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Abstract. The paper deals with the propagation of axial symmetric cylindrical surface waves

in a cylindrical bore through a homogeneous isotropic thermoelastic diffusive medium of infinite

extent. The three theories of thermoelasticity namely, Coupled Thermoelasticity (CT), Lord and

Shulman (L-S) and Green and Lindsay (G-L) are used to study the problem. The frequency

equations, connecting the phase velocity with wave number, radius of bore and other material

parameters, for empty and liquid filled bore are derived. The numerical results obtained have been

illustrated graphically to understand the behaviour of phase velocity and attenuation coefficient

versus wave number of a wave. A particular case of interest has also been deduced from the

present investigation.
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1 Introduction

The classical theory of thermoelasticity (Coupled Thermoelasticity, (Biot,

1956)) is based on the Fourier’s heat conduction equation. The Fourier’s heat

conduction theory assumes that the thermal disturbances propagate at infinite

speed. This prediction is unrealistic from the physical point of view, particu-

larly in situations like those involving very short transient durations, sudden
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high heat flux exposures, and at very low temperatures near the absolute zero.

During the last three decades, non-classical theories of thermoelasticity so called

‘Generalized thermoelasticity’ have been developed in order to remove the

paradox of physically impossible phenomenon of infinite velocity of thermal

signals in the conventional coupled thermoelasticity. Lord-Shulman (1967)

theory and Green-Lindsay (1972) theory are important generalized theories of

thermoelasticity that become centre of interest of recent research in this area. In

Lord-Shulman (1967) theory, a flux rate term into the Fourier’s law of heat con-

duction is incorporated (with one relaxation time) and formulated a generalized

theory admitting finite speed for thermal signals. Green-Lindsay (1972) theory

called as temperature rate-dependent is included among the constitutive vari-

ables with two constants that act as two relaxation times, which does not violate

the classical Fourier law of heat conduction when the body under consideration

has a center of symmetry. The Lord-Shulman (1967) theory of generalized ther-

moelasticity was further extended to homogeneous anisotropic heat conducting

materials recommended by Dhaliwal and Sherief (1980). Chanderashekhariah

(1986) refers to this wave like thermal disturbance as second sound. A survey

article of various representative theories in the range of generalized thermoelas-

ticity have been brought out by Hetnarski and Ignaczak (1999).

These days, oil companies are interested in the process of thermodiffusion for

more efficient extraction of oil from oil deposits. The spontaneous movement

of the particles from high concentration region to the low concentration region

is defined as diffusion and it occurs in response to a concentration gradient

expressed as the change in the concentration due to change in position. The

thermodiffusion in elastic solids is due to coupling of fields of temperature,

mass diffusion and that of strain in addition to heat and mass exchange with

environment.

Nowacki (1974a, b, c, 1976) developed the theory of thermoelastic diffu-

sion by using coupled termoelastic model. Dudziak and Kowalski (1989) and

Olesiak and Pyryev (1995), respectively, discussed the theory of thermodif-

fusion and coupled quasi-stationary problems of thermal diffusion in an elas-

tic layer. They studied the influence of cross effects arising from the cou-

pling of the fields of temperature, mass diffusion and strain due to which the
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thermal excitation results in additional mass concentration and that generates

additional fields of temperature.

Sherief et al. (2004, 2005) developed the generalized theory of thermoelastic

diffusion with one relaxation time, which allows the finite speeds of propa-

gation of waves. Singh (2005, 2006) discussed the reflection phenomenon of

waves from free surface of an elastic solid with generalized thermodiffusion.

Aouadi (2006a, b, 2007a, b, 2008) investigated the different types of problems

in thrmoelastic diffusion. Sharma (2007, 2008) discussed the plane harmonic

generalized thermoelastic diffusive waves and elasto-thermodiffusive surface

waves in heat conducting solids. Recently Kumar et al. (2008) derived the basic

equations for generalized thermoelastic diffusion for GL-theory and discussed

the propagation of Lamb waves.

The problem of propagation of waves along a cylindrical bore embedded in

an infinite isotropic thermoelastic diffusive medium is of great importance due

to its manifold applications. In practice, the cylindrical bore may be realized

by a borehole or a mine gallery. Borehole studies are of great help in explo-

ration seismology, e.g. in the exploration of oils, gases and hydrocarbons etc.

In oil industry, acoustic borehole logging is commonly practiced. A borehole

is drilled in a potential hydrocarbon reservoir and then probed with an acoustic

tool. Almost all oil companies relay on seismic interpretation for selecting the

sites for exploratory oil wells. Seismic wave methods also have higher accuracy,

higher resolution and are more economic as compared to drilling which is costly

and time consuming.

Tomar and Kumar (1999), Deswal, Tomar and Kumar (2000) and Kumar,

Deswal and Choudhary (2001) studied problems of wave propagation through

cylindrical bore in micropolar elastic medium with stretch and micropolar

elastic medium.

In the present paper we have discussed the propagation of surface waves near

a cylindrical bore hole through homogeneous isotropic thermoelastic diffusive

medium of infinite extent. Frequency equations relating the phase velocity and

wave number are derived for empty as well as for liquid filled bore. The disper-

sion curves giving the phase velocity and attenuation coefficient as functions of

wave number are plotted for empty as well as for liquid filled bore.
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2 Basic equations

The basic governing equations of homogeneous isotropic thermoelastic diffu-

sive medium in the absence of body forces, heat sources and diffusive mass

sources are

(λ + μ)∇(∇.
−→u ) + μ∇2−→u − β1∇(T + τ1Ṫ ) − β2∇(C + τ 1Ċ) = ρü (1)

K∇2T − ρCE(Ṫ + τ0T̈ ) = β1T0(ė + ετ0ë) + a∗T0(Ċ + γ C̈) (2)

Dβ2∇
2e + Da∗∇2(T + τ1Ṫ ) + (Ċ + ετ 0C̈) − Db∇2(C + τ 1Ċ) = 0 (3)

where −→u is the displacement vector, T is the temperature change, T0 is the refer-

ence temperature assumed to be such that |T/T0| << 1, C is the concentration,

CE is the specific heat at constant strain, K is thermal conductivity, e is dilatation,

ρ is the density assumed to be independent of time, λ, μ are Lame’s parameters,

β1 = (3λ + 2μ)αt and β2 = (3λ + 2μ)αc,

where αt is the coefficient of linear thermal expansion and αc is the coeffi-

cient of linear diffusive expansion, a∗, b are respectively, the coefficients de-

scribing the measure of thermoelastic diffusion effects and diffusion effects, D

is thermoelastic diffusion constant, τ 0, τ 1 are diffusion relaxation times with

τ 1 ≥ τ0 ≥ 0 and τ0, τ1 are thermal relaxation times with τ1 ≥ τ0 ≥ 0.

Here ε = τ0 = τ 0 = τ1 = τ 1 = γ = 0 for Coupled Thermolastiicity (CT),

τ1 = τ 1 = 0, ε = 1, γ = τ0 for Lord-Shulman (L-S) theory and ε = 0, γ = τ 0

for Green-Lindsay (G-L) theory.

3 Problem formulation and its solution

We consider a cylindrical bore of radius ‘a’ having circular cross section in

a generalized thermoelastic medium of infinite extent. We use cylindrical po-

lar coordinates (r, θ, z) with z-axis pointing upwards along axis of cylinder.

The propagation of axial symmetric waves is considered near the bore hole and

these waves are the analogue of Rayleigh waves propagating at a traction free

boundary of a generalized thermoelastic medium. This section deals with the
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situation when bore does not contain any fluid. We are discussing a two di-

mensional problem with symmetry about z-axis, so all partial derivatives with

respect to the variable θ would be zero. Therefore, we take −→u = (ur , 0, uz)

and ∂/∂θ = 0, so that the field equations and constitutive relations in cylindrical

polar coordinates reduce to

(λ + μ)
∂e

∂r
+ μ

(
∇2ur −

ur

r2

)
− β1

(
1 + τ1

∂

∂t

)
∂T

∂r

− β2

(
1 + τ 1 ∂

∂t

)
∂C

∂r
= ρ

∂2ur

∂t2
, (4)

(λ + μ)
∂e

∂z
+ μ∇2uz − β1

(
1 + τ1

∂

∂t

)
∂T

∂z

− β2

(
1 + τ 1 ∂

∂t

)
∂C

∂z
= ρ

∂2uz

∂t2
, (5)

K∇2T − ρCE

(
1 + τ0

∂

∂ t

)
∂T

∂t
= β1T0

(
1 + ετ0

∂

∂ t

)
∂e

∂t

+ a∗T0

(
1 + γ

∂

∂t

)
∂C

∂t
, (6)

Dβ2∇
2e + Da∗

(
1 + τ1

∂

∂t

)
∇2T +

(
1 + ετ 0 ∂

∂t

)
Ċ

− Db
(

1 + τ 1 ∂

∂t

)
∇2C = 0, (7)

where

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2

Let us now introduce the dimensionless quantities defined by

{
r ′, z′, u′

r , u′
z

}
=

1

a

{
r, z, ur , uz

}
,

{
t ′, τ ′

0, τ
′
1, τ

0′
, τ 1′}

=
c1

a

{
t, τ0, τ1, τ

0, τ 1
}
,

t ′
rr =

trr

β1T0
, t ′

r z =
trr

β1T0
, T ′ =

β1T

ρc2
1

, C ′ =
β2C

ρc2
1

, c2
1 =

λ + 2μ

ρ
. (8)
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Introducing the quantities defined above, into the equations (4)-(7), after sup-

pressing the dashes, the field equations reduce to
(

∂2ur

∂r2
+

1

r

∂ur

∂r
−

ur

r2

)
+ δ1

∂2ur

∂z2
+ δ2

∂2uz

∂r∂z
− τ 1

T
∂T

∂r
− τ 1

C
∂C

∂r
=

∂2ur

∂t2
, (9)

δ1

(
∂2uz

∂r2
+

1

r

∂uz

∂r

)
+

∂2uz

∂z2
+ δ2

(
∂2ur

∂r∂z
+

1

r

∂ur

∂z

)

− τ 1
T
∂T

∂z
− τ 1

C
∂C

∂z
=

∂2uz

∂t2
, (10)

∇2T − ζ1τ
0
T
∂T

∂t
− ζ2τ

0
e
∂e

∂t
− ζ3τ

0
C

∂C

∂t
= 0, (11)

ς1∇
2e + ς2τ

1
T ∇2T − ς3τ

1
C∇2C + τ 0

G
∂C

∂t
= 0. (12)

δ1 =
μ

λ + 2μ
, δ2 =

λ + μ

λ + 2μ
, ζ1 =

ρCE c1a

K
, ζ2 =

β2
1 aT0

Kρc1
,

ζ3 =
aa∗c1β1T0

Kβ2
, ς1 =

Dβ2
2

aρc3
1

, ς2 =
Da∗β2

aβ1c1
, ς3 =

Db

ac1
,

τ 1
T = 1 + τ1

∂

∂t
, τ 1

C = 1 + τ 1 ∂

∂t
, τ 0

T = 1 + τ0
∂

∂t
,

τ 0
C = 1 + γ

∂

∂t
, τ 0

e = 1 + ετ0
∂

∂t
, τ 0

G = 1 + ετ 0 ∂

∂t
. (13)

Assuming the solutions of equations (9)-(12) for the waves propagating in the

z-direction as
{
ur , uz, T, C

}
=

{
b1 K1(mr), b2 K0(mr), b3 K0(mr), b4 K0(mr)

}
eı(kz−ωt), (14)

where K0(), K1() are respectively the modified Bessel functions of order zero

and one and of second kind ω(= kc) is the angular velocity of the wave, k is the

wave number and c is the phase velocity.

Substituting (14) in equations (9)-(12), we obtain four homogeneous linear

equations in four unknowns b1, b2, b3 and b4 which for the non-trivial solution

yields

m8 + Am6 + Bm4 + Cm2 + D = 0, (15)
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where

A =
b∗

2 − a∗
1 b∗

1ω
2 + a∗

2b∗
5 + τ 11

T b∗
8 − τ 11

C b∗
11

b∗
1 − δ1ς1τ

11
C

,

B =
b∗

3 − a∗
1b∗

2ω
2 + a∗

2b∗
6 + τ 11

T b∗
9 − τ 11

C b∗
12

b∗
1 − δ1ς1τ

11
C

,

C =
b∗

4 − a∗
1b∗

3ω
2 + a∗

2b∗
7 + τ 11

T b∗
10 − τ 11

C b∗
13

b∗
1 − δ1ς1τ

11
C

,

D =
−a∗

1 b∗
4ω

2

b∗
1 − δ1ς1τ

11
C

,

b∗
1 = δ1ς3τ

11
C ,

b∗
2 = ς3τ

11
C

(
δ1

(
a6 − 2k2

)
+ a3ω

2
)
+ δ1ω

(
ıτ 10

G + a7ς2τ
11
T

)
+ k2τ 11

C ,

b∗
3 = ς3τ

11
C

(
a6

(
a3ω

2 − δ1k2
)
+ k2

(
δ1k2 − 2a3ω

2
))

+ ıτ 10
G ω

(
δ1

(
a6 − k2

)
+ a3ω

2
)
− ω3

(
(
a3a7 + ıa5τ

11
C

)
ς2τ

11
T

+

(
a7ς2τ

11
T + ıτ 10

G

)
δ1

c2
+

(
ıa5ς3τ

11
C − a7ς1

)
τ 11

T

c

)
+ k2τ 11

C

(
a6 − 2k2

)
,

b∗
4 = a3ω

2
(
k2 − a6

)(
k2ς3τ

11
C − ıωτ 10

G

)
+

ω5

c3
τ 11

T

(
a7

(
a3ς2c − ς1

)

+ ıa5τ
11
C

(
ς2 − ς3

))
+

ω4

c
a5τ

11
T τ 10

G + k4τ 11
C

(
k2 − a6

)
,

b∗
5 = τ 11

C

(
ıkς1 − a2ς3

)
,

b∗
6 = −τ 11

C ς3
(
a2

(
a6 − 2k2

)
+ ıka4τ

11
T

)
− ıωa2τ

10
G + ωa7τ

11
T

(
a2ς2 + ıkς1

)

+ ıkτ 11
C

((
a6 − 2k2

)
ς1 − a4ς2τ

11
T

)
,

b∗
7 = a2

(
a6

(
k2τ 11

C ς3 − ıωτ 10
G

)
+ k2

(
ıωτ 10

G − k2ς3τ
11
C − a7ως2τ

11
T

))

+ ık3τ 11
C

(
a4

(
ς3 + ς2

)
τ 11

T +
(
k2 − a6

)
ς1

)
+ ωkτ 11

T

(
a4ωτ 10

G − ıa7k2ς1
)
,

b∗
8 = a4δ1ς3τ

11
C ,
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b∗
9 = ς3ω

2τ 11
C

(
a2a5 + a4

(
a3 +

δ1

c2

))
+ k2ς1

(
a4τ

11
C + ıca2a7

)

+ ıωδ1a4τ
10
G + ως1

(
a7 − ıωka5τ

11
C

)
,

b∗
10 = a2a5ω

2
(
ıωτ 10

G − k2ς3τ
11
C

)
− ω2k2

( ıa2a7ς1

c
+ a3a4ς3τ

11
C

)

+ ω3

(
ıa3a4τ

10
G − ς1

(
ka4ς1τ

11
C

c3
+

a7

c2
−

ık2a5ς1τ
11
C

c

))
,

b∗
11 = ς1

(
− ıka2 + ω2a3 + δ1

(
a6 − 2k2

))
− a4δ1ς2τ

11
T ,

b∗
12 = a2

(
ıkς1

(
2k2 − a6

)
− a5ω

2ς2τ
11
T

)
+ a4ω

2ς2τ
11
T

(
δ1

c2
− a3

)

+ a3ω
2ς1

(
a6 − 2k2

)
+ ς1k2

(
δ1

(
k2 − a6

)
+ τ 11

T

(
a4 − ıωca5

))
,

b∗
13 = k2a2

(
a5ω

2ς2τ
11
T + ıkς1

(
a6 − k2

))
+ ω2k2a3

(
a4ς2τ

11
T + ς1

(
k2 − a6

))

+ k4ς1τ
11
T

(
ıωca5 − a4

)
.

a1 =
δ1

c2
− 1, a2 = ıkδ2, a3 = 1 −

1

c2
, a4 = ıωζ2τ

10
e ,

a5 =
ζ2τ

10
e

c
, a6 = ıωζ1τ

10
T , a7 = −ıζ3τ

10
C ,

τ 11
T = 1 − ıωτ 1

T , τ 11
C = 1 − ıωτ 1

T , τ 10
T = 1 − ıωτ 0

T ,

τ 10
C = 1 − ıωτ 0

T , τ 10
e = 1 − ıωτ 0

e , τ 10
G = 1 − ıωτ 0

G .

The roots of equation (15) are complex in general. These roots are denoted by

m2
i , i = 1, . . . , 4. Corresponding to these roots, the waves with amplitudes

b1, b2, b3 and b4 are obtained which are designated by b1(i), b2(i), b3(i) and

b4(i). These are given by

b1(i) =
41(i)

4(i)
, b2(i) = −

42(i)

4(i)
, b3(i) =

43(i)

4(i)
, b4(i) = −

44(i)

4(i)
,

where

41(i) = b∗
1m6

i + b∗
2m4

i + b∗
3m2

i + b∗
4,

42(i) = b∗
5m5

i + b∗
6m3

i + b∗
7mi ,
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43(i) = b∗
8m5

i + b∗
9m3

i + b∗
10mi ,

44(i) = δ1ς1m7
i + b∗

11m5
i + b∗

12m3
i + b∗

13mi

and

4(i) =
√

(41(i))2 + (42(i))2 + (43(i))2 + (44(i))2. (16)

Thus the appropriate solutions of (9)-(12), corresponding to the wave

propagating along z-axis are

ur =
4∑

i=1

f (i)b1(i)K1(mir)ei(kz−ωt),

uz =
4∑

i=1

f (i)b2(i)K0(mir)ei(kz−ωt),

T =
4∑

i=1

f (i)b3(i)K1(mir)ei(kz−ωt),

C =
4∑

i=1

f (i)b4(i)K0(mir)ei(kz−ωt), (17)

where f (i) are relative excitation factors.

3.1 Derivation of frequency equation

At the surface r = 1, the appropriate boundary conditions are

trr = (λ + 2μ)
∂ur

∂r
+ λ

(
ur

r
+

∂uz

∂z

)
− τ 1

T T − τ 1
C = 0,

tr z = μ

(
∂ur

∂z
+

∂uz

∂r

)
= 0,

∂ T

∂ r
= 0,

∂ C

∂ r
= 0, (18)
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Figure 1 – Geometry of the investigated problem.

where trr , tr z are the radial and tangential stress components. Making use of

(17), into the boundary conditions (18), after employing dimensionless quan-

tities defined by (8), we obtain four homogeneous equations in four unknowns

f (1), f (2), f (3) and f (4). The elimination of these unknowns gives the
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frequency equation

H11
′ − H21

′′ + H31
′′′ − H41

′′′′ = 0, (19)

where

1′ = P2(S3 M4 − S4 M3) − P3(S2 M4 − S4 M2) + P4(S2 M3 − S3 M2),

1′′ = P1(S3 M4 − S4 M3) − P3(S1 M4 − S4 M1) + P4(S1 M3 − S3 M1),

1′′′ = P1(S2 M4 − S4 M2) − P2(S1 M4 − M1S4) + P4(S1 M2 − S2 M1),

1′′′′ = P1(S2 M3 − M2S3) − P2(S1 M3 − S3 M1) + P3(S1 M2 − M1S2).

Hi =
{

− b1(i)mi + ık(δ2 − δ1)b2(i) − τ 11
T b3(i) − τ 11

C b4(i)
}

×K0(mi ) + {(δ2 − δ1)b2(i) − b1(i)}K1(mi ),

Pi = {ıkb1(i) − b2(i)mi }K1(mi ),

Si = −mi b3(i)K1(i), (20)

Mi = −mi b4(i)K1(i),

Equation (19) determines the dimensionless phase velocity c of axial symmetric

surface waves as a function of dimensionless wave number k and other ther-

momicropolar parameters of the medium.

4 Propagation of waves in a cylindrical bore filled with liquid

Here, we consider the same problem as in the previous section with the addi-

tional constraint that the borehole is filled with homogeneous inviscid liquid.

The field equation and constitutive relations for homogeneous inviscid liquid

are

λL∇
(
∇ ∙ −→u L

)
= ρL ∂2−→u L

∂t2
, (21)

and

t L
i j = λL

(
∇ ∙ −→u L

)
δi j , (22)
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where −→u L is the displacement vector, λL and ρL are respectively the bulk

modulus and density of liquid. Other symbols have their usual meaning as

defined earlier.

For two dimensional problem, we take

−→u L =
(
uL

r , 0, uL
z

)
, and

∂

∂θ
= 0. (23)

The dimensionless variables defined in this case, in addition to those defined

by (8), are
{
uL ′

r , uL ′

z

}
=

1

a

{
uL

r , uL
z

}
, t L ′

rr =
t L
rr

β1T0
. (24)

We relate the dimensionless displacement components and potential function

φL as

uL
r =

∂φL

∂r
, uL

z =
∂φL

∂z
. (25)

Making use of equation (25) in equations (21) and (22), with the help of

equations (23) and (24), after suppressing the primes yields

∂2φL

∂ r2
+

1

r

∂ φL

∂ r
+

∂2φL

∂ z2
= δ∗2

1
∂2φL

∂ t2
, (26)

and

t L
rr =

λL

β1T0
∇2φL , (27)

where

δ∗
1 =

c1

cL
, cL =

√
λL

ρL
. (28)

The solution of (26) corresponding to surface waves may be written as

φL = f (0)I0(m0r)eı(kz−ω t), (29)

After some simplification, the pressure and radial displacement of liquid are

given by

pL = −t L
rr =

λL

β1T0
δ2

1ω
2 f (0)I0(m0r)eı(kz−ω t), (30)

uL
r = m0 f (0)I1(m0r)eı(kz−ω t), (31)
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where I0() and I1() are modified Bessel functions of first kind and of order zero

and one respectively.

4.1 Derivation of frequency equation

The appropriate boundary conditions for the present situation are

trr = −pL , tr z = 0,
∂ T

∂ r
= 0,

∂ C

∂ r
= 0, ur = uL

r , at r = 1. (32)

Making use of (29)-(31) and (17), in the boundary conditions (32), we obtain

five homogeneous equations in five unknowns f (0), f (1), f (2), f (3) and f (4).

The condition for the non-trivial solution yields the required frequency equa-

tion as

δ2δ∗2
1 ω2 I0(m0)

{
− b1(1)K1(m1)1

′ + b1(2)K1(m2)1
′′

−b1(3)K1(m3)1
′′′ + b1(4)K1(m4)1

′′′′
}

−m0 I1(m0){H11
′ − H21

′′ + H31
′′′ − H41

′′′′} = 0. (33)

5 Particular case

The frequency equations in the absence of diffusion effect reduce to

(I) For empty bore:

1∗ = 0, (34)

(II) For liquid filled bore:

δ2δ∗2
1 ω2 I0(m0)

{
b1(1)K1(m1)

(
P2S3 − S2 P3

)
b1(2)K1(m2)

(
P1S3 − S1 P3

)

−b1(3)K1(m3)
(
P1S2 − S1 P2

)}
− m0 I1(m0)1

∗ = 0, (35)

where

1∗ = H1(P2S3 − S2 P3) − H2(P1S3 − S1 P3) + H3(P1S2 − S1 P2),

and the expressions for Hi , Pi and Si can be obtained from (20), substituting

b4(i) = 0 and m2
i (i = 1, . . . , 3) are the roots of

m6 + A∗m4 + B∗m2 + C∗ = 0, (36)
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where

A∗ =
−1

δ1

{
δ1

(
k2 + a1ω

2 + a4τ
11
T − a6

)
+ a2

2 − a3ω
2
}
,

B∗ =
−1

δ1

{((
δ1a1 − a3

)
ω2 + a2

2

)(
a6 − k2

)
+ τ 11

T

(
ık

(
a2a4 + a5ω

2
)

− ω2
(
a2a5 + a3a4

))
+ a1a3ω

4
}
,

C∗ =
−1

δ1

{
a1a3ω

4
(
a6 − k2

)
− ıka1a5ω

4τ 11
T

}
.

6 Numerical results and discussion

For numerical computation, we take the material of copper as an isotropic ma-
terial. The physical data for a single crystal of copper material is given by

λ = 7.76 × 1010 K gm−1s−2, μ = 3.86 × 1010 K gm−1s−2, T0 = 0.293 × 103 K ,

CE = .3831×103 J K g−1 K −1, αt = 1.78×10−5 K −1, αc = 1.98×10−4m3 K g−1,

a∗ = 1.2 × 104m2s−2 K −1, b = 9 × 105 K g−1m5s−2, D = 1.65 × 10−8 K gsm−3,

ρ = 8.954 × 103 K gm−3, K = 0.383 × 103W m−1 K −1.

The non-dimensional radius of bore and relaxation times are taken as

a = 10, τ0 = 0.2, τ1 = 0.6, τ 0 = 0.03, τ 1 = 0.07.

Equations (19) and (33) determine the phase velocity c of the axial symmet-

ric surface waves as a function of wave number k, radius of bore and various

physical parameters in complex form. If we write

1

c
=

1

v
+ ı

q

ω
, (37)

then wave number k = R + ıq , where R = ω/v and q are real numbers. This

shows that v is propagation speed and q is attenuation coefficient of the surface

waves.

The graphical representation for the variation of non dimensional phase

velocity and attenuation coefficient of wave propagation in context of CT, L-

S, and G-L theories of thermoelastic diffusion for various values of R, i.e, the

real part of wave number in Figures 2 and 3 respectively. In these figures, the
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Figure 2 – Variation of phase velocity w.r.t. wave number.

Figure 3 – Variation of attenuation coefficient w.r.t. wave number.
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curves with solid lines, small dashed lines and long dashed lines without central

symbol, represent variations in context of CT, L-S and G-L theories respectively

in case of empty bore whereas the corresponding lines with central symbols

represent the same situation in case of liquid filled bore.

6.1 Phase velocity

It is observed from Figure 2 that the phase velocity increases at initial value

wave number and ultimately decreases to attain vanishingly small constant value

for both empty as well as for liquid filled bore and for all the three theories of

thermoelastic diffusion described above. It is observed that the behavior and

trend of variation of the curves for C-T and L-S theories is almost same except

for the difference in magnitude values. For C-T and L-S theories, the values of

phase velocity for empty bore are higher than those for liquid filled bore. Also

for empty as well as for liquid filled bore the values in case of CT theory are

slightly higher than those in case of L-S theory. Within the range R < 1.0, the

values of phase for CT and L-S theories are higher than those for G-L theory

whereas the behavior is reversed after this range for both empty as well as liquid

filled bore. For G-L theory, the phase velocity increases to its peak value within

the range R < 1.4 and decreases to vanishingly small values after this range. For

R < 1.1, the phase velocity for liquid filled bore is higher than that for empty

bore, but after this range the behavior is reversed for both CT and L-S theories

of thermoelastic diffusion.

6.2 Attenuation coefficient

The values of attenuation coefficient for CT and L-S theories first increase to

peak values and then decrease for both empty as well as liquid filled bore and

ultimately increase after the range R > 1.84, whereas for G-L theory, the atten-

uation co-efficient shows an oscillating behavior. For both CT and L-S theories

and within the range R < 1.3, the values of attenuation coefficient for empty

bore are higher than those for liquid filled bore however the behavior is reversed

after this range. For G-L theory, the values of attenuation coefficient are higher

for empty bore as compared to those for liquid filled bore. For empty bore and

R < 1.84, the values of attenuation coefficient for CT and L-S theories are
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higher than those for G-L theory but the behavior is reversed after this range.

For liquid filled bore and within the range R < 1.0, the curves show a mixed

behavior, for 1.0 < R < 1.84 the values for both CT and L-S theories are than

those for G-L theory for both empty as well as liquid filled bore and the behavior

is reversed after this range.

7 Conclusion

The propagation of waves in a homogeneous isotropic thermoelastic diffusive

medium has been investigated after deriving the secular equations (19) and

(33). The modified Bessel functions with complex arguments have been used

to study the problem. An appreciable effect of relaxation times on the phase

velocity as well as attenuation coefficient is observed. It is observed that the

phase velocity for all the theories first increases and then decrease to vanishingly

small constant values. The values of attenuation coefficient first increase then

decrease and ultimately increase except for G-L theory for which the attenua-

tion coefficient show an oscillating behavior within the whole range.
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