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Abstract

A heuristic that has emerged in the area of importance sampling
is that the changes of measure used to prove large deviation lower
bounds give good performance when used for importance sampling.
Recent work, however, has suggested that the heuristic is incorrect in
many situations. The perspective put forth in the present paper is that
large deviation theory suggests many changes of measure, and that not
all are suitable for importance sampling. In the setting of Cramér�s
Theorem, the traditional interpretation of the heuristic suggests a Þxed
change of distribution on the underlying independent and identically
distributed summands. In contrast, we consider importance sampling
schemes where the exponential change of measure is adaptive, in the
sense that it depends on the historical empirical mean. The existence
of asymptotically optimal schemes within this class is demonstrated.
The result indicates that an adaptive change of measure, rather than
a static change of measure, is what the large deviations analysis truly
suggests. The proofs utilize a control-theoretic approach to large de-
viations, which naturally leads to the construction of asymptotically
optimal adaptive schemes in terms of a limit Bellman equation. Nu-
merical examples contrasting the adaptive and standard schemes are
presented, as well as an interpretation of their different performances
in terms of differential games.
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1 Introduction and Background

A basic technique for the approximation of probabilities and functionals
of probability measures is Monte Carlo simulation. Let X be a random
variable taking values in the real numbers. To estimate EX, a sequence
of independent and identically distributed (iid) copies X0, X1, . . . of X are
generated, and the estimate for EX based on the Þrst K samples is just the
sample mean: QK

.
= (X0 + X1 + · · · + XK−1)/K. Since the convergence

of the estimate is based on the law of large numbers, a standard rate of
convergence can be deÞned in terms of the variance var[X0]. Indeed, the
variance of QK (assuming that var[X0] exists) is just var[X0]/K.

In cases where the variance is large, and especially if it is large compared
to EX , it may take a large number of samples before the variance of the
estimator is acceptably small relative to EX. This is a common occurrence
when estimating rare events, and also when estimating functionals whose
behavior is largely determined by rare events. In such cases, one may be
tempted to use some form of importance sampling to reduce the variance,
and hence speed up the computation by requiring fewer samples. Since
importance sampling is most effective when dealing with rare events, it is
perhaps not surprising the literature on importance sampling and its relation
to large deviations is extensive.

The basic formulae of importance sampling are as follows. Suppose that
X has distribution θ, and consider an alternative sampling distribution τ .
It is required that θ be absolutely continuous with respect to τ , so that the
Radon-Nikodym derivative f(x)

.
= (dθ/dτ)(x) exists. Iid samples X̄0, X̄1, . . .

with distribution τ are generated, and the estimate

Q̄K
.
=
1

K

K−1X
k=0

X̄kf(X̄k)

is considered in lieu of QK . Since

EX̄kf(X̄k) =

Z
R
xf(x)τ(dx) =

Z
R
xθ(dx) = EX,

Q̄K is an unbiased estimate of EX , with a rate of convergence determined
by

var
£
X̄0f(X̄0)

¤
=

Z
R
x2f(x)θ(dx)−

·Z
R
xθ(dx)

¸2
.

The optimization of this quantity over all possible τ is inappropriate. For
example, suppose θ is supported on [0,∞), and θ(dx) = g(x) dx. Let
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m
.
= EX =

R∞
0 xθ(dx) and τ(dx)

.
= m−1xg(x) dx. Then θ is absolutely

continuous with respect to τ , with f(x) = m/x. Furthermore,

var
£
X̄0f(X̄0)

¤
=

Z
R
x2f(x)θ(dx)−m2 = 0.

However, such a distribution τ is of little use in practice since it requires
knowledge of m, the very thing we want to estimate! Instead of this uncon-
strained optimization, one typically seeks to minimize over parameterized
families of alternative sampling distributions.

When the distribution of X0 is connected to a large deviations problem,
certain sampling distributions are immediately suggested by the form of the
large deviations variational problem. In order to explain this connection we
specialize to the setting of Cramér�s Theorem, which will be used throughout
the rest of the paper. However, the conclusions we will draw on the relations
between importance sampling, large deviations and differential games hold
in much greater generality, and some of these generalizations will be pursued
elsewhere.

Let Y0, Y1, . . . be a sequence of iid Rd-valued random variables with dis-
tribution µ, and assume the moment generating function

R
Rd exphα, yiµ(dy)

is Þnite for all α ∈ Rd. Let Sn = Y0 + · · · + Yn−1. For Borel sets A ⊂ Rd,
Cramér�s Theorem is concerned with the large deviation approximation of
pn

.
= P {Sn/n ∈ A}. Let 1A(y) denote the function equal to 1 if y ∈ A

and zero otherwise. Suppose that for some Þxed value n we consider Monte
Carlo approximation for P {Sn/n ∈ A}. In terms of the notation introduced
previously, we have X = 1A(Sn/n), and straightforward Monte Carlo would
require the generation of many independent copies of X (i.e., of Sn), say
(X0, X1, . . . , XK−1). The rate of convergence of the naive estimator QK is
determined by

var[QK ] = (pn − p2n)/K2.

If pn → 0 as n → ∞, this variance approaches zero. However, the relative
error is

relative error
.
=
standard deviation of QK

mean of QK
=

p
pn − p2n
Kpn

.

Since
p
pn − p2n/pn → ∞, a large sample size (i.e., K) is required for the

estimator to achieve a reasonable relative error bound (at least when n is
large). In fact, if pn scales according to a large deviation principle then K
must grow exponentially in n if a bounded relative error is to be maintained.
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However, under the assumed condition on the moment generating func-
tion Sn/n satisÞes what is called a large deviation principle (LDP). DeÞne
the convex function

H(α)
.
= log

Z
Rd
exphα, yiµ(dy),α ∈ Rd, (1.1)

and its Legendre transform

L(β)
.
= sup
α∈Rd

[hα, βi−H(α)] , β ∈ Rd. (1.2)

It is well known that L is a nonnegative, proper, strictly convex function
[30], [13, Lemma 6.2.3], and that L(β) = 0 if and only if β =

R
Rd yµ(dy).

Suppose the set A has the property that

inf
β∈A◦

L(β) = inf
β∈Ā

L(β), (1.3)

where A◦ and Ā denote the interior and closure of A, respectively. Then
[39] we have the large deviation approximation

lim
n→∞

1

n
logP {Sn/n ∈ A} = − inf

β∈A
L(β).

Now the distribution of X is rather complicated, and so it makes sense to
consider the change of measure with respect to the underlying distribution
µ of the Yi instead. It is at this point that the large deviation theory
suggests a speciÞc alternative sampling distribution. To distinguish indices,
we henceforth reserve k to index the kth simulation in the Monte Carlo
scheme, and i and j for the index in the sum that deÞnes Sn. In addition, k
will appear as a superscript, and i and j as subscripts. Suppose that instead
generating Y ki according to µ, we generate iid sequences {Ȳ ki } according to
a distribution ν. Suppose that we further restrict to measures ν that are
related to µ by an exponential tilt, i.e., there is α ∈ Rd such that

ν(dy) = ehα,yiµ(dy)/Z(α), Z(α) = eH(α) =

Z
Rd
ehα,yiµ(dy).

We then form S̄kn/n = (Ȳ
k
0 + · · ·+ Ȳ kn−1)/n, so that 1{S̄kn/n∈A} plays the role

of X̄k above. It is convenient to Þrst express the Radon-Nikodym derivative
in terms of the iid (in j) variables Ȳ kj (rather than the complicated variable

S̄kn/n), and so we arrive at the estimator

1

K

K−1X
k=0

1{S̄kn/n∈A}
n−1Y
j=0

h
e−hα,Ȳ

k
j i+H(α)

i
=
1

K

K−1X
k=0

1{S̄kn/n∈A}e
n(−hα,S̄kn/ni+H(α)).
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It is not difficult to verify that this estimator is unbiased.
Recall that the rate of convergence of the estimator is determined by the

variance of the summands

var
h
1{S̄kn/n∈A}e

n(−hα,S̄kn/ni+H(α))
i
.

We temporarily drop k from the notation, and observe that to minimize the
variance (over α) it suffices to minimize the second moment

E
h
1{S̄n/n∈A}e

2n(−hα,S̄n/ni+H(α))
i
.

After calculating the moment generating function of ν and computing its
Legendre transform, one can verify via Cramér�s Theorem that S̄n/n also
satisÞes a LDP, but with L replaced by L̄(β) = L(β) + H(α) − hα,βi. A
formal application of Varadhan�s Theorem on the asymptotic evaluation of
integrals [13, Theorem 1.3.4] then gives the large n approximation

1

n
logE

h
1{S̄n/n∈A}e

2n(−hα,S̄n/ni+H(α))
i
→ − inf

β∈A
£
2hα, βi− 2H(α) + L̄(β)¤ .

We now substitute the expression for L̄ and optimize over α to obtain the
min/max problem

sup
α∈Rd

inf
β∈A

[hα,βi−H(α) + L(β)] .

According to the previous discussion, the supremizing α should identify an
asymptotically optimal sampling distribution among all changes of measure
of the prescribed form. If the conditions of the min/max theorem hold (e.g.,
if A is convex and bounded), then the sup and inf can be permuted, and we
Þnd that

sup
α∈Rd

inf
β∈A

[hα,βi−H(α) + L(β)] = inf
β∈A

Ã
sup
α∈Rd

[hα, βi−H(α)] + L(β)
!

= inf
β∈A

2L(β).

Furthermore, if β∗ is a solution to the problem infβ∈A L(β), then a suprem-
izing α∗ can be identiÞed as the conjugate dual of β∗, i.e., as a point that
maximizes [hα,β∗i−H(α)] (assuming that this maximum exists).

The identiÞcation of the optimizing α brings in a further interesting
connection with the theory of large deviations. In the traditional proof of
Cramér�s Theorem (as well as many other large deviation results), the lower

5



bound is proved by a change of measure argument, and the upper bound
by a somewhat involved application of Chebyshev�s inequality [39]. Our
interest is in the lower bound. Suppose that the rate function L has been
guessed (or that it has been suggested by an existing upper bound), and
that one wishes to estimate P {Sn/n ∈ A} from below. Then one considers
all exponential changes of measure on the underlying distribution µ which
shift the mean to β∗ ∈ A. By estimating the asymptotically dominant (as
n→∞) term in the Radon-Nikodym derivative, one can Þnd a lower bound
for each such change of measure, and then optimize to obtain the tightest
lower bound. Although we will not repeat the details of the proof here, it
turns out that the correct change of measure is also characterized as the
exponential tilt associated with a supremizing (or nearly supremizing) point
in α→ [hα, β∗i−H(α)].

Thus the asymptotically optimal change of measure that is used to prove
the large deviation lower bound formally coincides with the distribution
suggested by the preceding argument for use in importance sampling. This
formal connection has been made rigorous in certain circumstances, and
consequently given rise to the following heuristic: the change of measure
used to prove the large deviation lower bound should be a good (perhaps
nearly optimal) distribution to use for purposes of importance sampling. The
Þrst result of this type was given by Siegmund [37]. The basic idea was
subsequently investigated in many contexts, and a small selection of the
literally hundreds of papers on the topics is [1, 2, 3, 7, 8, 9, 11, 12, 14, 23,
25, 28, 29, 31, 32, 35]. Necessary and sufficient conditions under which a
prescribed scheme is asymptotically optimal are discussed in [10, 33, 34],
while [26] gives a survey of rare-event simulation.

However, more recent work has challenged the validity of the heuristic.
For example, in [24] it is asserted that if one uses the change of measure
suggested by large deviations, then in certain situations the corresponding
importance sampling scheme has very poor properties. Examples are given
to show that it can even perform worse than the standard Monte Carlo
method! A simple example given in [24] considers Cramér�s Theorem in one
dimension, with A = (−∞, a] ∪ [b,∞), and EY0 ∈ (a, b). Note that the set
A here is not convex, and so the application of the min/max theorem above
is no longer valid. Under these circumstances infβ∈A L(β) must be achieved
at a or b, and conditions are used to imply 0 < L(b) < L(a), so that the
optimal change of measure in the large deviation lower bound is one that
centers the mean under the new distribution on b. When one simulates un-
der this new distribution the overwhelming majority of the sample means
end close to b (for large n). There are, however, occasional �rogue� sample
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means S̄kn/n that end in the set (∞, a], and the indicator 1(−∞,a](S̄kn/n),
appropriately multiplied by the Radon-Nikodym derivative, appears in the
estimator. Unfortunately, it turns out that these Radon-Nikodym deriva-
tives are very large, and in fact large enough that even though the outcome
Skn/n ∈ (−∞, a] is very unlikely (exponentially small with exponent propor-
tional to n), the term

1{S̄kn/n∈(−∞,a]}e
n(−hα,S̄kn/ni+H(α))

dominates the variance as n → ∞. Indeed, the second moment of this
term alone could be (exponentially) larger than e−2nL(b) when n→∞. For
example (see [24] for more details), take µ ∼ N(1, 1) and −a = b > 1. We
have H(α) = α+α2/2, L(β) = (β− 1)2/2, infβ∈A L(β) = L(b) < L(a). The
change of measure will shift the mean to b, or equivalently α = α∗ = b− 1.
It is not difficult to verify that

− 1
n
logE

h
1{S̄kn/n∈(−∞,a]}e

2n(−hα,S̄kn/ni+H(α))
i

→ inf
β≤a

[hα∗, βi−H(α∗) + L(β)]
= −b2 + 2b+ 1.

This term is smaller than 2L(b) = b2 − 2b+ 1 if b > 2.
In spite of the examples of [24], one must examine the claims carefully

before concluding that large deviations has little to say in such situations.
The key issue, from our point of view, is our somewhat misleading use of
the word �the� in the phrase �the change of measure used to prove the
large deviation lower bound�. It turns out that there are many changes of
measure that can be used to prove the lower bound, and one must consider
this larger class if one hopes to identify importance sampling schemes that
work well in great generality. Observe that the change of measure used in
the large deviation lower bound treats all summands similarly, in that the
same shift of distribution from µ to ν is used for all Ȳ ki . However, one could
also consider shifts of the underlying distribution µ that dynamically adapt,
in that the measure used to generate Ȳ ki could depend on the outcomes
Ȳ kj , j = 0, . . . , i− 1. This distinction corresponds, in control terminology, to
the difference between �open-loop� and �feedback� controls. The early pa-
per [12] utilizes an adaptive importance sampling scheme to estimate certain
escape probabilities for a Markov chain, and proves asymptotic optimality
for a particular one-dimensional problem. However, the techniques used
are not broadly applicable. The paper [14] uses adaptive importance sam-
pling to estimate functionals of a small noise diffusion, though no proofs of
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optimality are given. The distinction between these two methods of impor-
tance sampling was articulated in Sadowsky [33], where he refers to adaptive
schemes as �sequential.�

There is an alternative approach to large deviations that is based on
stochastic control methodology in which both upper and lower bounds are
proved simultaneously. The use of stochastic control and logarithmic trans-
forms to prove large deviation type results goes back to Fleming [20], and has
been investigated in many different situations since then [13, 15, 18, 22, 36].
In this approach, the quantity of interest [e.g., −(logP{Sn/n ∈ A})/n in
Cramér�s Theorem] is represented as the minimal cost Un for a stochastic
control problem. The large deviation rate also has a representation as the
minimal cost U for a control problem, though in the case of Cramér�s The-
orem it is a deterministic control problem. The large deviation asymptotics
then correspond to the convergence of minimal costs: Un → U .

Because the limit control problem that deÞnes U is deterministic (at
least in the case of Cramér�s Theorem), the use of open loop controls as
�comparison controls� is acceptable for the purpose of proving Un → U . It is
for this reason that simple changes of measure can be used to prove the large
deviation lower bound in the traditional change of measure argument. In
other words, one can always Þnd a �nearly optimal� control from among the
class of open loop controls as n→∞. However, in analyzing the optimality
of importance sampling schemes we must study the asymptotics of a small
noise stochastic game, rather than a control problem. The connection with
the game is introduced in the next section, and further discussed in Sections
3.1 and 3.2. In the setting of stochastic games, and even for small noise
stochastic games, open loop controls are not �nearly optimal� except in
special circumstances. As a consequence, to come close to optimality in
a general situation one must consider importance sampling schemes that
adapt the sampling distribution in the course of simulating each trajectory
indexed by k.

The paper is organized as follows. In Section 2 we give the deÞni-
tion of asymptotic optimality, and show that adaptive importance sampling
schemes designed to minimize the second moment are asymptotically opti-
mal. Section 3 discusses an alternative formal PDE approach to the adaptive
scheme, and describes a method for the construction of a single asymptot-
ically optimal adaptive scheme. Two numerical examples are also included
in Section 3.3. Certain technical proofs are deferred to the Appendix to ease
exposition.
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2 Statement and Proof of the Main Result

Consider a probability space (Ω,F , P ) and a family of events {An} with

lim
n→∞

1

n
logP{An} = −γ,

for some γ ≥ 0. A general formulation of importance sampling for this
problem can be described as follows. In order to estimate P{An}, a generic
random variable Z̄n is constructed such that P{An} = EZ̄n. Independent
replications (Z̄0n, Z̄

1
n, . . . , Z̄

K−1
n ) of Z̄n are then generated, and we obtain an

estimator by averaging:

Q̄Kn
.
=
Z̄0n + Z̄

1
n + · · ·+ Z̄K−1n

K
.

The estimator is unbiased, i.e., EQ̄Kn = P{An}. The rate of convergence
associated with this estimator is determined by the variance of the sum-
mands, or equivalently, their second moment E[(Z̄0n)

2]. The smaller the
second moment, the faster the convergence, whence the smaller sample size
K required. However, it follows from Jensen�s inequality that

lim sup
n→∞

− 1
n
logE[(Z̄0n)

2] ≤ lim
n→∞−

1

n
log

³
EZ̄0n

´2
= 2γ.

The estimator Q̄Kn is said to be asymptotically optimal if the upper bound
is achieved, i.e., if

lim
n→∞−

1

n
logE[(Z̄0n)

2] = 2γ. (2.1)

In order to illustrate the main idea we will return, for the remainder of
the paper, to the setup of Cramér�s theorem.

Remark 2.1 Since the performance of the estimator Q̄Kn is completely de-
termined by the second moment of its generic, iid building block Z̄kn, we will
drop the superscript k hereafter. Note that n does not stand for sample size.
Also, unless noted otherwise, the integral sign will always denote an integral
over Rd.

Let a probability measure µ on Rd be given, and deÞne H and L by
equations (1.1) and (1.2), respectively. Let A ⊂ Rd be given. We wish to
estimate the probability pn

.
= P{Sn/n ∈ A}, and make use of the following

assumption.

Condition 2.1 H(α) <∞ for all α ∈ Rd, and equation (1.3) holds.
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Under this assumption,

lim
n→∞−

1

n
log pn = inf

β∈A◦
L(β) = inf

β∈Ā
L(β) = inf

β∈A
L(β). (2.2)

We consider a family of changes of measure which are related to µ
by an exponential tilt. To this end, we introduce the following control
problem. Let a collection of Borel measurable functions (controls) αn

.
=n

αnj (·), j = 0, 1, . . . , n− 1
o
be given. Then the state dynamics are governed

by

S̄nj =
j−1X
i=0

Ȳ ni , j = 0, 1, . . . , n− 1,

where Ȳ nj is conditionally distributed, given {Ȳ ni , i = 0, 1, . . . , j − 1}, ac-
cording to

υnj (dy) = exp
nD
αnj (S̄

n
j /n), y

E
−H

³
αnj (S̄

n
j /n)

´o
µ(dy).

In other words, the sampling distribution is allowed to depend on the his-
torical empirical mean. The estimator of pn = P{Sn/n ∈ A} is deÞned as
the average of independent replications of

X̄n
.
= 1{S̄nn/n∈A}e

Pn−1
j=0 (−hαnj (S̄nj /n),Ȳ nj i+H(αnj (S̄nj /n))).

Our goal is to minimize the second moment, hence the variance, of the
summands X̄n by judiciously choosing the control α

n. Thus we consider the
value function deÞned by

V n
.
= inf

αn
E[X̄2

n] = infαn
E

·
1{S̄nn/n∈A}e

Pn−1
j=0 (−2hαnj (S̄nj /n),Ȳ nj i+2H(αnj (S̄nj /n)))

¸
.

We also consider the log transform

W n = − 1
n
log V n. (2.3)

The following result asserts the asymptotic optimality (or near asymp-
totic optimality) of the dynamic change of measure deÞned by any minimiz-
ing sequence of controls (respectively, nearly minimizing sequence of con-
trols) in the deÞnition of V n. Of course, one would like to deÞne a change of
measure that does not explicitly depend on n. Such a change of measure is
naturally suggested by the deterministic control problem that characterizes
the limit of the V n, and we will remark further on this in Section 3.2.
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Theorem 2.1 Assume Condition 2.1, and deÞne W n by (2.3). Then

lim
n→∞W

n = 2 inf
β∈A

L(β).

The proof of the theorem calls for the following min/max lemma, which
is of independent interest. Recall that for a probability distribution γ on
Rd, the relative entropy R(γkµ) is deÞned by

R(γkµ) .=
Z
Rd
log

dγ

dµ
dγ

if γ ¿ µ, and R(γkµ) .=∞ if otherwise. Let

C .=
n
γ : γ is a probability distribution on Rd, and R(γkµ) <∞

o
.

The convexity of relative entropy in the Þrst argument [13, Lemma 1.4.3]
implies that C is a convex set.

Lemma 2.2 Suppose that f : Rd → R is a bounded measurable function.
Then

sup
α∈Rd

inf
γ∈C

·Z
f(y)γ(dy) +R(γkµ) +

Z
hα, yiγ(dy)−H(α)

¸
= inf
γ∈C

sup
α∈Rd

·Z
f(y)γ(dy) +R(γkµ) +

Z
hα, yiγ(dy)−H(α)

¸
.

The proof of this lemma is deferred to the Appendix.

Proof of Theorem 2.1. The unbiasedness of the estimator associated with
X̄n and Jensen�s inequality imply that

V n ≥ inf
αn

¡
EX̄n

¢2
= inf

αn
p2n = p

2
n.

Equation (2.2) and the last display then give

lim sup
n→∞

Wn ≤ lim
n→∞−

1

n
log p2n = 2 inf

β∈A
L(β).

It remains to show the reverse inequality

lim inf
n→∞ Wn ≥ 2 inf

β∈A
L(β).
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We will use the weak convergence approach as developed in [13]. To
analyze the asymptotics of W n, we represent it as the value function for a
stochastic control problem. To this end, we Þrst extend the state dynamics
so as to write down a dynamic programming equation (DPE). The �state
variable� will be the normalized quantity S̄ni /n. Abusing notation a bit, for
x ∈ Rd, i ∈ {0, . . . , n}, deÞne the state dynamics

S̄ni,j = nx+
j−1X
`=i

Ȳ ni,`, j = i, . . . , n.

Here Ȳ ni,j is conditionally distributed, given {Ȳ ni,`, ` = i, . . . , j−1}, according
to

υni,j(dy) = exp
nD
αnj (S̄

n
i,j/n), y

E
−H

³
αnj (S̄

n
i,j/n)

´o
µ(dy).

Similarly, deÞne

V n(x, i)
.
= inf

αn
E

·
1{S̄ni,n/n∈A}e

Pn−1
j=i (−2hαnj (S̄ni,j/n),Ȳ ni,ji+2H(αni,j(S̄ni,j/n)))

¸
(2.4)

and

Wn(x, i) = − 1
n
log V n(x, i). (2.5)

Note that the original case corresponds to x = 0 and i = 0, that is

V n = V n(0, 0), W n =W n(0, 0), S̄nn = S̄
n
0,n.

Also observe the terminal conditions

V n(x, n) = 1A(x), Wn(x, n) =∞ · 1A(x).

Since it is inconvenient to study the problem with an ∞ terminal con-
dition, we instead work with a molliÞed version of the control problem. Let
F : Rd → R be an arbitrary bounded and continuous function. Suppose
that V nF is deÞned as in (2.4), save that the indicator function 1{S̄ni,n/n∈A}
is replaced by exp{−2nF (S̄ni,n/n)}. Similarly deÞne

Wn
F (x, i)

.
= − 1

n
log V nF (x, i).

It is not difficult to see that

|W n
F (x, i)| ≤ 2kFk∞, e−2nkFk∞ ≤ V nF (x, i) ≤ e2nkFk∞ . (2.6)

12



Indeed, the Þrst inequality is implied by the second inequality, while the
latter is implied by

inf
αn
E

·
e
Pn−1

j=i (−2hαnj (S̄ni,j/n),Ȳ ni,ji+2H(αni,j(S̄ni,j/n)))
¸
= 1.

To see that this is true, Þrst consider the case αn ≡ 0. Since H(0) = 0, the
right hand side is bounded below by the left hand side. Next consider any
control sequence αn. By Jensen�s inequality

E

·
e
Pn−1

j=i (−2hαnj (S̄ni,j/n),Ȳ ni,ji+2H(αni,j(S̄ni,j/n)))
¸

≥ E

·
e
Pn−1

j=i (−hαnj (S̄ni,j/n),Ȳ ni,ji+H(αni,j(S̄ni,j/n)))
¸2

= 1.

Thus the left hand side is bounded below by the right hand side.
It follows from [5] that V nF satisÞes the Bellman equation

V nF (x, i) = inf
α

Z
e−2hα,yi+2H(α)V nF

µ
x+

1

n
y, i+ 1

¶
ehα,yi−H(α)µ(dy)

= inf
α

Z
e−hα,yi+H(α)V nF

µ
x+

1

n
y, i+ 1

¶
µ(dy),

together with the terminal condition V nF (x, n) = exp{−2nF (x)}. It follows
that

Wn
F (x, i) = −

1

n
log inf

α

Z
Rd
e−hα,yi+H(α)e−nW

n
F (x+

1
n
y,i+1)µ(dy),

and that Wn
F (x, n) = 2F (x). The functions V nF and Wn

F are both Borel-
measurable (see the Appendix for the proof).

The relative entropy representation for exponential integrals [13, Lemma
1.4.2] states that

− log
Z
e−f(x)µ(dx) = inf

γ∈C

·
R(γ kµ) +

Z
fdγ

¸
for all bounded measurable functions f . A direct application of this repre-
sentation to W n

F is not valid since the function y → hα, yi is not bounded.
Nonetheless, an extension to cover the types of unbounded functions we
must consider is possible, and a proof of this fact is given as Lemma 4.1 in
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the Appendix. Applying this extended version of the representation gives

W n
F (x, i) = sup

α∈Rd
inf
γ∈C

·Z
W n
F

µ
x+

1

n
y, i+ 1

¶
γ(dy)

+
1

n

µ
R(γ kµ) +

Z
hα, yi γ(dy)−H(α)

¶¸
. (2.7)

The last display shows that W n
F has an interpretation as the value function

for a small noise stochastic game. We will return to this point in Subsection
3.1. The functional on the right-hand side is concave with respect to α and
convex with respect to γ, and the sets Rd and C are both convex. Since
the set C is in general non-compact, the min/max theorem [38] cannot be
applied directly. However, Lemma 2.2 shows that the interchange of inf and
sup is still valid in this case. In other words,

Wn
F (x, i) = inf

γ∈C
sup
α∈Rd

·Z
W n
F

µ
x+

1

n
y, i+ 1

¶
γ(dy)

+
1

n

µ
R(γ kµ) +

Z
hα, yi γ(dy)−H(α)

¶¸
= inf

γ∈C

·Z
Wn
F

µ
x+

1

n
y, i+ 1

¶
γ(dy)

+
1

n

µ
R(γkµ) + L

µZ
yγ(dy)

¶¶¸
. (2.8)

Equation (2.8) implies that Wn
F (x, i) also has an interpretation as the mini-

mal cost of a stochastic control problem of the same general form as before.
To simplify the notation, we state the control problem only for the case
i = 0. The control problem will be deÞned on a probability space (�Ω, �F , �P ),
and �Ex will denote that the initial condition of the state process is x. An
admissible control is a sequence {γnj , j = 0, 1, . . . , n− 1}, with each γnj be a
stochastic kernel on Rd given Rd. Given an admissible control sequence, the
state dynamics are deÞned by �Sn0 = nx and

�Snj+1
.
= �Snj + �Y nj ,

where

�P
n
�Y nj ∈ dy | �Y ni , 0 ≤ i < j

o
= �P

n
�Y nj ∈ dy | �Snj /n

o
= γnj (dy | �Snj /n).

We then deÞne value function

vnF (x, 0)
.
= inf
{γnj }

�Ex

n−1X
j=0

1

n

µ
R(γnj kµ) + L

µZ
yγnj (dy)

¶¶
+ 2F ( �Snn/n)

 ,
14



where the inÞmum is over all controls {γnj } and resulting controlled processes
{ �Snj /n} that start at x at time 0. Since vnF also satisÞes the DPE (2.8) [5,
Chapter 8] and terminal condition vnF (x, n) =W

n
F (x, n) = 2F (x), we obtain

by induction that Wn
F (x, i) = v

n
F (x, i) for all x ∈ Rd and i ∈ {0, . . . , n}.

DeÞne a stochastic kernel γn on Rd given [0, 1] by

γn(dy|t) .=
(
γnj (dy) if t ∈ [j/n, (j + 1)/n), j = 0, 1, . . . , n− 2
γnn−1(dy) if t ∈ [(n− 1)/n, 1] ,

and (abusing notation a bit) deÞne the process �Sn = { �Sn(t), t ∈ [0, 1]} as the
piecewise linear interpolation of the controlled sequence { �Snj }. Let λ denote
Lebesgue measure. Then the deÞnition of γn(dy|t) and the convexity of L
imply that

W n
F (x, 0)

= vnF (x, 0)

= inf
{γnj }

�Ex

Z 1

0
R (γn(·|t)kµ) dt+

n−1X
j=0

1

n
L

µZ
yγnj (dy)

¶
+ 2F ( �Snn/n)


≥ inf

{γnj }
�Ex

Z 1

0
R (γn(·|t)kµ) dt+ L

n−1X
j=0

1

n

Z
yγnj (dy)

+ 2F ( �Snn/n)


= inf
{γnj }

�Ex

·
R (γnkµ⊗ λ) + L

µZ 1

0

Z
Rd
yγn(dy × dt)

¶
+ 2F ( �Snn/n)

¸
,

where γn(dy× dt) .= γn(dy|t)dt and (µ⊗ λ)(dy× dt) .= µ(dy)dt. A straight-
forward weak convergence approach will be adopted to derive the desired
inequality (2.9) below. Since the proof is essentially the same as [13, Theo-
rem 5.3.5], we only give a sketch.

For each ε > 0, there exist a sequence of controls {γn, n ∈ N} such that

W n
F (x, 0) + ε ≥ �Ex

·
R (γnkµ⊗ λ) + L

µZ 1

0

Z
Rd
yγn(dy × dt)

¶
+ 2F ( �Snn/n)

¸
for every n. Furthermore, since L is non-negative and F is bounded, {γn}
is indeed uniformly integrable in the sense of [13, Proposition 5.3.2]. For
any subsequence of {γn, n ∈ N}, we can extract a weakly convergent sub-
subsequence, still denoted by {γn}, such that γn ⇒ γ for some stochastic
kernel γ whose second marginal is Lebesgue measure. We utilize the Sko-
rokhod representation [6], which allows us to assume (when calculating the
limits of the integrals) that the convergence is actually w.p.1. It follows
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from the lower semicontinuity of R, the convergence γn ⇒ γ, and the uni-
form integrability that w.p.1

lim inf
n

R (γnkµ⊗ λ) ≥ R(γkµ⊗ λ),

lim
n

Z 1

0

Z
Rd
yγn(dy × dt) =

Z 1

0

Z
Rd
yγ(dy × dt),

and

�Sn/n− Z → 0, where Z(t)
.
= x+

Z t

0

Z
Rd
yγ(dy|s)ds,

where γ(dy × ds) = γ(dy|s)ds. The convergence in the last display is with
respect to the supremum norm. In addition, the convexity of R(νkµ) in ν
and Jensen�s inequality imply

R (γkµ⊗ λ) =
Z 1

0
R(γ(·|t)kµ(·))dt ≥ R

µZ 1

0
γ(·|t)dtkµ(·)

¶
.

The uniform integrability of [13, Theorem 5.3.5] also implies
R 1
0

R
Rd kykγ(dy×

dt) <∞ w.p.1, and henceZ 1

0

Z
Rd
yγ(dy|t)dt =

Z
Rd

Z 1

0
yγ(dy|t)dt.

By Fatou�s Lemma and the lower-semicontinuity of L [30], we have

lim inf
n

Wn
F (x, 0) + ε

≥ �Ex

·
R

µZ 1

0
γ(·|t)dtkµ(·)

¶
+ L

µZ
Rd

Z 1

0
yγ(dy|t)dt

¶
+ 2F (Z(1))

¸
Using the identity

inf

·
R(ν kµ) :

Z
yν(dy) = β

¸
= L(β)

[13, Lemma 3.3.3], it is elementary to show that the right hand side of the
last inequality is bounded below by

2 inf
β∈Rd

[L(β) + F (x+ β)] .

Since ε > 0 is arbitrary,

lim inf
n→∞ Wn

F (x, 0) ≥ 2 inf
β∈Rd

[L(β) + F (x+ β)],
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and in particular

lim inf
n→∞ Wn

F (0, 0) ≥ 2 inf
β∈Rd

[L(β) + F (β)] . (2.9)

Now let Fj(y)
.
= j(d(y, Ā) ∧ 1). Since 1A(y) ≤ exp{−2nFj(y)},

lim inf
n→∞ Wn = lim inf

n→∞ W n(0, 0)

≥ lim inf
n→∞ W n

Fj(0, 0)

≥ 2 inf
β∈Rd

[L(β) + Fj(β)] .

Exactly as on [13, pages 10-11], a compactness argument shows that

lim
j→∞ inf

β∈Rd
{L(β) + Fj(β)} = inf

β∈Ā
L(β),

and we complete the proof.

For a scalar a let bac denote the integer part of a.

Proposition 2.1 Assume Condition 2.1, and deÞne Wn(x, i) as in (2.5),
except in (1.3) we replace A with (A− x)/(1− t). Then

lim
n→∞W

n(x, btnc)→ 2U(x, t),

where
U(x, t)

.
= inf{(1− t)L(β) : x+ (1− t)β ∈ A}.

Proof. The proof is essentially the same and thus omitted.

Remark 2.2 The proof of Theorem 2.1 actually implies a more general
result. If we write W n

F
.
=Wn

F (0, 0), then

lim
n→∞W

n
F = 2 inf

β∈Rd
[L(β) + F (β)]

for all bounded and continuous functions F : Rd → R. Indeed, since (2.9)
gives the reverse inequality, all we need to show is that

lim sup
n

Wn
F ≤ 2 inf

β∈Rd
[L(β) + F (β)].

However, by deÞnition

W n
F
.
= − 1

n
log V nF ,
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where V nF
.
= V nF (0, 0) is deÞned by

V nF = infαn
E
h¡
X̄n,F

¢2i
with

X̄n,F
.
= e−nF (S̄n/n)e

Pn−1
j=0 (−hαnj (S̄nj /n),Ȳ nj i+H(αnj (S̄nj /n))).

For each control αn, it is not difficulty to verify that the resulting X̄n,F is an
unbiased estimator for E[exp{−nF (Sn/n)}]. It then follows from Jensen�s
inequality that

Wn
F ≤ −

1

n
log inf

αn
E
h¡
X̄n,F

¢2i
= − 2

n
logEe−nF (Sn/n).

Thanks to the large deviations properties of Sn/n, this implies [13, Theorem
1.2.1]

lim sup
n

W n
F ≤ lim sup

n
− 2
n
logEe−nF (Sn/n) ≤ 2 inf

β∈Rd
[L(β) + F (β)].

Similar to Proposition 2.1, we have the following more general version.

lim
n
W n
F (x, btnc) = 2UF (x, t)

where
UF (x, t)

.
= inf
β∈Rd

{(1− t)L(β) + F (x+ (1− t)β)}. (2.10)

3 Examples and Further Remarks

3.1 The formal PDE approach and the limit control problem

Although Theorem 2.1 establishes that there are asymptotically optimal [in
the sense of equation (2.1)] adaptive importance sampling schemes, it does
not explicitly discuss the construction of such schemes, or even schemes that
are approximately asymptotically optimal.

In this subsection, we will discuss an alternative PDE approach to study
the adaptive importance sampling scheme. The approach, though largely
formal, will shed light on how to construct asymptotically optimal and nearly
optimal controls αn. Some numerical conÞrmation of this approach is pre-
sented in Section 3.3.

For a general measurable function F , and assuming the limit exists,
deÞne

WF (x, t)
.
= lim

n
W n
F (x, btnc).
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Remark 2.2 asserts that

WF (x, t) = 2UF (x, t) (3.1)

for all continuous and bounded functions F , while Proposition 2.1 conÞrms
the validity of (3.1) for F = ∞1A. We will re-derive equation (3.1) below
by formally arguing that WF and 2UF satisfy the same PDE.

To obtain this PDE, we rewrite (2.7) as

0 = sup
α∈Rd

inf
γ∈C

·Z
4Wn

F (y) γ(dy) +
1

n

µ
R(γkµ) +

Z
hα, yiγ(dy)−H(α)

¶¸
,

where

4W n
F (y)

.
=W n

F

µ
x+

1

n
y, i+ 1

¶
−Wn

F (x, i).

Suppose that a t subscript denotes the partial derivative with respect to
t, and that an x subscript denotes the vector of partials with respect to
xi, i = 1, . . . , d. Formally, we have the approximation

4Wn
F ≈

1

n
(WF )t +

1

n
h(WF )x, yi.

Inserting this into the DPE leads to

0 = sup
α∈Rd

inf
γ∈C

·
(WF )t +

Z
h(WF )x, yi γ(dy) +R(γkµ) +

Z
hα, yiγ(dy)−H(α)

¸
.

We have already noted that

inf

·
R(γkµ) :

Z
yγ(dy) = β

¸
= L(β).

Therefore,

0 = (WF )t + sup
α∈Rd

inf
β∈Rd

[h(WF )x, βi+ L(β) + hα, βi−H(α)] .

Such an equation is called an Isaac�s equation, and it is well known that
such equations are satisÞed by the value function for a differential game.
We will not give the rather lengthy and detailed formal deÞnition of the
game here, but simply note its general features. Because of the intervening
minus sign, the maximizing player is actually trying to minimize the variance
through the choice of control α(t) ∈ Rd. The minimizing player appears due
to the large deviations approximation of the variance, and chooses β(t) ∈
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Rd. The dynamics úφ(t) = β(t) only involve the minimizing player, the
running cost L(β) + hα, βi − H(α) involves both, and the terminal cost
is 2F (φ(1)). The adaptive importance sampling scheme will be deÞned in
terms of the optimal control for the maximizing player, which one would
prefer to obtain in feedback form. Representing the inÞmum in terms of the
Legendre transform H of L gives

0 = (WF )t + sup
α∈Rd

[−H(−α− (WF )x)−H(α)] .

The strict convexity of H implies that the supremum is uniquely achieved
at

α∗(x, t) = −(WF )x(x, t)/2, (3.2)

and that WF should satisfy

0 = (WF )t − 2H(−(WF )x/2). (3.3)

Lastly, we observe that WF should also formally satisfy with terminal con-
dition WF (x, 1) = 2F (x).

Next we formally derive the PDE for UF . Owing to the convexity of L,
UF is the value function of the deterministic control problem

UF (x, t) = inf
φ

·Z 1

t
L( úφ(s)) ds+ F (φ(1))

¸
, (3.4)

where the inÞmum is over all absolutely continuous φ which satisfy φ(t) = x.
A standard dynamic programming argument implies that UF satisÞes [4, 21]
the DPE

0 = (UF )t + inf
a∈Rd

[L(a) + ha, (UF )xi] = (UF )t −H(−(UF )x), (3.5)

with terminal condition UF (x, 1) = F (x).
Comparing the PDE (3.3) with (3.5), and noting WF (x, 1) = 2UF (x, 1),

we conclude that (3.1) holds if either PDE has a unique solution. Further-
more, note that α∗ deÞned by (3.2) also satisÞes

α∗(x, t) = −(WF )x(x, t)/2 = −(UF )x(x, t). (3.6)

3.2 Implementation issues

One approach to the construction of optimal or nearly optimal adaptive
importance sampling schemes (i.e., selection of the control αn), would be to
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solve (numerically if need be) the DPE associated with Wn
F . However, any

such scheme would directly depend on n, and in general, one would prefer
schemes without this dependence.

An alternative approach, which is to be discussed in this subsection, is to
consider the DPE associated with the limit problem WF (equivalently UF ).
In the preceding subsection, we formally characterized WF as the solution
to an Isaac�s equation, and hence as the value function for a differential
game. We also showed that WF can be characterized as the value function
of a deterministic optimal control problem, which is often easier to solve or
approximate numerically.

The equation (3.6) identiÞes, at least formally, an optimal feedback con-
trol policy. However, this observation is not totally satisfactory for several
reasons. The Þrst is that even if we have an exact formula for UF (or WF ),
the DPE (3.5) is usually satisÞed only in a weak sense, in which case the par-
tial derivative (UF )x may not be deÞned for all times and spatial points. Un-
der additional conditions one can show that the set of points where α∗(x, t)
is well deÞned is open and dense [19]. At points where the gradient is not
deÞned there are often superdifferentials, and a natural replacement for the
DPE suggests feedback controls deÞned in terms of extreme superdiffer-
entials rather than gradients. Nonetheless, a comprehensive theory is not
available. The second reason is that UF (or, WF ) does not usually have
an explicit solution, and so in many cases a numerical approximation is re-
quired. Convergent numerical approximations have been studied extensively
(see, e.g., [27]). Practical experience and some theory (e.g., [16]), have shown
that the numerical schemes which construct (provably) convergent approxi-
mations to UF (or, WF ) also yield nearly optimal feedback controls, though
they are usually limited by practical implementation constraints to low di-
mensional problems.

Our goal in this subsection is to formally characterize the optimal control
α∗ at all points (x, t) through the dual relation in the Legendre transform
(1.2). It is straightforward to see from the control problem (3.4) that an
optimal control at (x, t) is the minimizer in equation (2.10), say β∗(x, t),
thanks to the convexity of L. Note that the existence of β∗(x, t) is guaranteed
with very mild conditions, e.g., F is bounded and continuous. This implies
that −(UF )x(x, t) and β∗(x, t) are conjugate. It follows from (3.6) that

α∗(x, t) is conjugate to the minimizer β∗(x, t) in (2.10).

At points where (UF )x(x, t) exists this deÞnition gives α
∗(x, t) = −(UF )x(x, t).

At points where (UF )x(x, t) does not exist there are multiple minimizing
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β∗(x, t), and one should deÞne α∗(x, t) though conjugacy in any Borel mea-
surable way.

Remark 3.1 In the setting of Cramér�s theorem, F =∞ · 1A. In this case,

β∗(x, t) ∈ argmin{(1− t)L(β) : x+ (1− t)β ∈ A},

and α∗(x, t) is its conjugate. This also implies that, at time (x, t), the change
of measure associated with α∗(x, t) actually shifts the mean to β∗(x, t).
Roughly speaking, this means that the controlled random walk always points
to the �most likely� end point, given that the end point is in A and that we
are currently at x with 1 − t units of time to go. Note that we can assume
without loss that A is closed under the conditions of Proposition 2.1. This
suffices to guarantee the existence of β∗(x, t) for all x ∈ Rd, t ∈ [0, 1).

3.3 The relations between blind and adaptive importance
sampling and differential games in the small and the
large

In the adaptive sampling scheme, the sampling distribution is allowed to be
a function of the current state of the �controlled empirical mean� and the
time index. In contrast, the scheme suggested by the standard heuristic in
the setting of Cramér�s Theorem is a Þxed change of measure throughout. In
a setting more general than Cramér�s Theorem (e.g., the models of Chapter
6 of [13]) the scheme suggested by the standard heuristic might also depend
on the time index, though not on any controlled state (in other words, it
is an �open loop� control). In both cases, a logarithmic transform would
be used to characterize the asymptotic behavior of the second moment,
and this logarithmic transformation introduces another control through the
variational formula for relative entropy (cf. [13] and Section 2).

In the case of adaptive sampling, the control that tries to minimize the
second moment maximizes in the logarithmic transform, owing to an inter-
vening minus sign. The control that large deviations introduces attempts to
minimize, and an examination of the dynamic programming equation shows
that at each time step the �large deviation control� gets to see the variance
control used to generate the next sample, thus giving it the �information
advantage.�

Thus in the limit n → ∞ we expect to obtain a differential game with
the advantage given to the minimizing player, the so-called �lower game�
(see, e.g., [17]). We refer to such games as games �in the small,� since in the
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discrete time prelimit game the players� selections of controls are interleaved
and sequential.

In the case of the standard heuristic the limit game is quite different.
Here the maximizing player (the player who selects the sampling distribu-
tion) must show his entire �open loop� control to his opponent, who can
then minimize given knowledge of the opponent�s control for all t ∈ [0, 1].
Such a game will be referred to as the �lower game in the large.� It is easy
to show that the �lower game in the large� is never greater than the �lower
game in the small.� When these two coincide, one would expect that the
standard heuristic and the adaptive importance sampling scheme have the
same (large deviation) asymptotic properties, even though there could still
be a signiÞcant difference in performance for any given value of n. How-
ever, when there is a gap between the values of the two games the standard
heuristic should not be asymptotically optimal, and in fact the relative error
in the standard heuristic should grow exponentially with n.

3.4 Examples

In this section we include some numerical examples to illustrate the sub-
tle pitfalls of the blind (i.e., standard heuristic) importance sampling. All
the simulations are performed with standard S-Plus software, and the time
difference between blind importance sampling and adaptive importance sam-
pling is negligible. Each simulation takes at most a few seconds.

Example 1: Let Y0, Y1, . . . be a sequence of iid N(1, 1) random variables, and
Sn = Y0 + · · ·+ Yn−1 the partial sum. Consider the set

A = (−∞, a] ∪ [b,∞)

with a < 1 < b. We want to estimate P{Sn/n ∈ A} by importance sampling.
It is not difficult to verify that

H(α) = logE
h
eαY0

i
= α+

1

2
α2, L(β) = sup

α∈R
[αβ −H(α)] = 1

2
(β − 1)2.

It follows from Cramér�s theorem that

lim
n

1

n
logP{Sn/n ∈ A} = − inf

β∈A
L(β).

From now on, we will assume a+ b < 2, which implies that β∗ = b achieves
the minimum of L over A.
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The blind importance sampling identiÞes the change of measure as the
exponential tilt associated with the supremizing point α∗ in α→ αβ∗−H(α),
which is

α∗ = β∗ − 1 = b− 1.
In other words, the new probability measure is

ν(dy) = eα
∗y−H(α∗)µ(dy) = eα

∗y−H(α∗) · 1√
2π
e−

(y−1)2
2 dy =

1√
2π
e−

(y−b)2
2 dy,

which is just the probability measure associated with N(b, 1). The algorithm
starts by generating iid sequences {Ȳ ki } according to N(b, 1), and then forms
the estimator

1

K

K−1X
k=0

1{S̄kn/n∈A}
n−1Y
i=0

h
e−α

∗Ȳ ki +H(α
∗)
i
=
1

K

K−1X
k=0

1{S̄kn/n∈A}e
−α∗S̄kn+nH(α∗).

The rate of convergence of this estimator is determined by the second mo-
ment of the summands, say �V n, which satisÞes (see the discussion in the
Introduction)

lim
n
− 1
n
log �V n = inf

β∈A
[α∗β −H(α∗) + L(β)] .

If β∗ achieves the inÞmum, then the right hand side equals 2L(β∗), which is
the optimal rate for the second moment. However, this is not always true.
Indeed, it is not difficult to verify that

lim
n
− 1
n
log �V n =

1

2
(a+ b− 2)2 − (b− 1)2 < 2L(β∗)

if a+ 3b > 4.
In the numerical simulation below, we take n = 60, K = 5000, a = 0.75,

b = 1.2. The true value of the probability we want to estimate is

pn = 1− Φ((b− 1)
√
n) + Φ((a− 1)√n) = 8.7%.

The table below presents the outcome of 4 simulations.

No. 1 No. 2 No. 3 No. 4
Estimate �pn 15.42 7.81 5.96 6.02
Standard Error 4.70 1.75 0.12 0.12
95% ConÞdence Interval [6.02, 25.82] [4.31, 11.31] [5.72,6.20] [5.78,6.26]
Number of �Rogue� Trajectory 4 1 0 0

(− log �V n)/(− log �pn) −1.3 −0.14 1.6 1.6

Table 1.
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In simulations No. 1 and No. 2, the presence of �rogue� trajectories
(see the Introduction) greatly raises the standard errors associated with the
estimates. Indeed, in each of these two simulations, the proportion of the
estimate of the second moment due to these few �rogue� trajectories is more
than 99%. In simulations No. 3 and No. 4, however, there are no �rogue�
trajectories, and the standard error associated with the estimate is decep-
tively small. The reason is that the standard error is itself estimated from
the sample. Without �rogue� trajectories, we actually underestimate the
standard error. Therefore, we cannot put much conÞdence in the standard
errors thus obtained, or in the �tight� conÞdence intervals that follow. Note
that the conÞdence intervals from these two simulations do not contain the
true value.

The adaptive importance sampling, on the other hand, yields more ac-
curate estimates and its performance is much more stable. Below is the
numerical result. The standard errors (almost the same across different
simulations) are much smaller compared to those of the blind algorithm.

No. 1 No. 2 No. 3 No. 4
Estimate �pn (%) 8.66 8.59 8.72 8.66
Standard Error (%) 0.06 0.06 0.06 0.07
95% ConÞdence Interval (%) [8.54, 8.78] [8.47, 8.71] [8.60,8.84] [8.52,8.80]

(− log �V n)/(− log �pn) 1.51 1.45 1.49 1.39

Table 2.

The selection of a nearly optimal control αn = {αnj (·) : j = 0, 1, . . . , n−1}
was discussed in the preceding sections. It was formally argued in Subsection
3.1 that the associated limiting differential game indicates

αnj (x) = −Ux(x, j/n),

is a good choice, where

U(x, t) = inf{(1− t)L(β) : x+ (1− t)β ∈ A}.

In this example, it is not difficult to verify that

U(x, t) =


0 , if x ≥ b− (1− t) or x ≤ a− (1− t)

1−t
2

³
b−x
1−t − 1

´2
, if (a+ b)/2− (1− t) ≤ x ≤ b− (1− t)

1−t
2

³
a−x
1−t − 1

´2
, if a− (1− t) ≤ x ≤ (a+ b)/2− (1− t)
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and

−Ux(x, t) =


0 , if x > b− (1− t) or x < a− (1− t)
b−x
1−t − 1, if (a+ b)/2− (1− t) < x < b− (1− t)
a−x
1−t − 1, if a− (1− t) < x < (a+ b)/2− (1− t)

.

At points where −Ux is not deÞned any extreme superdifferential may be
used in lieu of Ux. In all cases this is the same as using the maximizing α
in α→ αβ∗(x, t)−H(α), where

β∗(x, t) ∈ argmin{(1− t)L(β) : x+ (1− t)β ∈ A}.

See Subsection 3.2 for more discussion.
To summarize, the distribution of Ȳ kj given {Ȳ ki , i = 0, . . . , j − 1} is

normal with variance 1 and mean −Ux(x, j/n) + 1 = β∗(x, j/n), with x =
(Ȳ k0 + · · ·+ Ȳ kj−1)/n.

The following table illustrates the asymptotic optimality of the adaptive
importance sampling as n→∞.

n = 100 n = 200 n = 500
Theoretical pn 2.90× 10−2 2.54× 10−3 3.88× 10−6
Estimate �pn 2.98× 10−2 2.57× 10−3 3.86× 10−6
Standard Error 0.06× 10−2 0.04× 10−3 0.07× 10−6
95% ConÞdence Interval [2.86, 3.10]× 10−2 [2.49, 2.65]× 10−3 [3.72, 4.00]× 10−6
(− log �V n)/(− log �pn) 1.65 1.84 1.93

Table 3.

Example 2: Let {Yi = (Y 0i , Y
1
i )} be an iid sequence of two-dimensional,

normally distributed random vectors with mean 0 and covariance matrix I,
and Sn = Y0 + · · ·+ Yn−1 the partial sum. For α,β ∈ R2 we have

H(α) = logE
h
ehα,Y0i

i
=
1

2
kαk2, L(β) = sup

α∈R2
[hα,βi−H(α)] = 1

2
kβk2.

Consider the set

A
.
=
n
y = (y0, y1) : ky + (a, 0)k2 = (y0 + a)2 + (y1)2 ≥ r2

o
,

where 0 < a < r are constants. Then Cramér�s Theorem yields

lim
n

1

n
logP{Sn/n ∈ A} = − inf

β∈A
L(β) = −L(β∗) = −1

2
(r − a)2,
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with minimizing β∗ = (r−a, 0). It is not difficult to identify the supremizing
α in α→ hα,β∗i−H(α) as

α∗ = β∗ = (r − a, 0),
and the blind importance sampling will sample under the new probability
measure

ν(dy) = ehα
∗,yi−H(α∗)µ(dy) =

1

2π
e−

ky−α∗k2
2 dy,

or the distribution of N(β∗, I). As before, the estimator is

1

K

K−1X
k=0

1{S̄kn/n∈A}
n−1Y
i=0

e−hα
∗,S̄kni+nH(α∗),

where S̄kn = Ȳ
k
0 + · · ·+ Ȳ kn−1 and {Y ki } are iid N(β∗, I) random vectors.

It is not difficult to verify that the second moment �V n associated with
the summands satisÞes

lim
n
− 1
n
log �V n = inf

β∈A
[hα∗,βi−H(α∗) + L(β)] = inf

β∈A

·
1

2
kβ + α∗k2 − kα∗k2

¸
.

If we further assume that 0 < a < r/2, then the inÞmum is not achieved at
β∗, but at (−r − a, 0). In fact, β∗ achieves the maximum of the right hand
side over β ∈ ∂A. In this case, we have

lim
n
− 1
n
log �V n = 2a2 − (r − a)2 < 2L(β∗) = (r − a)2.

In the table below, we take n = 60, K = 5000, r = 0.5, a = 0.05. The
theoretical value of the probability can be obtained as follows:

pn
.
= P{Sn/n ∈ A} = P{kSn/

√
n+ (

√
na, 0)k2 ≥ nr2}.

Since Sn/
√
n is N(0, I) distributed, kSn/

√
n + (

√
na, 0)k2 is a non-central

chi-square random variable with 2 degree of freedom and noncentrality para-
meter k(√na, 0)k2 = na2. Its distribution is available in standard statistics
softwares like S-Plus. Here we have

pn = 8.97× 10−4.
No. 1 No. 2 No. 3 No. 4

Estimate �pn (×10−4) 6.38 6.04 7.26 11.09
Standard Error (×10−4) 0.78 0.42 1.17 5.40
95% ConÞdence Interval (×10−4) [4.82, 7.94] [5.20, 6.88] [4.92, 9.60] [0.29,21.89]

(− log �V n)/(− log �pn) 1.41 1.56 1.33 0.96

Table 4.
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In this example, we do not have a clear-cut deÞnition of a �rogue� tra-
jectory. The main idea, however, remains the same. There are a continuum
of possibilities for exiting away from β∗ and building up a large Radon-
Nikodym derivative, and to varying degrees these trajectories degrade the
estimate. As the table above shows, both the estimated probabilities and
estimated second moments vary considerably across different simulations.

The adaptive importance sampling again outperforms the blind algo-
rithm. Below are the simulation results, and the estimates are clearly more
accurate and stable.

No. 1 No. 2 No. 3 No. 4
Estimate �pn (×10−4) 9.29 8.85 8.90 9.18
Standard Error (×10−4) 0.21 0.24 0.18 0.28
95% ConÞdence Interval (×10−4) [8.87, 9.71] [8.37, 9.33] [8.54, 9.26] [8.62, 9.74]

(− log �V n)/(− log �pn) 1.82 1.78 1.84 1.75

Table 5.

The choice of control αn is obtained as before. One can compute the
function U explicitly and then let αnj (x) = −Ux(x, j/n), as in Example 1.
Alternatively, as discussed in Subsection 3.2, we can use that −Ux is the
maximizing α in hα, β∗(x, t)i−H(α), where

β∗(x, t) = argmin {(1− t)L(β) : x+ (1− t)β ∈ A} .
It is not difficult to check that

−Ux(x, t) = β∗(x, t) =
(

0 , if x ∈ A³
r

kx+(a,0)k − 1
´
· [x+ (a, 0)], if x 6∈ A.

In other words, the distribution of Ȳ kj given {Ȳ ki , i = 0, · · · , j−1} is normal
with variance I and mean β∗(x, j/n) when x = (Ȳ k0 + · · ·+ Ȳ kj−1)/n.

Below are more simulation results, which illustrate the asymptotic opti-
mality of the adaptive importance sampling as n tends to inÞnity.

n = 40 n = 80 n = 120
Theoretical pn 8.49× 10−3 1.00× 10−4 1.40× 10−6
Estimate �pn 8.64× 10−3 0.98× 10−4 1.39× 10−6
Standard Error 0.25× 10−3 0.02× 10−4 0.03× 10−6
95% ConÞdence Interval [8.14, 9.14]× 10−3 [0.94, 1.02]× 10−4 [1.33, 1.45]× 10−6
(− log �V n)/(− log �pn) 1.65 1.85 1.92

Table 6.
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4 Appendix

Lemma 4.1 Let µ be a probability measure on Rd and let f : Rd → R be
bounded and measurable. DeÞne H(α) by (1.1), and assume H(α) <∞ for
all α ∈ Rd. Then for each α ∈ Rd,

− log
Z
e−hα,yi+H(α)−f(y)µ(dy)

= inf
{γ:R(γkµ)<∞}

·
R(γkµ) +

Z
f(y)γ(dy) +

Z
hα, yiγ(dy)−H(α).

¸

Proof. Fix α ∈ Rd, and deÞne a change of probability measure by
dθ

dµ
(y)

.
= e−hα,yi−H(−α).

It follows that

− log
Z
e−hα,yi+H(α)−f(y)µ(dy)

= −H(α)−H(−α)− log
Z
e−f(y)θ(dy)

= −H(α)−H(−α) + inf
{γ:R(γkθ)<∞}

·
R(γkθ) +

Z
f(y)γ(dy).

¸
Into this expression we insert

R(γkθ) =

Z
log

dγ

dθ
dγ

=

Z
log

dγ

dµ
dγ +

Z
log

dµ

dθ
dγ

= R(γkµ) +H(−α) +
Z
hα, yiγ(dy).

It remains to show that

{γ : R(γkθ) <∞} = {γ : R(γkµ) <∞}.

Indeed, if R(γkµ) < ∞ and Condition 2.1 hold then by [13, Lemma 1.4.3]R kykγ(dy) < ∞. It then follows that R(γkθ) < ∞. The proof for the
reverse is exactly the same.

Proof of the Borel Measurability of V nF and W n
F . We only need to

show the Borel-measurability of V nF (x, i), and to do this we will use induction
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on i. Clearly V nF (x, n) = exp {−2nF (x)} is Borel measurable. Suppose that
V nF (x, i+1) is Borel measurable. Since the inÞmum of countably many Borel
measurable functions is still Borel measurable, it suffices to show that

V nF (x, i) = inf
α∈Qd

Z
e−hα,yi+H(α)V nF

µ
x+

1

n
y, i+ 1

¶
µ(dy),

where Q is the set of rationals. Indeed, for any α ∈ Rd, there exist a sequence
{αm} ∈ Qd such that kαmk ≤ 2kαk and αm → α. Using (2.6) we have the
bound

e−hαm,yi+H(αm)V nF
µ
x+

1

n
y, i+ 1

¶
≤ e2kαk·kyk+sup{H(a):kak≤2kαk} · e2nkFk∞ ,

and the right hand side is integrable. The Dominated Convergence Theorem
implies Z

e−hαm,yi+H(αm)V nF
µ
x+

1

n
y, i+ 1

¶
µ(dy)

converges to Z
e−hα,yi+H(α)V nF

µ
x+

1

n
y, i+ 1

¶
µ(dy),

and thus the inÞmum may be restricted to Qd.

Proof of Lemma 2.2. DeÞne

v
.
= sup
α∈Rd

inf
γ∈C

·Z
f(y)γ(dy) +R(γkµ) +

Z
hα, yiγ(dy)−H(α)

¸
,

and similarly v̄ when the order of inf and sup are exchanged. The min/max
inequality yields v̄ ≥ v. It suffices to show the reverse inequality.

For an arbitrary constant M <∞, we have

v ≥ sup
kαk≤M

inf
γ∈C

·Z
f(y)γ(dy) +R(γ kµ) +

Z
hα, yi γ(dy)−H(α)

¸
= inf

γ∈C
sup

kαk≤M

·Z
f(y)γ(dy) +R(γ kµ) +

Z
hα, yi γ(dy)−H(α)

¸
.
= vM .

The interchange of the inÞmum and supremum is valid thanks to the min/max
theorem [38], the convexity of C and {α : kαk ≤ M}, and the compactness
of {α : kαk ≤M}.
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We will use the deÞnition

LM (β)
.
= sup
kαk≤M

[hα,βi−H(α)] .

Observe that LM (
R
yµ(dy)) = 0, since 0 ≤ LM ≤ L and L (R yµ(dy)) = 0.

We also deÞne the level set

D .
=
n
γ : γ is a probability measure on Rd, and R(γkµ) ≤ 2kfk∞

o
⊆ C,

which is independent of M . We can write

vM = inf
γ∈C

·Z
f(y)γ(dy) +R(γkµ) + LM

µZ
yγ(dy)

¶¸
.

It follows that vM ≤ kfk∞ by taking γ = µ. Since LM is non-negative and
f is bounded,

inf
γ∈C\D

·Z
f(y)γ(dy) +R(γkµ) + LM

µZ
yγ(dy)

¶¸
≥ −kfk∞+2kfk∞ ≥ vM ,

which implies that the inÞmum over C is the same as the inÞmum over D.
Thus

vM = inf
γ∈D

·Z
f(y)γ(dy) +R(γkµ) + LM

µZ
yγ(dy)

¶¸
.

We will further argue that there exists a γ∗M ∈ D that achieves the
inÞmum. To this end, we will associate the space of probability measures
with the τ -topology, which is the smallest topology under which the mapping

γ 7→
Z
h(y)γ(dy)

is continuous for every bounded and measurable function h. The level set
D is not only compact in the weak topology, it is also compact under the
τ -topology [13, Section 9.3]. Suppose now {γmM : m ≥ 1} is a minimizing
sequence. The compactness of D implies the existence of a subsequence, still
denoted by {γmM}, such that

γmM → γ∗M , for some γ∗M ∈ D.

However, since the mapping

γ 7→ R(γkµ)
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is lower semicontinuous (since the τ -topology is Þner than the weak-convergence
topology), we have

R(γ∗Mkµ) ≤ lim infm
R(γmMkµ).

Furthermore, we haveZ
f(y)γmM (dy) →

Z
f(y)γ∗M (dy),

from the deÞnition of the τ -topology and the boundedness of f , while

LM

µZ
yγmM (dy)

¶
→ LM

µZ
yγ∗M (dy)

¶
,

thanks to the uniform integrability of {γmM} [13, Proposition 5.3.2] and the
continuity of LM . It follows readily that γ

∗
M is a minimizer.

Again, thanks to the compactness of D, there exists a subsequence of
{γ∗M}, still denoted by {γ∗M}, such that γ∗M → γ∗ ∈ D under the τ -topology,
for some γ∗ ∈ D. Fix an arbitrary positive constant ε. Thanks to the
lower-semicontinuity of R(·kµ), the deÞnition of the τ -topology, and the
boundedness of f , there exists M1 > 0 such that for all M ≥M1,

R(γ∗Mkµ)−R(γ∗kµ) ≥ −ε,Z
f(y)γ∗M (dy)−

Z
f(y)γ∗(dy) ≥ −ε.

Furthermore, by the deÞnition of L, there exists an α∗ ∈ Rd such that

L

µZ
yγ∗(dy)

¶
≤
¿
α∗,

Z
yγ∗(dy)

À
−H(α∗) + ε.

Since
R
yγ∗M (dy) →

R
yγ∗(dy) thanks to the uniform integrability of {γ∗M},

there also exists M2 such that¿
α∗,

Z
yγ∗M (dy)

À
≥
¿
α∗,

Z
yγ∗(dy)

À
− ε,

for all M ≥ M2. Using the deÞnition of LM as a Legendre transform, for
M ≥ max{kα∗k,M1,M2} we have

v ≥ vM

=

Z
f(y)γ∗M (dy) +R(γ

∗
Mkµ) + LM

µZ
yγ∗M (dy)

¶
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≥
Z
f(y)γ∗(dy) +R(γ∗kµ) + LM

µZ
yγ∗M (dy)

¶
− 2ε

≥
Z
f(y)γ∗(dy) +R(γ∗kµ) +

¿
α∗,

Z
yγ∗M (dy)

À
−H(α∗)− 2ε

≥
Z
f(y)γ∗(dy) +R(γ∗kµ) +

¿
α∗,

Z
yγ∗(dy)

À
−H(α∗)− 3ε

≥
Z
f(y)γ∗(dy) +R(γ∗kµ) + L

µZ
yγ∗(dy)

¶
− 4ε

≥ inf
γ∈C

·Z
f(y)γ(dy) +R(γkµ) + L

µZ
yγ(dy)

¶¸
− 4ε.

Since ε is arbitrary, we obtain

v ≥ inf
γ∈C

·Z
f(y)γ(dy) +R(γkµ) + L

µZ
yγ(dy)

¶¸
= inf

γ∈C
sup
α∈Rd

·Z
f(y)γ(dy) +R(γ kµ) +

Z
hα, yi γ(dy)−H(α)

¸
= v̄.

This completes the proof.
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