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Abstract
Gene-environment interactions contribute to complex disease development. The environmental
contribution, in particular low-level and prevalent environmental exposures, may constitute much
of the risk and contribute substantially to disease. Systematic risk evaluation of the majority of
human chemical exposures, has not been conducted and is a goal of regulatory agencies in the
U.S. and worldwide. With the recent recognition that toxicological approaches more predictive of
effects in humans are required for risk assessment, in vitro human cell line data as well as animal
data are being used to identify toxicity mechanisms that can be translated into biomarkers relevant
to human exposure studies. In this review, we discuss how data from toxicogenomic studies of
exposed human populations can inform risk assessment, by generating biomarkers of exposure,
early effect, and/or susceptibility, elucidating mechanisms of action underlying exposure-related
disease, and detecting response at low doses. Good experimental design incorporating precise,
individual exposure measurements, phenotypic anchors (pre-disease or traditional toxicological
markers), and a range of relevant exposure levels, is necessary. Further, toxicogenomic studies
need to be designed with sufficient power to detect true effects of the exposure. As more studies
are performed and incorporated into databases such as the Comparative Toxicogenomics Database
(CTD) and Chemical Effects in Biological Systems (CEBS), data can be mined for classification
of newly tested chemicals (hazard identification), and, for investigating the dose-response, inter-
relationship among, genes, environment and disease in a systems biology approach (risk
characterization).
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1. Introduction
Human disease is thought to arise when the normal physiological state of an individual,
determined by the unique genetic background (genome), is perturbed by the exposome, a
term describing all exposures from conception onwards [1]. Such perturbations can be
assessed by measuring the components of the responsome (transcriptome, proteome,
miRNome, methylome) using toxicogenomic technologies. The variability of the human
genome and the exposomes encountered leads to a wide range of possible outcomes in a
population. Thus, gene-environment interactions contribute to disease development and
progression across the life stages especially in susceptible individuals. Comprehensive
analysis of the genome, exposome and responsome are necessary to elucidate these
processes.

Recently, genome-wide association studies (GWAS) have identified several disease risk
alleles, inherited variations or polymorphisms in gene sequences. Results from GWAS show
that many common variants each of small, additive effect probably contribute to complex
disease risk [2]. The increased resolution of genetic endpoints through the inclusion of copy-
number variation (CNV) in GWAS studies [3] or the application of massively parallel
sequencing [4] may further inform the genetic contribution to disease (genome). Based on
current data, however, it appears that the environmental contribution, comprising in part the
“exposome” representing all exposures from conception onwards [1], may constitute the
majority of the risk of chronic disease. In support of a strong environmental effect on
disease development is the finding that disease risk in migrant populations for
atherosclerotic disease [5–6] and cancer [7] shifts towards that of the population of the
adoptive country.

Low-level and prevalent environmental exposures may contribute substantially to disease
[8–10]. The development of high-resolution technologies to assess exposures in the
environment and in individuals is urgently needed to further understand such links [1,10–
13]. Adductomics, the “omic” level measurement of protein and DNA adducts, compounds
formed by the covalent reactions between blood proteins (typically hemoglobin and
albumin) or DNA and chemicals (or their metabolites) to which an individual has been
exposed, by analytical techniques such as mass spectrometry (MS) is one such approach
[14]. Other promising approaches include microfluidics, nanotechnologies and MS [15–18].

Toxicity data on the more than 100,000 chemicals marketed in the U.S. and Europe, is
extremely limited [19–21]. Together, the risk characterization of the total burden of
environmental exposures and mixtures thereof, using updated toxicogenomic approaches,
should greatly inform the mechanisms underlying chemically-induced complex disease.
Here, we review the application of toxicogenomic studies to evaluate the responsome at
molecular (DNA, RNA and protein) levels, in exposed human populations, to develop a
better understanding of gene-environment interactions underlying disease.

2. Current approaches in the prediction of human toxicological outcomes
The conventional health risk assessment paradigm for chemical exposures comprises four
major steps: exposure assessment, hazard identification, dose-response assessment, and risk
characterization. The approach has traditionally relied largely on animal toxicity studies
with the extrapolation to adverse human health responses derived from the application of
“uncertainty factors” to account for uncertainties associated with species extrapolation
(animal to human), dose-extrapolation (high doses in animal studies to low dose human
exposures) and prediction of risk to susceptible populations [22]. Data from animal tests are
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often poor predictors of real-world human effects, the most famous recent example probably
being the TGN 1412 clinical trial [23]. Many drug candidates are abandoned due to non-
predicted human effects in clinical trials [24]. While improved animal models such as
“humanized” mice have the potential to overcome some of the uncertainties associated with
extrapolation to human and to address human susceptibility [25], it is increasingly being
recognized that alternative approaches predictive of effects in humans are required. [26–28].
In 2007, the U.S. National Research Council (NRC) reviewed existing strategies and
developed a long-range vision for toxicity testing and risk assessment employing updated
toxicological methodologies such as toxicogenomics and in vitro and high-throughput
systems to facilitate the screening of the large numbers of chemicals in commercial use [26–
27]. A similar approach was taken in Europe [28]. A number of challenges remain including
the requirement for massive advances in computational biology to extrapolate from in vitro
multi-tissue effects to effects on organs and whole humans [29].

A more reductionist version of this approach was recently proposed by the U.S.
Environmental Protection Agency (EPA) [30] and is based on 2007 recommendations by the
National Academies of Sciences (NAS; Toxicity testing in the 21st century) [26] and the
hypothesis that the ability of chemicals to induce perturbations in the finite number of
toxicity pathways (e.g. oxidative stress response) could be queried using methodologies such
as in vitro assays and toxicogenomics [26,31]. The strategy focuses on the measurement of
perturbations in baseline biological processes elicited by environmentally relevant exposure
levels that may trigger toxicity pathways leading to adverse health outcomes [30].
Characterization of the relevant toxicity pathways and the identification of biomarkers of
key event parameters that can be monitored in human studies of chemical exposure are
required. The combination of these data with distributional data on population
characteristics of exposure and dose (magnitude, frequency, and duration) would provide a
scientifically based approach for reducing the uncertainties associated with current risk
assessments. The utilization of existing human data from epidemiological studies and
clinical trials to retrospectively and prospectively demonstrate that the approach successfully
and adequately predicts human toxicological responses, is proposed [30]. It is also
envisioned that GWAS data will provide additional support for the pathway-based models.

3. Toxicogenomic analysis of exposed human populations
3.1. Overview of human toxicogenomic studies

The newer approaches described above focus mainly on identifying mechanisms of toxicity
in animal studies or in vitro, and subsequently translating these findings into biomarkers that
can be applied to human exposure studies. A complementary approach is to perform
toxicogenomic studies of human populations with well-characterized exposures, in order to
directly determine biomarkers of exposure and early effect, and assess dose-response, as
outlined in Figure 1. Transcriptomics, proteomics, and epigenomics can each provide a
“molecular signature” or “fingerprint” of exposure or early effect, which can be compared
with the profiles associated with known hazards, e.g. carcinogens, to inform hazard
identification. Examination of impacted gene functions and pathways may enhance our
understanding of the mechanisms by which chemicals contribute to disease (risk
characterization). The incorporation of sensitive, updated measures of exposure assessment,
e.g. adductomics, would allow assessment of dose-response at environmentally relevant
exposure levels. These omic signatures and ultimately, risk, induced by exposure, are
determined by the unique genomic composition of each individual and biomarkers of
susceptibility can be determined through genomic analyses. Thus, adductomics,
transcriptomics, proteomics, and epigenomics can characterize the exposome, responsome
and (early) outcome of each individual in the context of underlying susceptibility
(genomics), facilitating the examination of gene-environment interactions. Correlation of
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toxicogenomic data with phenotypic endpoints such as traditional toxicological or clinical
endpoints or pre-disease states (phenotypic anchors) could help to predict outcome thereby
greatly improving the rigorous application of this approach to risk assessment. Few human
toxicogenomic studies to date have incorporated phenotypic anchors or assessed dose-
response to chemical exposures, particularly at low levels of environmental exposure.

Beyond the scope of this review is a discussion of metabolomics, the measurement of the
full complement of endogenous metabolites in a cell, tissue or biofluid by techniques such as
MS [32]. Metabolomics provides a direct “functional readout of the physiological state” of
an organism [33] and metabolite profiles vary with genotype [33], diet, and gut microbial
composition [34]. Specific profiles have associated with risk factors for cardiovasular
disease [34] and with nicotine consumption [35] and comprise potential biomarkers of
pathophysiology. The detection of xenobiotic metabolites can reflect internal dose. This
review focuses on transcriptomics, proteomics, and epigenomics.

3.2. Transcriptomics
3.2.1. Human transcriptomic studies—The transcriptome is measured by global gene
expression profiling using microarray analysis, or, more recently, by next-generation
sequencing technologies [36]. Microarray technology and its potential application has
matured in part through the efforts of the FDA-led MicroArray Quality Control (MAQC)
consortium, a widespread collaboration conceived to broadly address performance, quality,
and data analysis issues related to the use of DNA microarrays [37] and the development of
Minimum Information About a Microarray Experiment (MIAME) standards [38]. As a
result, good concordance has been reported among platforms, allowing the comparison of
data among different studies, laboratories and technologies [37].

The human peripheral blood (PB) transcriptome is dynamic, responding to environmental
factors including stress [39], exercise [40–41], diet [42] and lifestyle [43], though remaining
stable over time in the individual [44]. In the case of lifestyle, the broadest environmental
factor studied, different lifestyles were characterized by the expression of one third of the
leukocyte transcriptome, including various classes of immune response genes that influence
susceptibility to respiratory and inflammatory disease [43].

Environmental exposure to chemicals also modifies the human transcriptome although
studies examining the impact of such exposures on global gene expression in human
populations are currently limited and include populations exposed to benzene [45–46],
dioxin [47], arsenic [48–50], metal fumes [51], and complex environmental exposures such
as cigarette smoke (CS) [52–55] and diesel exhaust [56], summarized in Table 1. Each of
these studies identified potential biomarkers of exposure and/or early effect. The genes
altered by these exposures represent a diversity of mechanisms including systemic effects on
inflammation, which may underlie the development of associated diseases. In the study of
CS-associated alterations in gene expression, signatures that could distinguish smokers from
nonsmokers were identified in two studies [52–53]. A third study identified signatures of
current and past exposure to CS and distinguished mechanisms associated with chronic and
acute exposure [54].

One of the challenges of human toxicogenomic studies is to address variability arising from
differences across life stages that potentially influence or interact with toxicity pathways. In
studies examining exposure to air pollution, several differentially expressed genes were
identified in the blood cells of children from urban regions of the Czech Republic compared
with rural regions [57] and the effects on children and adults at the transcriptional level
differed [58]. However, the data were based on general measurements of air exposures from
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monitoring stations in these studies while precise individual exposures may be more
appropriate to detect robust changes.

The CS- and air pollution studies correlated gene expression with traditional toxicological
endpoints such as micronuclei frequencies and DNA adduct formation [57,59]. Below, we
discuss human transcriptomic studies of benzene and arsenic, which serve as examples of
toxicogenomic studies using clinical endpoints as phenotypic anchors that also assess
response at environmentally relevant doses.

3.2.2. Benzene transcriptomics—Benzene is an established cause of acute myeloid
leukemia (AML), myelodysplastic syndromes (MDS), and probably lymphocytic leukemias
and non-Hodgkin lymphoma (NHL) in humans [60–63]. We found evidence of
hematotoxicity in workers exposed to varying levels of benzene (n=250) and non-exposed
controls (n=140) in Tianjin, China, in a study with accurate, individual exposure
measurements [64]. A significant decrease in almost all blood cell counts, such as white
blood cells (WBC), granulocytes, lymphocytes, platelets etc, was observed in exposed
workers, even at exposures below 1 ppm (n=109), the current occupational standard in the
U.S. The demonstration of hematotoxicity in exposed workers represents a phenotypic
anchor, providing context for analysis of toxicogenomic effects, particularly useful given the
long latencies of AML and NHL.

In a study of global gene expression and high-dose occupational benzene exposure in
peripheral blood mononuclear cells (PBMC), we identified CXCL16, ZNF331, JUN, and
PF4, as potential biomarkers of early response to benzene exposure [45] in 6 exposed-
control pairs. A later study, using 2 different microarray platforms (Affymetrix & Illumina),
confirmed altered expression of these 4 genes, and revealed impacts on apoptosis and lipid
metabolism in 8 individuals exposed to >10ppm benzene compared with 8 unexposed
controls [46]. More recently, we have shown, in an expanded study of 125 factory workers,
that low-dose benzene exposure (<1 ppm, n=59) is associated with widespread subtle, yet
highly significant, perturbation of the expression of more than 2500 genes [65–66]. Further,
the study revealed potential biomarkers and pathways impacted by benzene exposure across
a range of exposure levels as well as biomarkers and pathways uniquely impacted at low
levels of benzene exposure. Many of the altered genes were involved in apoptosis, and,
immune and inflammatory responses.

Response pathways implicated in mouse bone marrow and stem cells exposed to very high
levels of benzene (100–300 ppm), including p53 response, DNA repair and cell cycle arrest
[67–68], were not confirmed in human chronic exposure studies, although apoptosis was
impacted in both human and animal studies. The differences in transcriptome response
between human and animal studies could reflect different mechanisms of action of benzene
although differences in exposure intensity and time, and tissues analyzed may also be
contributing factors.

3.2.3. Arsenic transcriptomics—Chronic exposure to the carcinogen, arsenic [69], is
associated with lung, bladder, nonmelanoma skin cancers, kidney and liver cancer [70–72].
Exposure to inorganic arsenic alters the expression of genes involved in arsenic metabolism,
stress response, damage response and apoptosis, cell cycling, cell signaling and growth
factor signaling, as recently reviewed by Ghosh and colleagues [73]. However, the degree of
individual susceptibility to arsenic-induced effects varies among populations from different
parts of the world exposed to comparable levels of arsenic in drinking water. Only a minor
percentage of exposed individuals within a population develop arsenic-induced premalignant
skin lesions, an early manifestation and hallmark of arsenic toxicity that may indicate
increased future risk of arsenic-related cancer [74]. Although the molecular basis of arsenic-
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induced skin lesions and its progression to cancer is poorly understood, it serves as a
potential phenotypic anchor of arsenic toxicity in exposed humans.

A microarray-based gene expression study was conducted among individuals chronically
exposed to arsenic in Bangladesh to assess whether arsenical skin lesion status and arsenic
exposure level were associated with differential gene expression patterns [48]. Mean (SD)
well-water levels of arsenic in the Bangladesh study were 342.7 (258.1) μg/L for the group
with skin lesions (n=11) and 39.6 (48.5) μg/L for the group without skin lesions (n = 5) [48].
Genes involved in RNA metabolism, hydrolase activity, ribonucleoprotein complex,
translation, cellular protein catabolism, amino acid activation, transport and transporter
activity, signal transduction through the interleukin (IL)-1 receptor, and glycoprotein
metabolism were found to be differentially expressed in peripheral blood lymphocytes
(PBL) of exposed individuals with arsenical skin lesions compared with exposed individuals
without such lesions. Dose-dependent analysis of exposure was not possible in the study
because of the wide variation in exposure levels and limited sampling data.

A study of PBL global gene expression of populations exposed above and below the
drinking water standard of 10 μg/L was conducted in New Hampshire, US, where 40% of
the population consuming drinking water from unregulated private wells [75]. The drinking-
water arsenic levels of the higher-exposed group (n = 11) averaged 32 μg/L (range: 10.4–
74.7 μg/L), whereas the levels for the low-exposure group (n = 10) averaged 0.7 μg/L
(range: 0.007–5.3 μg/L). The most significant pathways in the higher-exposed groups were
involved in defense and immune response, including inhibitory killer cell immunoglobulin-
like receptors with roles in both innate and adaptive immune response. Cell growth,
apoptosis, cell cycle regulation, and T-cell receptor signaling pathway were also impacted.
Differential expression of transcripts involved in diabetes was observed at high-exposure.
Arsenic exposure has been associated with increased diabetes mellitus related mortality in
several populations, including the U.S. [76–77].

Differential expression of genes involved in the nervous system and other aspects of
development, support associations between arsenic exposure and fetal and early childhood
effects [78–80]. Early childhood arsenic exposure increases the subsequent mortality in
young adults from both malignant and nonmalignant lung disease [81] and the childhood
liver cancer mortality [82]. The latency for arsenic-induced bladder cancers may exceed 50
years [83]. It has been suggested that intrauterine or early childhood exposure to arsenic
induces changes that become apparent much later in life, probably through epigenetic
effects, endocrine effects, immune suppression, neurotoxicity and interference with fetal
programming [84]. Examination of the gene expression profiles of a population of
newborns, whose mothers were exposed to varying levels of arsenic exposure during
pregnancy, revealed a systemic inflammatory response and increased NF-κB signaling [85].
Additionally, a network of 11 transcripts was identified which could predict arsenic
exposure in newborns with 83% accuracy. However, as the unexposed newborns were from
two different regions of Thailand, one urban and one rural, it is not possible to conclusively
associate these changes with arsenic exposure.

3.3. Proteomics
3.3.1. Human proteomic studies—More proximal to phenotype than the transcriptome,
the human proteome may better reflect molecular and cellular process. However, analysis of
the total protein output encoded by the genome using proteomics techniques such as MS
[86] and antibody arrays [87] is more challenging and less amenable to application in a high-
throughput capacity, due to differences in protein properties, location and abundance [88]. In
order to reduce the complexity of the proteome, protein fractionation and depletion of high-
abundance proteins such as albumin, must be performed prior to analysis. Differences in
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sampling, collection, handling and storage can impact the observable proteome from serum
and plasma, two readily available and commonly tested biofluids, underscoring the
importance of standardized protocols across studies and laboratories [89–90]. The Minimum
information about a proteomics experiment (MIAPE), a Human Proteome Organization’s
Proteomics Standards Initiative has been developed to encourage the standardized
collection, integration, storage and dissemination of proteomics data, and develop guidance
modules for reporting the use of techniques such as gel electrophoresis and MS [91–92].

Few proteomic studies of human-exposed populations have been conducted. A recent study
examining the impact of cigarette smoke on the airway epithelial proteome of 5 current
smokers compared with 5 never smokers, using 1D-PAGE coupled with LC-MS/MS,
identified 23 proteins that differed between never and current smokers and confirmed the
smoking-related changes of PLUNC, P4HB1, and uteroglobin protein levels by Western
blotting [55]. The study also demonstrated a strong correlation between protein and
transcript detection within the same samples. Other such studies include those by our group
and others of populations exposed to benzene [93], and arsenic [94–96].

3.3.2. Benzene proteomics—The plasma proteomes of fifty workers reportedly exposed
to benzene in solvents at a printing company and 38 matched unexposed controls were
analyzed by two-dimensional electrophoresis (2-DE) [97] and significant differences in the
resulting protein profiles were found using matrix-assisted laser desorption ionization/time
of flight (MALDI-TOF) MS and Western blot. Although up-regulation of T cell receptor
beta chain, FK506-binding protein and matrix metalloproteinase-13 was seen in the printing
workers, limited exposure information on benzene levels in the solvents used precluded a
true association with benzene exposure.

Three proteins were found to be consistently down-regulated in benzene-exposed compared
with control subjects in two sequential studies of shoe factory workers with well-
characterized benzene exposures using surface enhanced laser desorption/ionisation
(SELDI-TOF), a combined MS and array-based technology [93]. The proteins were highly
inversely correlated with individual estimates of benzene exposure (r > 0.75). Two of the
proteins were subsequently identified as platelet factor 4 (PF4) and connective tissue
activating peptide (CTAP)-III, both members of the CXC-chemokine family. As well as
representing potential biomarkers of benzene exposure, the biological roles of these proteins
[98–100] support the current understanding of the toxic effects of benzene including
immunosuppression and toxicity to hematopoietic progenitors.

3.3.3. Arsenic proteomics—We analyzed the urinary proteomes of human populations
exposed to arsenic in Nevada and Chile in order to elucidate the mechanisms underlying As-
associated kidney and bladder cancers, and identify biomarkers of exposure and early effect.
Decreased expression of human β-defensin-1 (HBD-1) peptides, in the urine of men from
Nevada with high arsenic exposure was found and the finding was replicated in a second,
independent arsenic exposed population from Chile [94]. HBD-1 is a peptide with well-
known antimicrobial effects [101], and lesser-known cytotoxic and chemotactic properties
[102–103], which may function as a tumor suppressor gene for urological cancers.

The differential expression of 20 proteins in the plasma of arsenic exposed individuals from
Bangladesh was reported [95]. Similarly, five discriminatory protein peaks were identified
in the serum proteomic profiles of forty-six male smelter workers with combined exposure
to both mixed lead and arsenic compared with forty-five age-matched male office workers
[96] using SELDI-TOF. However, in both of these studies the affected proteins have not
been identified or validated.

McHale et al. Page 7

Mutat Res. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3.4. Epigenomics
3.4.1. Human epigenomic studies—The epigenome is dynamic and is thought to be in
uenced by environmental factors throughout life [104–107]. Epigenetic modifications, such
as DNA methylation and histone modifications, may represent more stable fingerprints of
exposure than altered gene or protein expression [108]. Further, interindividual differences
in the epigenetic state could also affect susceptibility to xenobiotics and associated disease
risk [109]. A role for miRNAs in mediating the response to environmental exposures has
been demonstrated by a study showing that smoking induces gene expression changes in the
human airway epithelium [110] with some genes modulated by miRNA [111]. DNA
methylation levels [112] and miRNA profiles [113] are amenable to investigation in a high-
throughput manner by array- and sequencing-based methods.

Aberrant gene promoter methylation is a common event in cancer [114–116] and other
diseases [117]. A recent study of DNA methylation in lung cancer arising in tobacco
smokers and alcohol drinkers revealed evidence of gene-specific and sex-specific
differences in methylation patterns [116]. Cancer-related methylation changes have been
reported in cancer-free individuals and potentially associated with lifestyle factors [118].
Expression profiling analyses have also revealed potential characteristic miRNA signatures
in certain human cancers [119–122] and other diseases [123–124].

Studies of epigenetic alterations in populations at increased risk of disease through exposure
to chemicals are necessary to determine whether such alterations are involved in the causal
pathways of disease development.

3.4.2. Benzene epigenomics—A study of epigenetic changes induced by low-level
exposure to benzene in healthy subjects including gas station attendants and traffic police
officers, revealed significant hypermethylation in p15 with increasing airborne benzene
levels [125]. While this is the first human study to show DNA methylation changes induced
by low-level carcinogen exposure, the magnitude of altered methylation was small and the
benzene exposures were very low (~22 ppb) and potentially confounded by other exposures
and lifestyle factors.

We conducted a pilot study analyzing the DNA methylation profiles of over 800 genes in the
buffy coat DNA of 6 workers (2 male, 4 female) exposed to benzene and 4 unexposed
controls (2 male, 2 female), using array technology [65]. Preliminary data showed gender-
specific methylation patterns, as expected, and revealed altered methylation induced by
benzene at many CpG sites. Decreased methylation of RUNX3 (AML2), a gene whose
altered expression has been associated with myeloproliferative disorders [126] and increased
methylation of MSH3, a critical gene in the maintenance of genome integrity, and Sema3C, a
secreted guidance protein implicated in tumorigenesis [127], was also found. We also
reported that benzene exposure altered miRNA expression in exposed workers [65]. We are
currently expanding these studies.

3.4.3. Arsenic epigenomics—Arsenic exposure has been shown to alter the DNA
methylation status of multiple gene promoters in humans. Hypermethylation of the p53 gene
promoter was observed in arsenic-exposed people compared to control subjects and of the
p53 and p16 genes in arsenic-induced skin cancer patients compared to subjects having skin
cancer unrelated to arsenic [128]. Arsenic exposure has also been shown to induce death-
associated protein kinase (DAPK) promoter hypermethylation in a human uroepithelial cell
line [129] and in human urothelial carcinoma [130] and RASSF1A and PRSS3 promoter
hypermethylation in advanced human bladder cancer [131].
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It has been proposed that the mode of action of arsenic is similar to folate deficiency [132].
In support of this, Kelsey and colleagues showed that treatment with arsenic and folate
deprivation in vitro produced similarly altered miRNA expression profiles [133] and
confirmed the altered expression of hsa-miR-222 in human subjects with low dietary folate
levels. This study shows that miRNA expression profiles altered by environmental
carcinogen exposures may be associated with the process of carcinogenesis.

4. Contribution of human toxicogenomic data to risk assessment
It should be clear from the studies described above that good experimental design
incorporating precise, individual exposure measurements, phenotypic anchors (pre-disease
state or traditional toxicological markers), and a range of relevant exposure doses can
increase the power of human population toxicogenomic studies to generate biomarkers of
exposure and/or early effect, elucidate modes of action underlying associated disease and
detect effects at low doses. These findings can inform risk assessment. Recently, a
committee of the NAS, the “Science and Decisions Committee”, found “substantial
deficiencies” in the current approaches to the treatment of uncertainty and variability in
quantitative risk assessment of both cancer and noncancer outcomes and offered a new
framework for risk-based decision making [134]. One of the recommendations was the
harmonization of cancer and noncancer risk assessment. Human toxicogenomic data, being
unbiased, can potentially generate biomarkers and inform mechanisms underlying a wide
range of human disease. The framework differentiates individual from population risk with
probabilistic characterization of the latter informed by formal systematic assessment of
human heterogeneity with respect to susceptibility (genetics, age, lifestage), co- and
background exposures, as well as mechanisms of action. Toxicogenomic endpoints reflect
gene-environment interaction and in a sufficiently large diverse population could potentially
evalute human heterogeneity. For example, data could be evaluated in subgroups of
susceptible individuals containing candidate or known susceptibility genes. Further, as
discussed earlier, adductomics can provide a measure of internal dose reflecting gene-
environment interaction.

4.1. Hazard Identification
Current methods used in hazard identification of e.g. carcinogens, include the 2-year rodent
carcinogenicity bioassay, which assesses the risk of cancer development in animals [135],
and the short-term in vitro genotoxicity testing battery which assesses a chemical’s ability to
cause genetic damage in cells predictive of cancer [136]. Both of these approaches have
limited predictive potential for carcinogenesis in humans and fail to address non-genotoxic
effects. In order to achieve better cancer predictive potential, toxicogenomic studies of
exposed cell lines and animals have been explored as an alternative approach to hazard
identification of different classes of carcinogens, through determination of generic molecular
pathway responses, as reviewed [137]. Gene sets have been identified that could
discriminate classes of chemicals, e.g. carcinogens and non-carcinogens [138–141], and
genotoxic vs non-genotoxic carcinogens [142], in vitro and in animal models.

The paucity of toxicogenomic data from exposed human populations currently precludes the
identification of similar human gene sets. However, initiatives such as the Comparative
Toxicogenomics Database (CTD) [143] and Chemical Effects in Biological Systems
(CEBS) [144] have been developed to store current and future human toxicogenomic
datasets and facilitate studies of the inter-relationship among, genes, environment and
disease. Such databases also provide a framework for the classification of new chemicals
based on comparison of transcriptomic, proteomic and epigenomic profiles. Aside from the
toxicogenomic databases, most recently published transcriptomic data is also publicly
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available through the Gene Expression Omnibus (GEO) Database,
www.ncbi.nlm.nih.gov/geo.

4.2. Exposure and dose-response assessment
Among the limitations of current risk assessment approaches are difficulties in extrapolating
from acute, high-dose exposures in animals to environmentally relevant chronic exposures
in humans and assessing dose-response in the appropriate dose-range. The NAS Science and
Decision committee recommended three conceptual models for estimating low-dose risk
estimates [134]. However, concerns regarding the use of human variability modeling to set
exposure standards for human exposures to toxic chemicals (model 2) has been raised [145].
Human toxicogenomic studies can be designed to measure effects at low-dose exposures but
have mainly addressed exposures at the upper end of typical ranges of human exposure and
have often lacked precise, individual estimates of exposure. Biomarkers of internal dose,
such as specific protein adducts [14,146–147] which can account for inter-individual
differences in metabolism, have rarely been applied. Dose response, an important criterion
of risk assessment, has not been examined in the majority of human population studies. The
prevailing notion that genotoxic agents have a dose-response curve that is linear in the low-
dose region without a threshold, while the dose-response curves for non-genotoxic agents
have a threshold, has been disputed [148]. Further, it has been argued that the study of
endpoints in humans exposed at low levels may be able to provide empirical data necessary
to clarify the shape of the population dose-response curve. With good study design and
precise measurements of exposure, toxicogenomic studies have the potential to detect effects
across a range of environmentally relevant low-dose exposures in humans [66,75].

We recently showed that two different metabolic pathways, with different affinities, exist for
high and low-dose benzene in a study of benzene exposures and metabolite levels among
263 non-smoking women [149]. Statistical evidence from the study strongly suggests that a
currently uncharacterized high-affinity pathway is largely responsible for the metabolism of
benzene at sub-part per million air concentrations. The finding implies that the risk of
leukemia associated with benzene could be substantially greater than is currently thought in
the general population. A differential effect of low-dose exposure to benzene is further
supported by our finding of unique gene and pathway effects, through transcriptomic
analysis [65–66].

4.3. Risk characterization
Toxicogenomic studies in animals have informed the modes of action underlying toxic
effects by chemical class, e.g. DNA damage and cell cycle progression characterized four
genotoxic hepatocarcinogens, while oxidative stress or a regeneration response characterized
nongenotoxic carcinogens in a study examining male rats exposed for up to 14 days at doses
previously shown to induce hepatic tumors in long-term cancer bioassays [142]. As
discussed earlier, toxic effects in animals often do not predict those in humans. Therefore,
the direct identification of key mechanisms underlying human toxicity may be more
informative and can certainly complement the animal and in vitro approaches. As discussed
above, many of the human toxicogenomic transcriptome studies identified impacts on
altered immune and inflammatory processes as well as apoptosis and cell cycle. The CTD
[143] and CEBS [144] databases provide a framework on which to investigate mechanisms
of action underlying toxicity, as more studies are performed on different types of chemical
exposure. Toxicogenomic profiling of exposed individuals with pre-disease states predictive
of future disease, such as arsenical skin lesions [48], can increase the ability to identify
disease-causal mechanisms.
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5. Systems biology approach to human toxicogenomics
While individual toxicogenomic datasets can provide valuable information, systems biology
approaches may be necessary to clarify the molecular and cellular networks impacted by
exposure, and thus identify all potential mechanisms of action. Assessment of a single
epigenetic modification such as DNA methylation may not have a predicted phenotypic
effect or inform the causal pathway of disease, as multiple mechanisms are required to
coordinately regulate transcriptional status. Altered transcription, in turn, may not be
reflected in protein levels. According to systems theory, whereas individual genes or
environmental factors may be key elements in a complex disease process, the phenotype is
ultimately determined by the modulation of underlying pathways. Systems-based
approaches provide a holistic view of interactions at the molecular, pathway and organism
level, with connectivity described by networks. Systems approaches have been proposed for
deriving networks informing risk assessment [150], disease development [151] and gene-
environment interaction [152]. Ultimately, these networks could define the continuum from
baseline biological perturbation induced by environmental exposures through pre-clinical
and clinical disease, at multiple levels.

The application of a systems approach to risk assessment has been proposed in which
molecular networks are constructed from omics data at different levels of the system [150].
Through biological interpretation and in vitro and in vivo data, key event networks with
nodes representing toxicity pathways, are abstracted from the molecular network. In this
scenario, mechanisms of action for an environmental factor would represent perturbations of
the “normal” state and allow predictions of adverse outcomes to be made. Outcomes are
driven at the individual level by the genetic, epigenetic and exposure profile and at the
population level by common genetics, lifestyle and environment. This approach could be
informative for disease-associated exposures for which underlying disease mechanisms are
not understood despite knowledge of multiple modes of action such as benzene and arsenic
[148]. The systems approach would facilitate examination of the interactions among
multiple modes of action and their variability with life stage, genetic background and dose.

Network-based approaches have also been applied to understand disease processes. Despite
the large number of mutations, epigenetic alterations and gene expression perturbations
catalogued for human disease [153–156], a relatively small number of pathways may
ultimately underlie disease. Pedersen-Bjergaard characterized 8 different genetic pathways
for the development of acute myeloid leukemia (AML) and showed that de novo and
therapy-related AML can be considered biologically as the same disease [157]. Similarly, a
core set of 12 signaling pathways and processes have been identified in pancreatic cancer
[154]. A novel framework for the identification of disease-specific protein biomarkers
through the integration of biofluid proteomes and inter-disease relationships using a network
paradigm, was recently described [151]. From a blood plasma biomarker network of 136
diseases and 1,028 detectable blood plasma proteins and a urinary biomarker network of 127
diseases and 577 urine proteins, it was shown that the majority (>80%) of putative protein
biomarkers are linked to multiple disease conditions with few associated with a single
disease.

A network-based gene-environment-disease approach recently identified key regulatory
pathways that integrate genetic and environmental modulators of disease [152]. In that
study, a network of complex diseases and environmental factors was derived through the
identification of key molecular pathways associated with both genetic and environmental
effects based on information in the Genetic Association database [158] and the CTD [143].
The analysis identified natural and synthetic retinoids, antipsychotic medications, omega 3
fatty acids, and pyrethroid pesticides as potential environmental modulators of metabolic
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syndrome phenotypes through PPAR and adipocytokine signaling, and organophosphate
pesticides as potential environmental modulators of neuropsychiatric phenotypes.
Intersection of the top pathways most often enriched in genetic association studies and
environmental factor research suggest retinol metabolism, Jak-STAT signaling, Toll-like
receptor signaling, and adipocytokine signaling are critical pathways important to complex
disease progression.

A new research discipline, systems epidemiology, has been proposed that would use novel
“globolomic” design of prospective cancer epidemiology studies, and data obtained through
omic technologies and systems approaches, to assess cancer risk in an integrated manner
[159]. This approach would consider the complexity of the multistage carcinogenic process,
the latency time, and the changing lifestyle of the cohort members, integrating data,
spanning multiple levels of the biological scale, and environment information. Challenges
remain in the design of human toxicogenomic and, ultimately, systems epidemiology
studies.

6. Challenges in human toxicogenomic study design
A large number of toxicogenomic endpoints are generated from individual studies e.g. gene
expression data for ~21,000 genes, DNA methylation data for multiple CpG sites per gene,
~1 million SNPs. Given the degree of human heterogeneity and the large numbers of
potential biomarkers examined, the so-called curse of dimensionality means that
toxicogenomic studies need to be designed with sufficient power (relatively large sample
sizes) to detect effects of the exposure under examination and to allow for analysis of the
interrelationship among different toxicogenomic endpoints in the systems biology approach.
Although, as the dimension becomes larger, the challenge becomes more profound, such that
studies that do not properly account for the analytical challenge run the risk of a high
probability of false positive findings [160].

Epidemiologic studies generally adjust for confounding from age, smoking, and gender. Due
to likely synergistic effects of complex mixtures, overlap in toxic mechanisms, and
interaction with non-chemical stressors, studies should also adjust for past exposure to the
substance under examination and current co-exposures that could be potentially
confounding. Other confounding may be more difficult to control for. Diet modulates the
human blood transcriptome [42] and even under similar dietary conditions, variability in the
gut microbiome influences host metabolism, physiology and gene expression [161]. Stress
[39], exercise [40–41], and lifestyle [43] also modulate the human transcriptome. It has been
postulated that distal environmental conditions, such as in utero or early childhood
exposures, can influence an individual’s response to a later exposure [109]. Cumulative
damage such as genetic or epigenetic mutations could increase risk of disease even at low
exposures, particularly those diseases occurring later in life. This is supported by the finding
of a greater effect of environmental tobacco smoke (ETS) among smokers compared to
never-smokers in a large prospective study of respiratory cancer and chronic obstructive
pulmonary disease [162].

A major goal of human toxicogenomic studies is the examination of effects at low doses.
Precise, individual exposure assessment and measures of internal dose covering a range of
doses including low/environmental levels is necessary. Typically, dose-response has not
been incorporated into the design of such studies. Our recent study of transcriptomic profiles
associated with benzene exposure, which incorporated precise, individual exposure
measurements and examined a range of doses, revealed potential biomarkers and pathways
uniquely impacted at low-dose benzene exposure [65–66].
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Given the high-dimensional nature of toxicogenomic data, standardization of data analysis is
desirable. One of the main current approaches is to examine the association of variables
(e.g., gene expression) and past exposures one at a time, minimizing the number of false
positives by controlling experimental error rates, from the conservative family-wise error
rate (FWER) to the more lenient false discovery rate (FDR). Many techniques have been
proposed (see for instance [163] for permutation-based methods as well as the commonly
used Benjamini and Hochberg method for controlling FDR [164]). We have focused on re-
sampling based multiple testing methods that can gain efficiency by using knowledge on the
marginal distribution of the test statistics [165–166]. We also believe there is great promise
in using semiparametric models developed for causal inference as tools for biomarker
discovery [167]. In addition to looking on a gene by gene basis, one can gain power and
possibly aid interpretation by looking for common patterns among sets of genes, either by
use of clustering algorithms for instance, [168] and so-called gene-set enrichment analysis
(GSEA) [169] and [170] as well as looking for gene ontologies with over-represented,
differentially expressed genes [171–172].

The goals of deriving information pertinent to hazard identification (chemical classification)
and risk characterization (mechanism of action) from human toxicogenomic data, are
predicated on an expansion of current toxicogenomic databases. This is challenging given
that human population studies are expensive to undertake with the power required for
systems biology approaches. Characterization of the “normal” human blood transcriptome,
methylome, and proteome is also necessary and will be defined as the number of studies
increases. The NIH Roadmap Initiative, established in 2007, aims to develop comprehensive
reference epigenome maps [173]. As more toxicogenomics studies are performed, with
robust exposure assessment, the range of “normal” profiles will be coordinately be
delineated.

Human toxicogenomic studies typically analyze effects in readily available biofluids such as
blood and urine. It is uncertain whether such tissues are good surrogates of all potential
target tissues such as bladder, kidney, and lung. Toxicogenomic profiles from disease-
relevant tissues such as exfoliated bladder cells in the investigation of bladder cancer [174]
or bronchial airway epithelial cells in lung cancer, as was recently done using miRNA
profiling for cigarette smoke exposure [111], may be necessary. Further, analyzing changes
in blood generates an average of the responses of all cell populations therein and may mask
effects on cellular subtypes. Optimal sample processing for all toxicogenomic endpoints is
challenging.

A final challenge is the interpretation of the findings of human toxicogenomic studies. In
order to make causal inferences, true effects need to be distinguished from adaptive
responses in the context of appropriate phenotypic anchors. It is unclear whether the
demonstration of key events (critical perturbations) predictive of health endpoints (e.g.
cancer) is necessary or whether perturbations of baseline biological processes sufficient to
induce substantial cellular level response (e.g. stress response) provide adequate endpoint
risk assessment [30].

7. Conclusions
With appropriate study design and sufficient power, data from toxicogenomic studies of
exposed human populations can inform risk assessment, by generating biomarkers of
exposure and/or early effect, elucidating mechanisms of action underlying exposure-related
disease, and, detecting effects at low doses. The incorporation of precise, individual
exposure measurements, phenotypic anchors (pre-disease or traditional toxicological
markers), and a range of relevant exposure doses are necessary. As more studies are
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performed and incorporated into databases such as CTD and CEBS, data can be mined for
classification of newly tested chemicals (hazard identification), and, for investigating the
inter-relationship among, genes, environment and disease in a systems biology approach
(risk characterization). Efforts are underway to address the challenges to this approach
including improvements in exposure assessment, accounting for past and current exposures
and other confounding factors, particularly at low-doses, consideration of the effect of
lifestage and the contribution of cumulative exposures, development of powerful
bioinformatic approaches required for systems biology analyses and standardization of
toxicogenomic statistical analyses. The size of the studies required for sufficient power, and
the associated cost, needs to be addressed through prioritization and availability of funding.
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Abbreviations

AML acute myeloid leukemia

BC buffy coat

CB cord blood

CEBS Chemical Effects in Biological Systems

CNV copy-number variation

CS cigarette smoke

CTAP-III connective tissue activating peptide III

CTD Comparative Toxicogenomics Database

DAPK death-associated protein kinase

EPA Environmental Protection Agency

ETS environmental tobacco smoke

FDR false discovery rate

FWER family-wise error rate

GSEA gene-set enrichment analysis

GWAS Genome-wide association studies

HBD-1 human β-defensin-1

MALDI-TOF matrix-assisted laser desorption ionization/time of flight

MAQC MicroArray Quality Control

MDS myelodysplastic syndromes

MIAME Minimum Information About a Microarray Experiment

MIAPE Minimum information about a proteomics experiment

MS mass spectrometry

NAS National Academies of Sciences

NHL non-Hodgkin lymphoma
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PB peripheral blood

PBL peripheral blood lymphocytes

PBMC peripheral blood mononuclear cells

PF4 platelet factor 4

SELDI-TOF surface enhanced laser desorption/ionization

WBC white blood cells
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Figure 1. Application of Human Toxicogenomic Studies to Risk Assessment
The application of the OMIC technologies to human health risk assessment is shown.
Adductomics, transcriptomics, proteomics, and epigenomics can each provide a “molecular
signature” or “fingerprint” of exposure or early effect (hazard identification) which may
enhance our understanding of the mechanisms by which these chemicals cause toxicity and
contribute to disease (risk characterization), at a range of environmentally relevant exposure
levels (dose response). These omic signatures and ultimately, risk, induced by exposure, are
determined by the unique genomic composition of each individual and biomarkers of
susceptibility can be determined through genomic analyses. Thus, adductomics,
transcriptomics, proteomics, and epigenomics can characterize the exposome, responsome
and (early) outcome of each individual in the context of underlying susceptibility
(genomics), facilitating the examination of gene-environment interactions. Correlation of
toxicogenomic data with phenotypic endpoints, such as traditional toxicological or clinical
endpoints or pre-disease states (phenotypic anchors), could help to predict outcome greatly
improving the rigorous application of this approach to risk assessment.
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