertainty, are given in Table 4.

The choice of the measured number points and the po-
sition of these points on the test surface greatly affect the
flatness and associated uncertainty. A study, developed by

Table 4. Flatness and associated uncertainty obtained by the
GUM method.

Flatness error +Associated
dp (in mm) uncertainty (in mm)
0.00678728 0.00485937

Jalid et al. [16], was used to analyze the influence of the
sample size on flatness estimation and the associated un-
certainty. The uncertainty is estimated using the GUM
method and the results of this study can be summarized
as follows:

— If the number of points is higher, the representation of
the surface is better.

— The number of points slightly increases the flatness er-
ror, which converges to a value that seems to be mostly
probable.

— The number of points reduces the flatness uncer-
tainty and therefore a reduced number of points over-
estimates the uncertainty, which may lead to an erro-
neous conformity decision.

4.2 Simulation by Monte Carlo method
4.2.1 Data for the Monte Carlo simulation

The function to simulate represents the flatness error (dp)
and expressed by

dp = [(xm — 20m)ne + (Ym — Ynr)y + (2m — 20)102] -

This function dp, depends on random variables
(xm; Yms Zms TN YM s ZM 5 Tz 5 Thy s nz)- The hypothe-
sis of a normal distribution of each variable is re-
tained. Each distribution has p as mean value and
o = Expanded uncertainty/ k as a standard deviation,
with k& = 2.

The two extreme points, m and M are given in Ta-
ble 3 in the previous paragraph, while the normal n™
(nx,ny,nz)" with the respective uncertainties obtained,
are given in Table 2.
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Table 5. Results given by GUM and Monte carlo methods.

Result of the law of propagation of

uncertainty (GUM) with k = 2 (95%)

Result of Monte Carlo method
with & = 2 (95%)

Flatness error y = 0.00678728 mm

Flatness error = 0.00678929 mm

Oflatness = 0.00242968 mm

u(y) = 0.00261165 mm

U = 2.08atness = 0.00485937 mm

Yiow = 0.00156599 mm
Ynigh = 0.01201260 mm

« 10" Simulation de Mante Carlo:Histogramme de |a distribution du défaut de forme
3 T T T T T T T T

25

______________

Lo

0.002 0.004 0.006= 0.008 0.01 0.014 0.014 0.016 0.018 0.02

y_low y_mean y_high

Fig. 8. Distribution of the Monte Carlo method.

4.2.2 Generation of random variables

To generate random variables, distributed according to
a normal distribution, we used the Box Muller algo-
rithm [17]. A program written in Matlab generates the
variables (Zm, Ym, Zm, Tar, Y, 200, Na, Ny, M2)  belonging
to a normal distribution of each variable. We allowed the
simulation according to the Monte Carlo simulation. The
obtained results are plotted in Figure 8.
We retain the following values:

— The output
0.00678929 mm.

— The standard deviation of the distribution ystq
0.00261165 mm.

— The yiow and ynign values are given 95% (k = 2):

average value called ¥ymean

Yow = 0.00156599
Ynigh = 0.01201260.

4.3 Comparison of the results
given by the two methods

Bellow, we give the procedure for validation of the GUM
approach, by Monte Carlo simulation (see Fig. 9).

From the data points and the coordinates uncertain-
ties, we estimated the parameters and uncertainties of the
substitute surface. The model giving the flatness deviation
is used in both the GUM and Monte Carlo to determine

the result and associated uncertainty. The compraison is
performed to verify compliance with the criterion defined
in the GUM supplement 1.

The results given by the two methods are summarized
in Table 5.

It is noted that, the estimated value of the flatness
error obtained by the two methods is almost the same
(difference of about 107%) and the difference between the
confidence intervals is very low. To confirm, the validity
of the results found by the GUM uncertainty propagation,
the intervals |y — U(y) — Yiow| and |y + U (y) — Ynign| must
be less than €.

The numerical tolerance is £ = 0.5 x 10~* and the two
intervals are calculated as follows:

ly — U(y) — Yiow| = |0.00678728 — 0.00485937
—0.00156599)|

=0.361 x107° < 0.5 x 107*
[y + U(y) — Ynign| = [0.00678728 + 0.00485937
—0.01201260|

=0.365x 107° < 0.5 x 10~

After calculation, we find out that, the criteria described
by the GUM Supplement 1, are respected in both cases. In
this respect, we can conclude that the developed model,
based on the law of propagation of uncertainty is valid.

5 Conclusion

The proposed article presents, a comparative study of the
methods for estimating the uncertainty of measurement
applied to a flatness error. We began by presenting the
different methods of propagation of uncertainties, namely
the GUM approach and Monte Carlo simulation. From
a set of points belonging to a surface test on CMM, the
estimation of the parameters of the substitute plane and
the associated uncertainties, are performed based on the
orthogonal distance regression algorithm (ODR). More-
over, we estimated the flatness error and the associated
uncertainty, according to the GUM and the Monte Carlo
methods. The results found by the two methods are then
compared. We can retain that the flatness deviation found
by the two methods is nearly identical (gap of about 10~°)
and that the difference between the two obtained confi-
dence intervals is very low. The criterion described by the
GUM Supplement 1 is respected. Thus, we can conclude
that the developed model, based on the law of propagation
of uncertainty is valid.
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! |

Comparison results :
ly— U(Y)' ylow| < Fv ?
[y+U(Y)- Yhign I< £?

& is a numerical tolerance

Fig. 9. Procedure for validation of the GUM approach by Monte Carlo simulation.

Appendix

The parameters of the substitute geometry are estimated
by using the orthogonal distance regression (ODR) model.
The solution is iteratively found using a trust region
Levenberg-Marquardt method.

A method is developed in reference [14], which gives
more details about the algorithm as well as the adopted
approach.

ODRPACK finds the solution of an implicit orthogo-
nal distance regression problem using the classic quadratic
penalty function method. The penalty function is given as
follows:

n

P(3,6m0) = > (re lfiCws + 6 )7 [l + 053 9)]

=1
+ [5?(4)&(2‘] ),

with penalty term a

Zm [fi(x; + 64 ﬁ)]T [fi(zi + 655 0)]

and penalty parameter 7.

A sequence of unconstrained minimization problems
given as follows: ming 5 P(3, d; ) is then solved for a se-
quence of values of the penalty parameter r; tending to
00. The iterations are stopped when any one of the three
stopping criteria are met. The weighted sum of the squared
observation errors is sufficiently small, or the change in the
estimated values of 8 and ¢ is sufficiently small. The third
stopping criterion is a limit on the number of iterations.

The algorithm of this method is implemented in ODR-
PACK, Boggs et al. [13].
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