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 9 

Dans cette étude, on présente différentes méthodes numériques pour la simulation du changement de phase 10 

liquide-vapeur (ébullition). On utilise un formalisme Level Set pour capturer l’interface liquide-vapeur. Un tel 11 

formalisme nécessite une étape de réinitialisation de la fonction Level Set après advection. Cette étape est critique 12 

pour la simulation du changement de phase car elle ne doit ni déplacer l’interface, ni introduire de déformations 13 

dans le profil de la fonction Level Set, sous peine de détériorer la précision du calcul de la normale à l’interface 14 

et de sa courbure, nécessaires pour définir respectivement la vitesse de l’interface due au changement de phase et 15 

le saut de pression à l’interface. On présente d’abord les équations résolues et le couplage des équations de Navier-16 

Stokes avec le taux de transfert de masse modélisant le changement de phase. Puis on détaille différents 17 

algorithmes de réinitialisation de la Level Set pour la simulation numérique de l’ébullition, sur maillages 18 

structurés et non structurés. Ces méthodes sont ensuite validées par un cas-test de croissance de bulle statique à 19 

taux de transfert de masse fixé. En particulier, on observe qu’à l’instant correspondant au doublement du rayon 20 

de la bulle, ce dernier converge en maillages pour toutes les méthodes présentées. Le test concluant sur maillages 21 

non structurés ouvre la voie à la simulation du changement de phase liquide-vapeur dans des géométries 22 

complexes. 23 

 24 

MOTS CLEFS : écoulements diphasiques, changement de phase, maillages non structurés, Level Set, 25 

ébullition 26 

 27 

Evaluation of Level Set reinitialization algorithms for phase change 28 

simulation on unstructured grids 29 

In this study, we present different numerical methods for the simulation of liquid-vapor phase change (boiling). 30 

We use a Level Set formalism to capture the liquid-vapor interface. Such a formalism requires a reinitialization 31 

(aka redistancing) step of the Level Set function after advection. This step is critical for phase change simulation 32 

as it must neither move the interface nor induce perturbations in the Level Set function, otherwise the normal 33 

vector to the interface and its curvature, two quantities that are crucial to define respectively the interface velocity 34 

due to phase change and the pressure jump at the interface, would be in turn too much perturbed. Here we present 35 

a comparison of different reinitialization algorithms of the Level Set function for boiling simulation, on structured 36 

and unstructured grids. These methods are then validated against the analytical case of a static growing bubble 37 

with a fixed mass transfer rate. In particular, we observe that at the time corresponding to a doubled bubble radius, 38 

the error on the bubble radius decreases with the grid cell size for all presented methods. 39 

KEYWORDS: two-phase flows, phase change, unstructured grids, Level Set, boiling 40 

I INTRODUCTION 41 

Two-phase flows are encountered in a wide range of industrial applications such as heat exchangers, nucleate 42 

boiling or spray cooling. The particularity of two-phase flows is the existence of an interface between the two 43 

phases. Numerical simulations of two-phase flows require the localization of the interface. Two-phase flow 44 

simulations including liquid-vapor phase change are even more challenging, as the motion of the liquid-vapor 45 

interface depends also on the mass transfer rate. There exist several numerical methods to keep track of the 46 

interface. In this study we describe different versions of the Level Set method [Osher and Sethian, 1988] on 47 

both structured and unstructured grids. These methods are then validated and compared on the analytical case 48 

of a static growing bubble with an imposed mass transfer rate. 49 
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II GOVERNING EQUATIONS 50 

We solve the incompressible Navier-Stokes equations 51 
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where u


 is the velocity, 𝑝 the pressure, 𝜌 the density and Σ the viscous stress tensor of the given phase. The 53 

discontinuity in the velocity field at the interface is given by 54 
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where   vapliq qqq 
  denotes the discontinuity, or jump, of the quantity q  across the interface  , m is 56 

the mass transfer rate (in kg m-2 s-1) responsible for phase change, and n


 is the interface normal vector pointing 57 

towards the liquid phase. When solving (1) we also have to take into account the pressure jump at the interface 58 

given by 59 
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where   is the surface tension and   the curvature of the interface. Both jumps (2) and (3) are used in the 61 

projection method to solve (1) [Tanguy et al., 2014]. 62 

In this study, as we focus on the different Level Set approaches available to accurately capture the interface, 63 

we assume that the mass transfer rate is fixed. These methods have been implemented in the YALES2 solver 64 

[Moureau et al., 2011] and are presented in the next section. 65 

III LEVEL SET METHODS ON STRUCTURED GRIDS 66 

The most challenging task in two-phase flow simulations is the accurate localization and advection of the 67 

interface at every time step. Perturbations in interface localization result in a loss of precision and, in the more 68 

severe cases, in physical aberrations. With phase change, this well-known problem is even more restrictive. 69 

There are several methods to represent the interface. In this work, the Level Set method is used. A Level Set 70 

function is a function seen as a set of iso-levels. The liquid-vapor interface is identified as one specific iso-71 

level [Osher and Sethian, 1988]. The Level Set method has two major advantages. First, the advection of the 72 

Level Set function in all the computational domain enables the implicit capture of the interface. Second, 73 

geometrical properties such as normal vector and curvature of the interface are embedded in the Level Set 74 

field. The main drawback of the Level Set method is the mandatory need of a reinitialization step of the Level 75 

Set function.  76 

III.1 Case 1 - Signed Distance Function reinitialized by a Hamilton-Jacobi equation 77 

We start our investigations by the method described by Tanguy et al. [2014]. In this method, the Level Set 78 

function is the Signed Distance Function   to the interface   defined for any x


 in the computational domain 79 

  by 80 
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In this case, the interface is identified as the 0 iso-level of the Level Set function [Osher and Sethian, 1988]. 82 

The Signed Distance Function is advected by solving the standard advection equation 83 
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where vapu  is the vapor phase velocity, vap  is the vapor density and the source term on the right hand side is 85 

due to phase change. After advection, the function   is reinitialized as a Signed Distance Function by solving 86 

the Hamilton-Jacobi PDE 87 
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where   is a pseudo-time, S  is a smoothed sign function defined by Sussman et al. [1994], and 
0  is the 89 

previously advected Level Set that needs to be reinitialized. The equation (6) is solved in pseudo-time until 90 

convergence, i.e. until 1


, which is part of the definition of the Signed Distance Function. The normal 91 

vector to the interface n


 and the curvature of the interface   are then given by 92 
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Note that high precision is needed in the reinitialization of   to avoid perturbations in the normal vector and 94 

curvature of the interface. To this purpose, the term 


 in (6) is computed using a high-order scheme such as 95 

the Fifth Order WENO scheme [Jiang and Peng, 2000]. High-order schemes require higher computational cost, 96 

are difficult to implement on unstructured grids and may reduce performance in a parallel code. 97 

III.2 Case 2 - Signed Distance Function reinitialized by the Fast Marching Method 98 

Another method for the reinitialization of the Signed Distance Function is the Fast Marching Method 99 

[Sethian, 1996]. The Fast Marching Method, based on the solution of an Eikonal equation, can be seen as the 100 

stationary version of the Hamilton-Jacobi equation (6) and is given by 101 

.1


                                                                                                 (8) 102 

The solution of equation (8) is based on the propagation of the Signed Distance Function values from the 103 

interface along the normal direction to the interface. To limit the computational time needed to perform the 104 

Fast Marching Method, we solve it only on a narrow band around the interface, large enough to be able to 105 

compute the normal vector and the curvature by equations (7). 106 

III.3 Case 3 - Conservative Level Set on structured grids 107 

In order to improve mass conservation in each phase, Olsson and Kreiss [2005] proposed the Conservative 108 

Level Set method. In this method, the Level Set function   is a smeared-out Heaviside function defined for 109 
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where   is the Signed Distance Function and   is a scale parameter roughly of the order of the grid cell size. 112 

In this case, the interface is identified as the 0.5 iso-level of the Level Set function. The Conservative Level 113 

Set is advected by solving the conservative form of the standard advection equation with source term  114 
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where the source term is composed of the phase change contribution and the divergence of the vapor velocity, 116 

which should be null, but it is recommended to account for this correction to decrease the sensitivity to errors 117 

in the evaluation of the velocity field. In (10), the interface velocity due to phase change PCu


 is given by118 
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where   is again the Signed Distance Function. This technique to compute 


 is reused from the 121 

reinitialization step suggested by Chiodi and Desjardins [2017] and presented below. The Conservative Level 122 

Set embeds the interesting property of volume conservation. The normal vector and the curvature of the 123 

interface are given by a similar approach as in (7).  124 



The reinitialization equation for the Conservative Level Set proposed by Olsson and Kreiss [2005] is 125 
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where the normal vector is given by 127 
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Nevertheless, the necessity to set   to a small value to improve volume conservation produces sharp gradients 129 

in   and thus potential oscillations in n


. To avoid this problem, and with the aim of increasing accuracy, 130 

Chiodi and Desjardins [2017]  built a new reinitialization equation for the Conservative Level Set given by 131 
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where the inverse of the Conservative Level Set map  is given by 133 
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The normal vector is computed based on the Signed Distance Function, derived from the Conservative Level 135 

Set function by using the Fast Marching Method: 136 
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where FMM  is the Signed Distance Function given by the Fast Marching Method using boundary conditions 138 

on the closest nodes to the interface. 139 

IV LEVEL SET METHODS ON UNSTRUCTURED GRIDS 140 

IV.1 Case 4 - Signed Distance Function on unstructured grids 141 

To be able to address complex geometries, algorithms are now extended on unstructured grids. The first 142 

unstructured case is similar to Case 1. Only the reinitialization step of the Signed Distance Function is replaced 143 

by the method developed on unstructured grids by Dapogny and Frey [2012]. We make use of the MshDist 144 

library implementing this method.  145 

IV.2 Case 5 - Conservative Level Set on unstructured grids 146 

Here we want to extend the methodology of Chiodi and Desjardins [2017] described for structured grids in 147 

Section III.3 to unstructured grids. The only difference is the replacement of FMM  by the Signed Distance 148 

Function given by the method proposed by Dapogny and Frey [2012]. 149 

V NUMERICAL RESULTS 150 

We validate the different Level Set reinitialization methods presented in the previous section on the case of 151 

a 2D static growing bubble with a fixed mass transfer rate from [Tanguy et al., 2014]. The initial bubble radius 152 

is 0R  = 10-3 m and the imposed mass transfer rate is m  = 10-1 kg m-2 s-1. The simulations are performed until 153 

final time ft  = 10-2 s needed for the bubble radius to double the initial radius. The other physical parameters 154 

of interest are liq  = 103 kg m-3, vap  = 1 kg m-3,   = 7   10-2 N m-1, liq  = 10-3 kg m-1 s-1 and vap = 1.78 155 

  10-5 kg m-1 s-1. In Table 1, the methods used in all cases are summarized. 156 



 157 

Grid topology Structured Unstructured 

Level Set type SDF CLS SDF CLS 

Reinitialization 

method 
HJ eq. FMM 

[Chiodi and 

Desjardins, 2017] 

[Dapogny and 

Frey, 2012] 

[Dapogny and 

Frey, 2012] + 

[Chiodi and 

Desjardins, 2017] 

Cases Case 1 Case 2 Case 3 Case 4 Case 5 

 158 

Table 1. Summary of all cases presented in the previous sections. SDF stands for Signed Distance Function, CLS for 159 

Conservative Level Set, HJ for Hamilton-Jacobi and FMM for Fast Marching Method. 160 

 161 

The five cases have been computed on four different grid cell sizes. As an example, Fig. 1 shows the results 162 

of Case 5 at final time on four different unstructured grids. The relative error on the bubble radius with respect 163 

to the theoretical radius at final time is given for all cases at final time in Fig. 2 (a). One can see that on the 164 

finest grid, the Case 5 detailed in Fig. 1 presents the highest relative error. The five methods have a convergence 165 

rate close to one. For the finest grid, all relative errors on the bubble radius are below 1%. The relative errors 166 

on the normal vector and the curvature are shown in respectively Fig. 2 (b) and 2 (c). The results show that the 167 

error on the normal vector decreases at order 1 for all methods including the Signed Distance Function on 168 

unstructured grids (Case 4). For Case 5, i.e. for the Conservative Level Set on unstructured grids, further work 169 

is needed to improve the convergence of both normal vector and curvature. 170 

 
(a) 

 
(b) 

 

(c) 

 

(d) 

Fig. 1. The results for the Case 5 on four different unstructured grids are plotted at final time with a characteristic cell 

size of (a) 4   10-4 m, (b) 2   10-4 m, (c) 1   10-4 m and (d) 5   10-5 m. The initial interface is plotted in blue, the 

computed interface in black, and the theoretical interface in red. For clarity, only the coarsest grid is represented in (a). 

The computed liquid and vapor velocity fields are plotted in (b).  

 

 171 

 172 

         

         (a)          (b)        (c) 

Fig 2. The normalized L∞ norm of the error on the bubble radius   is plotted at final time for the five cases on four 

different grid cell sizes (a). The analogous error for the normal vector (b) and for the curvature (c).  



VI CONCLUSION AND PERSPECTIVES 173 

In this study, several numerical methods for the advection and reinitialization of the Level Set function have 174 

been presented in the context of liquid-vapor phase change. These methods have been validated and compared 175 

on the case of a static growing bubble with a fixed mass transfer rate. All methods present a convergence rate 176 

with the grid cell size close to one. Two of the five methods presented are designed for unstructured grids. The 177 

ability to accurately compute the interface position allows the quantitative simulation of liquid-vapor phase 178 

change on unstructured grids. This opens the path to numerical simulations of liquid-vapor phase change on 179 

complex geometries. 180 

The main perspective of our work is the simulation of phase change on unstructured grids with a computed 181 

mass transfer rate which depends on the thermal fluxes at the interface and on the latent heat of the fluid. 182 
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