Journal on Data Semantics
https://doi.org/10.1007/s13740-021-00133-y

ORIGINAL ARTICLE l‘)

Check for
updates

SPARQL Query Generator (SQG)

Yanji Chen' . Mieczyslaw M. Kokar'@® - Jakub J. Moskal?

Received: 25 August 2020 / Revised: 1 May 2021/ Accepted: 18 June 2021
© The Author(s) 2021

Abstract

This paper describes a program—SPARQL Query Generator (SQG)—which takes as input an OWL ontology, a set of object
descriptions in terms of this ontology and an OWL class as the context, and generates relatively large numbers of queries about
various types of descriptions of objects expressed in RDF/OWL. The intent is to use SQG in evaluating data representation
and retrieval systems from the perspective of OWL semantics coverage. While there are many benchmarks for assessing the
efficiency of data retrieval systems, none of the existing solutions for SPARQL query generation focus on the coverage of
the OWL semantics. Some are not scalable since manual work is needed for the generation process; some do not consider (or
totally ignore) the OWL semantics in the ontology/instance data or rely on large numbers of real queries/datasets that are not
readily available in our domain of interest. Our experimental results show that SQG performs reasonably well with generating
large numbers of queries and guarantees a good coverage of OWL axioms included in the generated queries.

Keywords Synthetic SPARQL query generation - Ontology-based descriptions - Cognitive radios - OWL axioms - Jena

ARQ - SPARQL query evaluation

1 Introduction

The work described in this paper resulted from our involve-
ment in the development of applications for cognitive radio
networks where individual radios (“RF devices,” or “nodes”)
are equipped with various kinds of capabilities such as sens-
ing, transmitting, receiving and computing. A node may
provide and request services to and from other nodes in the
network. Additionally, applications may request services on
nodes in the network and the network then can match the
radio capabilities against the requests. In all such scenarios,
matching the requests against the device capabilities need to
be performed in order to derive decisions on which devices
should be used to satisfy a specific request.

B Mieczyslaw M. Kokar
m.kokar @northeastern.edu

Yanji Chen
chen.yanj@northeastern.edu

Jakub J. Moskal

jmoskal @vistology.com

Department of Electrical and Computer Engineering,
Northeastern University, Boston, MA, USA

2 VIStology Inc., Framingham, MA, USA

Published online: 10 July 2021

The whole process can be viewed as a represent - infer
- query cycle, which is executed by the so-called cognitive
engines (CE) or reasoners.

While the majority of the software-defined radios in use
today are configured and described in languages based on
XML, vendors started to claim that their reasoners are based
on the semantic languages, OWL in particular. Customers
who want to choose a specific reasoner are then faced with
the problem—which reasoner to choose?

Testing of such reasoners would need to include their capa-
bilities to represent communication networks and derive facts
that are not explicitly represented but are derivable via the
inference rules of the OWL language. This kind of testing
requires (1) generation of large collections of facts describ-
ing the networks (in OWL) and (2) generation of large and
versatile collections of queries (in SPARQL) for retrieving
information from such representations. In such a setting, both
the generation and the retrieval processes must be based on
the ontologies. Since the inference depends on the axioms of
OWL, the testing must ensure that the whole power of OWL
inference, i.e., all the types of the OWL axioms that appear
in the ontology, is used in both descriptions and queries.

We have described a description generator in [9]. In this
paper, we are focusing on the query generator. We are dealing
with a more general use case that is not limited to cognitive

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s13740-021-00133-y&domain=pdf
http://orcid.org/0000-0001-9243-3089

Y.Chenetal.

networks, but to any systems where reasoners are used to infer
facts from OWL encoded descriptions, and then, SPARQL is
used to query the fact base.

To ensure that the evaluation results carry a high level of
credibility, it is required to use large numbers of requests
of different types for matching against large pools of device
descriptions.

The queries must have sufficient semantics so that the
device capability matching system can precisely retrieve
devices of a desired type. The collections of queries must
be highly diversified to be representative of the whole tested
space of the requests.

Theoretically, the problem could be resolved using real
queries, or at least queries collected from real radio networks.
Unfortunately, this kind of queries is not readily available due
to various reasons. So the only practical solution is to use
synthetic queries, instead. A wide literature search for soft-
ware for this purpose has been performed. However, none
of the tools and published approaches satisfy our require-
ments (stated in the next section). Consequently, a SPARQL
query generator (SQG) program was developed taking into
account the various lessons learned from the related work.
The inputs to SQG are a domain ontology encoded in OWL
and an OWL class selected from this ontology (we call it the
“root class”) that represents the type of objects of interest to
the user. In our RF domain use case, the SDR ontology [32]
and the RFSystem class were used in these roles.

In this paper, SQG is described and the evaluation of its
features is presented. The generation approach focuses on
OWL axioms coverage and diversity coverage such that the
generated queries are highly diversified and aim at matching
both explicit and implicit descriptions of objects of a specific
type in a domain ontology. While our main objective is to use
it for generating requests for services against descriptions of
RF device capabilities based on an RF domain ontology, we
believe that it is also applicable to other domain ontologies.
To support this expectation, the results of using SQG for
generating SPARQL queries against the datasets based on
five other ontologies are also provided.

The rest of this paper is structured as follows. Section
2 reviews related work on SPARQL query generation. Sec-
tion 3 formalizes basic concepts need to define the SPARQL
query generation process. Section4 presents an overview of
SQG, followed by its implementation described in Sect.5.
Evaluation of SQG and query sets is presented in Sect.6.
Finally, conclusions and discussion are in Sect. 7.

2 Related Work

The literature search for methods of SPARQL query gener-
ation was guided by the following requirements that capture
the needs of the use case described in the previous section.

@ Springer

1. Query pattern satisfaction: All of the generated SPARQL
queries must be for retrieving objects of a specific type
(root class) against RDF descriptions of objects.

2. OWL axioms coverage: The query generation process
should have sufficient coverage of the OWL 2 axioms
[28]. In other words, the generator must use OWL axioms
in a given ontology in the generation process to ensure
that the generated queries cover the semantics (explicit
and implicit) in the ontology in which the dataset is rep-
resented.

3. Space coverage: The generated queries should have
a good coverage of the following three characteris-
tics: signature coverage, operator coverage and structure
coverage. Signature coverage means including in the
queries the concepts from the signatures of the ontologies
given as input. Operator coverage means including the
SPARQL operators({ AND, UNION, OPTIONAL, MINUS,
FILTERNOT EXISTS, FILTER EXISTS }). Structure coverage
means the queries should have diverse structures.

4. Scalability: The method should be able to generate large
numbers of queries.

Various approaches to query generation have been devel-
opedin the past years. We classified the approaches into seven
groups described below.

2.1 Developing Queries by Hand

In this approach, a rather small number of carefully designed
queries are provided by a testing system. LUBM [16] is a
benchmark designed for testing the efficiency of OWL-based
knowledge base systems (KBS). Fourteen test SPARQL
queries about the university domain are provided. The
queries are based on a specific ontology (Univ-Bench) [41].
The queries are realistic, and the selection criteria took
into account five factors: input size, selectivity, complexity,
assumed hierarchy information and assumed logical infer-
ence. Several works based on LUBM were described in
[23,24,43]. LBBM [43] aims at testing the KBS against
the knowledge base that commits to different benchmark
ontologies. LBBM offers twelve test queries. UOBM [23], an
extension of LUBM, provides fifteen test SPARQL queries
for testing inference capabilities and scalability of ontology
systems. EvoGen [24] is a synthetic Benchmark Suite for
evolving data. Besides original LUBM queries, it provides
custom queries that are commonly performed in the evolv-
ing data, such as retrieval of a diachronic dataset or a specific
version, longitudinal queries across versions. The focus of
this tool is queries about changes in the datasets.

Schmidt et al. [31] presented SP?Bench, a language-
specific benchmark designed to test SPARQL characteristics
imposed on target SPARQL engines. It comprises seventeen
meaningful SPARQL queries against benchmark datasets

SPARQL Query Generator (SQG)

that mirror key characteristics and distributions of Digital
Bibliography & Library Project (DBLP). The queries were
carefully designed to have a good coverage of most com-
mon SPARQL constructs, operator constellations and a broad
range of RDF data access patterns for query optimization.

Hasse et al. [17] defined a benchmark for the purpose of
analyzing various design choices for federating distributed
data sources. To this end, fourteen SPARQL queries were
manually developed as the benchmark queries, where seven
are for cross-domain benchmark datasets, and the rest are for
benchmark datasets in the life-sciences domain. The queries
represent real-life use cases. However, the authors did not
aim at the completeness with respect to the features of the
SPARQL language, but instead focused on the aspects that are
relevant in the context of the query processing over multiple
data resources [17].

Owens et al. [27] developed a configurable benchmark
for measuring the performance of RDF stores at a low, diag-
nostic level. For this purpose, a number of SPARQL queries
were meticulously designed for testing factors of the broader
categories of assertion, deletion and query.

Kotsev et al. [22] presented the Semantic Publishing
Benchmark (SPB) for performance assessment against Virtu-
o0so [13] and GraphDB [15] RDF engines based on scenarios
of the BBC media organization. The queries were elaborately
designed to simulate a constant load generated by end-users,
journalists, editors or automated engines. The set comprises
11 aggregation queries with good coverage of choke points
(technical functionalities that systems must tackle) and three
update queries with insert/update/delete operations.

Manual SPARQL query generation has some advantages—
it is simple and configurable. Developers have full control
over the queries for specific purposes without committing to
fixed patterns. However, this method is not scalable since it
is not feasible to develop a large number of queries by hand.

2.2 Generating Queries from Manually Developed
Query Templates

The main idea of this approach is that SPARQL query
expressions can be automatically constructed based on query
templates by replacing placeholders within the templates
with values in a knowledge base. Bizer et al. [7] introduced
the approach, called BSBM, and applied it to an e-commerce
use case for comparing the performance of four storage sys-
tems that expose SPARQL endpoints. Ten templates were
designed that emulate the search and navigation patterns of
a consumer looking for products. In the query instantiation
process, the placeholders within the templates are replaced
with values from the benchmark dataset.

RDFUnit [20] is an open source tool for evaluating the
quality of linked data based on the methodology for test
driven quality assessment of linked data. It contains a pre-

defined pattern library that consists of seventeen Data Quality
Test Patterns (DQTP). Each pattern aims at evaluating one
type of constraints satisfaction of datasets against ontologies.
A pattern is further instantiated into concrete data quality
test cases (SPARQL queries) by filling the placeholders with
terms from an ontology.

This approach is also widely used in question answering
(QA). The related work in this area provides some sys-
tems that translate natural language questions by users into
SPARQL queries. Shekarpour et al. proposed an approach for
constructing SPARQL queries from keywords. The method
utilizes seventeen pre-defined basic graph pattern templates
[34]. A filtered set of resource candidates in the ontologies
obtained for two user-supplied keywords are injected into
placeholders of suitable graph pattern templates. Since the
graph pattern templates are pre-defined, which are agnostic
to the underlying knowledge base and ontology schema, the
quality of the generated queries is good only if the keywords
and ontology are compatible. Atozori et al. presented QA3
[5], a statistical question answering system over RDF data
cubes. The system first tags a question with elements in a
knowledge base belonging to the same dataset. Then, the
question is tokenized with the tags. A sequence of tokens are
then matched against an extensible set of regular expressions,
each of which is associated with a SPARQL template. The
chosen template is then filled with SPARQL fragments by
using the tags and the structure of the dataset.

Pre-defined query templates are widely used for query
generation. The approach is configurable and scalable. How-
ever, since pre-defined query templates can hardly cover
sufficient axioms in an ontology, and queries generated from
the same template have an identical structure, the generated
queries do not sufficiently cover the semantics in the ontol-
ogy, nor do they have diversified structures.

2.3 Generating Queries from Requests in Natural
Language

This approach aims to translate natural language questions
expressed as keywords or sentences into SPARQL queries.
Note that some of the related work in this group is based
on pre-defined graph pattern templates, as summarized in
Sect.2.2.

Shekarpour et al. proposed an approach to automatically
generate query graphs from keyword queries or natural lan-
guage queries [33] over federated linked data. The main idea
is to first generate incomplete query graphs (IQGs) that con-
tain relevant resources for the input query and then use an
extension of the minimum spanning tree (MST) method to
connect IQGs into the whole query graph that fully covers
the relevant resources. The query graph is converted into a
conjunctive federated SPARQL query.

@ Springer

Y.Chenetal.

QUICK [44] is a system to help users to construct
SPARQL queries in pre-defined domain specific ontologies
using keywords. Initially, all possible query graph templates
are identified by the schema graph of a given ontology. Query
graphs are instantiated by binding keywords to terms (lit-
erals, concepts and properties) in the templates. The query
construction process is conducted by a query guide generated
by the proposed algorithm, which directs the user to specify
query intention until the query graph reflects the actual inten-
tion of the user. The query graph is transformed into SPARQL
in the end.

Unger et al. [40] proposed an approach to generate
SPARQL queries that capture the semantic structure of a
user’s requests in natural language. First, an input question
is processed to create lexical entries for parsing and construct
semantic representations of the question. The semantic rep-
resentations are then translated into SPARQL templates. The
slots of the templates are filled by the entities identified in the
given RDF data, which produces a range of query candidates
of the input questions. These queries are ranked based on
the query score that combines a similarity score and a promi-
nence score of the entities filled in the slots. The highest score
query with a non-empty result is returned to the user.

The natural language approach is widely used in question
answering (QA) due to its convenience. A user simply pro-
vides requests as keywords or sentences in natural language
without the need to master the query language nor acquire
specific details of the background knowledge. However, the
approach does not fit our problem. It is semi-automated,
which requires the user’s input and may require the user to
incrementally express the intent of queries during the pro-
cess of constructing queries. It is not scalable—not feasible
to generate a large number of queries. Due to the ambiguity
of natural language and the limitations of the query transla-
tion capabilities, the constructed queries may not precisely
reflect the intentions of the user.

2.4 Generating Queries Based on Given Queries

Morsey et al. [25] proposed the DBpedia SPARQL Bench-
mark (DBPSB) for evaluating the performance of four triple
stores, where a generic SPARQL query generation method-
ology based on existing queries was described. First, the
queries from a DBpedia SPARQL query-log are reduced
based on query variations and frequency. Second, the remain-
ing queries are clustered by computing query similarity.
Thereafter, 25 representative queries that cover the SPARQL
features of interest are selected based on the cluster ranking
and the query frequency. Each selected query is then con-
verted into a SPARQL query template by replacing a part
of the query with placeholders. The actual SPARQL queries
are generated by filling the placeholders with retrieved con-
crete values in the datasets. As an extension of this method,

@ Springer

FEASIBLE [30] considers more query features (such as the
number of join vertices and triple patterns selectivities) in
the query selection process, which in turn produces better
sample queries.

However, this approach is not applicable to our domain,
as well as to other domains where relatively large numbers
of real queries are not available.

2.5 Generating Queries from Datasets

Queries can be constructed by making use of graphical
structure of RDF instance data. Qiao et al. proposed an
application-specific benchmark named RBench [29], where
a flexible query workload generation process from a given
RDF dataset is proposed. The query generation process con-
tains three steps: dataset preprocessing, dataset analysis and
benchmark graph pattern generation. RBench preprocesses
a given dataset to identify resource types, relationship triples
and attribute triples, followed by the generation of relation-
ship patterns and attribute patterns in the data analysis step.
Graph pattern generation utilizes the results in dataset anal-
ysis to generate five types of queries (node queries, edge
queries, star queries, cyclic queries and subgraph queries).
The first four types of queries are generated by formulat-
ing triple patterns from selected relationship patterns and
attribute patterns using resource types. Subgraph queries are
generated by first selecting a subgraph from the given RDF
graph, and then generating SPARQL queries from the sub-
graph. The queries are structurally diversified and have a
good coverage of entities in the given datasets.

Gorlitz et al. proposed SPLODGE [14], a systematic
SPARQL benchmark for federated linked data. It provides a
methodology for a systematic and scalable query generation.
The methodology consists of three steps—query parameteri-
zation, query generation and query validation. The first step is
to select and combine query parameters (query algebra, query
structure and query cardinality) to fit desired evaluation sce-
narios. After that, it preprocesses the datasets and computes
statistics. The query generation employs iterative combina-
tion of query patterns based on the statistical information.
At last, the verification of generated queries is conducted
by computing confidence value based on query selectivity.
Queries are not accepted if their confidence values lie below
apre-defined threshold. However, this approach is only appli-
cable to federated linked data scenarios. The implementation
of SPLODGE is incomplete since only a few query features
described in the paper are supported.

Apart from the limitations specific to each of the approaches
described in those papers, some common limitations of
the methods stand out: Since no background knowledge is
involved, these systems cannot precisely retrieve matching
results for the queries through logical inference. Moreover,
since queries generated from small datasets cannot cover the

SPARQL Query Generator (SQG)

whole test space of the application requests, the methods are
inapplicable to our domain nor to other domains where very
limited real RDF datasets are available or accessible.

2.6 Generating Queries from a Pre-defined Schema

Alug etal. [1] developed the WatDiv system for stress-testing
of RDF management systems against a wide spectrum of
SPARQL queries with varying structural characteristics and
selectivity classes. Its main component is a query (and tem-
plate) generator of SPARQL queries against datasets. The
benchmark queries are generated in two steps. First, a set of
query templates are generated by performing a random walk
on the data model represented in the WatDiv dataset descrip-
tion language. To this end, first a set of queries, referred
to as basic graph patterns (BGP) with unbounded subjects
and objects but bounded predicates, is created. For each
BGP generation, a graph vertex for every entity type in the
schema is created, followed by the connections between the
vertices represented by the graph edges according to the asso-
ciations of the corresponding entity types specified in the
schema. Then, the query templates are randomly selected
from the queries by replacing a number of randomly selected
subjects/objects with placeholders. In the second step, the
placeholders in each query template are instantiated dynam-
ically from the datasets by the query generator.

gMark [6] is a domain and query language independent
framework targeting highly tunable generation of both graph
instances and graph query workloads based on user-defined
schemas for the purpose of evaluating graph query processing
engines. A schema is a configuration file in XML that allows
users to specify query workload configurations, including
query shape (chain, star, cycle, star-chain), the number of
conjuncts/disjuncts, etc. It is the first benchmark for gener-
ating workloads exhibiting recursive path queries, which are
central to graph querying [6].

The schema-driven approach is scalable and aims at gen-
erating diverse queries. However, since a pre-defined schema
lacks semantics, matching to the queries does not facilitate
logical inference.

2.7 Generating Queries from an Ontology

The main idea of this approach is to construct queries progres-
sively based on concepts and their relations in an ontology.
Dibowski et al. [11] presented a novel approach to modeling,
representing, viewing, accessing and storing device descrip-
tions with semantic web techniques for building automation
devices. To save users from writing SPARQL queries man-
ually, a generic search mask—a user-friendly graphical user
interface (GUI) for generating SPARQL queries against
device descriptions, is proposed. It is initialized according
to a specific ontology view that lists available concepts of

interest and their associated properties in an XML-based
document. The display shows the knowledge specific for
the view with tabs. In the attribute tab, users are allowed
to edit data properties and define values of required devices.
Concepts can be edited using the provided tabs, e.g., object
properties of required devices. After that, a SPARQL query
is dynamically generated by a query generation algorithm
that combines all the device requirements together. In gen-
eral, this approach is the closest to addressing the problem
addressed in this paper. The queries satisfy the restrictions
of the query pattern.

However, it does not fully satisfy the rest of the require-
ments of our problem. In particular, a pre-defined ontology
view (XML) for an ontology does not sufficiently capture the
semantics encoded in the ontology. Moreover, this approach
is semi-automatic since the users have to configure concepts
and properties manually by editing the search mask for each
generated query. To address these limitations, SQG extracts
and processes the OWL 2 axioms (explicit and implicit) in
an input ontology using the OWL API [18], which in turn
guarantees good coverage of semantics in the queries. SQG
generates random queries automatically, where the random-
ness is controlled by a set of probability thresholds.

2.8 Summary of the Reviewed Literature

Table 1 summarizes the reviewed literature with respect to the
satisfaction of the requirements. Each requirement is labeled
as Yes only if the related benchmark fully satisfies the require-
ment. Otherwise, it is labeled as No. In summary, none of
them fully satisfies our requirements. Some of the approaches
do not generate queries that satisfy a specified query pattern.
Handmade or semi-automated generation approaches are not
acceptable when large numbers of queries are required. The
queries generated from pre-defined query templates lack a
sufficient coverage of the OWL semantics, and the struc-
tures of the queries are not diversified. Generating queries
based on existing queries or datasets are not applicable to the
domains such as the RF domain where large collections of
real SPARQL queries or RDF datasets are not available. The
queries generated from a pre-defined data model in a lan-
guage that lacks a declarative semantics cannot sufficiently
cover the OWL semantics and thus are not suitable for auto-
matic inference.

3 Formalization of Basic Concepts

This section introduces some definitions needed to formalize
the SPARQL query generation process. Note that all of the
definitions originate from other papers. Definition 1 comes
from [9]. Definitions 2 and 3 are based on [2] and [35],
respectively. We adjusted these definitions to our objectives

@ Springer

Y.Chenetal.

Table 1 Requirement

satisfaction by the reviewed Related work Query pattern Axiom coverage Space coverage Scalability
systems LUBM Yes No No No
LBBM Yes No No No
UOBM Yes No No No
EvoGen Yes No No No
SP2Bench Yes No No No
[17] Yes No No No
[27] Yes No No No
SPB Yes No No No
BSBM Yes No No Yes
RDFUnit Yes No No Yes
[34] Yes No No Yes
QA3 Yes No No Yes
[33] No Yes No No
QUICK No Yes No No
[40] No Yes No No
DBPSB Yes No No Yes
FEASIBLE Yes No No Yes
RBench No No Yes Yes
SPLODGE No No No Yes
WatDiv No No Yes Yes
gMark No No Yes Yes
[11] Yes No No No

of restricting the graph patterns in the generated queries. Def-
initions 4 and 5 are based on [2] and [8], respectively. Our
ultimate goal is to define SPARQL queries for descriptions
of objects of a specific type.

Definition 1 [Knowledge base signature] Given an ontol-
ogy O, the knowledge base signature K BS of O is defined
as KBS = {C,I,DP, OP}, where C denotes classes, /
denotes individuals, D P denotes data properties, and O P
denotes object properties.

Definition 2 [Triple pattern and basic graph pattern] A triple
pattern is defined as TP = (s, p,o) € { UV) x (DP U
OPUV) x (CUIULUYV), where L denotes literals, V
denotes variables, s is the subject, p is the predicate, and o is
the object. A basic graph pattern BG P is a finite set of 7' P.

Definition 3 [Weakly connected basic graph pattern] A basic
graph pattern BG P, viewed as a directed graph G = (V, E)
with vertex set V and edge set E, is a weakly connected graph
basic graph pattern BG P* if for all pairs of vertices s, t € V,
there exists a sequence of vertices s = v, vy, V2, ..., Uk =1t
such that (v;_1, v;) € E or (v;,vj—1) € Eforall 1 <i <k.

Definition 4 [Graph pattern with nested weakly connected
basic graph patterns]

1. ABGP*isa GP.

@ Springer

2. If P and P, are G P, then expressions (P AND P»),
(P; OPTIONAL P»), and (P; UNION P,) are G P (con-
junction graph pattern, optional graph pattern and union
graph pattern, respectively).

3. If P is a graph pattern and X € I U V, then (X GRAPH
P) is a graph pattern.

4. If Pisa G P and R is a SPARQL built-in condition, then
the expression (P FILTER R) is a GP (a filter graph
pattern).

A SPARQL built-in condition is constructed using elements
of the set I UL UV and constants, logical connectives (—, A,
V), ordering symbols (<, <, >, >), the equality symbol (=),
unary predicates like bound, isBlank and isIRI, plus other
features (see [37] for a complete list).

Definition 5 [SPARQL query for objects of a specific type]
Given an ontology O and a class Root € O, a SPARQL
query g for objects of type Risatupleq = (QF, GP*, SM),
where QF = {SELECT} is the query form; GP* is a G P
that includes the triple pattern (?v rdf:type R); R = Root or
(R rdfs:subClassOf Root); SM = {DISTINCT} is a set of
solution modifiers.

Here is an explanation of the above definitions. First of
all, SPARQL supports four query types—SELECT, CON-
STRUCT, ASK and DESCRIBE. Their main differences are

SPARQL Query Generator (SQG)

Ontology RDF Object Descriptions

1

Process Ontology

Y

An OWL API Model

A 4

Generate Queries

v
SPARQL Queries for Matching Objects

Fig.1 SQG: top-level processes

in the format of the query results. Each type defines query
patterns in a WHERE clause and returns a multiset of vari-
able bindings, an RDF graph or a Boolean value. DESCRIBE
queries can also take a single URI and return an RDF graph.
In our problem, all the requests are about finding objects of
a specific type. Therefore, the only query type of interest to
us is SELECT.

Second, DISTINCT, REDUCE, LIMIT, OFFSET and
ORDER BY alter the result set which is returned by a
query. The DISTINCT modifier is required to avoid dupli-
cate matching results. The REDUCE modifier is not needed
since it simply permits duplicate solutions to be removed if
possible, but not mandatory. The rest of the modifiers are not
required since no other operations are needed.

4 SQG Overview

SQG consists of two steps: Process Ontology and Generate
Queries (see Fig. 1).

Process Ontology takes three kinds of input: an OWL
ontology, an RDF graph of object descriptions and a root
class that represents the type of objects of interest. It con-
structs a Java model using the OWL API [18]. The RDF
dataset is generated by the RODG program [9].

Generate Queries takes the Java model as input and gen-
erates a number of SPARQL queries for matching objects.
A typical query consists of five parts: query prologue, query
form, result variable, query body and result modifiers. The
queries are programmatically built using Jena ARQ [4]. The
generation process involves two steps. First, generate a graph
pattern as the query body. The graph pattern is progressively

Algorithm 1: BOOT-STRAP

Y
@thm 2: GGPN

Y

Algorithm 3: GGPA

\ 4
(AID:Hhm 4: MERGE

Fig.2 SQG: algorithms

1)

built starting from the root class. It recursively generates sub-
graph patterns that include triple patterns associated with
the root class and then merges the sub graph patterns in
the graph pattern recursively with randomly selected oper-
ators from {AND, UNION, OPTIONAL, MINUS, FILTER NOT
EXISTS, FILTER EXISTS}. The query prologue is progressively
built during the graph pattern generation process. At last, a
SPARQL query that combines all the parts into a single query
is built.

5 SPARQL Query Generation Algorithms

In this section, we describe only the algorithms for query
body generation. The full implementation of SQG is available
online [38].

The process is invoked by a boot strap procedure rep-
resented in Algorithm 1. It invokes Algorithm 2, which
recursively calls the sub-algorithms, as shown in Fig. 2.

The algorithm descriptions use the following notations:

— M: Java model built by Process Ontology.

— A(C;): Anonymous class expressions of an OWL named
class C; in M, including anonymous super class expres-
sions, anonymous equivalent class expressions and anony-
mous disjoint class expressions.

— R(C;): Relevant OWL named classes of an OWL named
class C; in M. It is defined as the union of C;, subclasses
of C;, superclasses of C;, equivalent classes with C; and
disjoint classes with C;.

— Dp r(C;): Datatype property key-value pairs of an OWL
named class C;; each pair (p,r) consists of a data property
p for which C; is its domain, and its data range r in M.

— Op r(C;): Object property key-value pairs of an OWL
named class C;; each pair (p,r) consists of an object

@ Springer

Y.Chenetal.

property p for which C; is its domain, and its range r as
an OWL class expression in M.

— 1(C;): OWL named individuals of type C; in M.

— V/(Cj): Variables that bind to OWL individuals of type
C;.

— anonymous(Cexp): true if class expression Ceyp is
anonymous, false otherwise.

— type(Cexp): Type of an OWL class expression Cyp; the
types of the OWL 2 class expressions are listed in [28].

— filler(C,.xp): Filler of a class expression C,y,. Accord-
ing to the OWL API, filler is: an OWL individual, if
Cexp is of type ObjectHasValue; an OWL literal, if
Cexp is of type DataHasValue; a class expression, if
Cexp is of type ObjectSomeValuesFrom, ObjectAllVal-
uesFrom, ObjectMinCardinality, ObjectMaxCardinality
or ObjectExactCardinality; a datarange, if C,y, is of type
DataSomeValuesFrom, DataAllValuesFrom, DataMin-
Cardinality, DataMaxCardinality or DataExactCardinal-
ity.

— operands(Cey)): Class expressions referenced by a class
expression C, of type ObjectIntersectionOf, ObjectU-
nionOf, or ObjectComplementOf. In logical languages,
these are called conjunction, disjunction, and negation,
respectively [28].

— gp: A graph pattern.

— G P: A one-dimensional array of graph patterns.

— length(G P): Function that returns the number of columns
of GP.

— comb(gpy, gpr, P): Function that combines two graph
patterns using one of the operators from {AND, UNION,
OPTIONAL, MINUS, FILTER NOT EXISTS, FILTER EXISTS}
selected randomly using the probability thresholds P.

— rand(S): Function that randomly selects a member of set
S based on uniform distribution.

— genVar(): Function that generates a new variable.

— genFilter Exp(r, ?v1): Function that generates a SPARQL

filter expression about ?v| based on data property range
r.

Algorithm 1 takes three kinds of input—a model M, a
root class R and a vector of probabilities P. It then invokes
Algorithm 2 passing to it a class expression Cy and a variable
name. The algorithm returns graph pattern gp.

Example 1: As an example, a small fragment of an OWL
API model of the SDR ontology (introduced in Sect.6) is
shown in Fig.3. The model example is represented as an
object diagram, where a rectangle represents an object of
a specific class, and a link between two objects shows the
corresponding Java model associations between the classes.
RFDevice:OWLClass represents the root class. The associa-
tion between this class and USRPB200:OWLClass is shown
as subClass/superClass. ObjectAllValuesFrom represents a
class expression that involves an objectPropertyExpression

@ Springer

(an ObjectProperty hasProducer) and a classExpression (the
Producer class). The right side of the graph can be interpreted
in a similar way. In this example, USRPB200 is selected as
Cy and passed to Algorithm 2.

Algorithm 1: BOOT-STRAP(M,R,P)

Input: M: model; R: root class; P: probability thresholds
Output: gp: graph pattern

1 Co < rand({subClass(R)} U R)

2 vy <« genVar()

3 gp < GGPN(M, Cy, M9, P)

Algorithm 2: GGPN(M,Cy,?vg,P)
Input: M: model; Co: OWL named class; ?vg: variable; P:
probability thresholds
Output: gp: graph pattern
1 visited(Cp) < true
2 if rand(0, 1) > P[0] then
3 | GPIOI <= GP[O] U {(?vo,rdf:type,Co)}

4 if rand(0, 1) > P[1] then
5 e < rand(A(Cp))
6 | GP[1] < GGPA(M e,?vo,P)

7 if rand(0, 1) > P[2] then

8 My <« genVar()

9 | (p,r) < rand(Dp gr(Co))

10 GP[0] < GP[O]U {(?vo, p, Tv1)}
11 if rand (0, 1) > P[3] then

12 L exp < genFilter Exp(r, ;)

GP[0] <~ GP[0]Uexp

14 if rand(0, 1) > P[4] then
15 | (p,r) < rand(Op g(Co))
16 if anonymous(r) then

17 My < genVar()

18 G P[2] < GGPA(M ,r,?v,,P)
19 t < (?vg, p, v2)

20 else if rand(0, 1) > P[5] then

21 Iy < rand(1(r))

22 t < (?vo, p, o)

23 else

24 C1 < rand(R(r))

25 if not visited(Cp) then

26 My < genVar()

27 G P[2] < GGPN(M,C1,?v,,P)
28 else if rand(0, 1) > P[6] then
29 ‘ My < genVar()

30 else

31 L My <« rand(V(Cy))

32 t < (?vg, p, Tv2)

33 | GP[0] < GP[O]U {1}
34 gp < MERGE(GP,0,2,P)

Algorithm 2 (GGPN(M,Cy,?vg, P)) implements the gen-
eration of graph patterns from the OWL named class Cy. Its
structure is based on the depth-first search (DFS) algorithm.

SPARQL Query Generator (SQG)

Fig.3 An OWL API model
example

RFDevice:OWLClass ‘

superClasses

subClasses

| USRPB200:0WLClass |

anonymousSuperCIasses/

objectPropertyandRangePairs

:ObjectAllValuesFrom I

objectPropertyExpression

classExpression

entrySet

[

hasProducer:ObjectProperty l IProduccr:OWLClass ‘

Fig.4 SPARQL query body

Step 1: Generate a class assertion triple pattern

key

|supportsTransmitting:ObjcctPropcrty | |Transmitting:0WLClass |

individuals

| 11:0WLNamedIndividual ‘

Step 2: Generate a nested graph pattern by Algorithm 3

generation example by Algorithm 2
{ ?vl a USRPB200
?v1 a USRPB200 {
} ?vl hasProducer ?v2
}
}

Step 4: Merge graph patterns by Algorithm 4

Step 3: Generate a nested graph pattern by
Algorithm 2

?vl a USRPB200
{

}
OPTIONAL
{

}

}

?vl hasProducer ?v2

?vl supportsTransmitting 11

{
?v1 a USRPB200

?vl hasProducer ?v2
G
{

}

?vl supportsTransmitting |11

Graph patterns are initialized as ni/ and then progressively
filled and combined by traversing the model as a directed
graph starting from the class Cy. Initially, all OWL named
classes are marked as unvisited. The algorithm first marks
Cp as visited and randomly generates a class assertion triple
pattern (a class assertion whose subject is a variable). Then, it
traverses the restrictions of Cy. The three types of restriction
of Cp are anonymous class expressions A(Cp), key-value
pairs Dp r(Co) and Op r(Cp). In the processing block
of each type of restriction, the algorithm randomly picks
exactly one restriction from class expressions/data ranges
and then calls either the sub-algorithm GGPA(M,e,?vo,P)
or recursively invokes itself, with appropriate parameters.
A subgraph pattern is recursively built in the process of
selecting the restrictions. At last, the algorithm invokes

MERGE(G P,0,2,P) to combine all the three subgraph pat-
terns in G P into one.

In order to guarantee the diversity of the query patterns,
random generation of triple patterns and selection of objects
are used. This is implemented by setting the probability
thresholds P[] for various types of triple pattern generation
or element selection. If a randomly generated value is greater
than the threshold, the random selection/generation will take
place. For instance, a class assertion triple pattern is included
when a randomly generated value 0 < p < 1 is greater than
the class assertion probability threshold P[0]. A triple pat-
tern may be randomly replaced with another triple pattern
(we term it as a relevant triple pattern of the triple pattern)
depending on the probability thresholds. For instance, if an
object property assertion triple pattern (?vg, p, ?v) is con-
sidered, a relevant triple pattern (?vy, p’, 2vg), where p’ is an

@ Springer

Y.Chenetal.

Algorithm 3: GGPA(M,C,,0n,v0,P)

Algorithm 4: MERGE(G P,i,j,P)

Input: M: model; Cg;0,: anonymous class expression; ?vy:
variable; P: probability thresholds
Output: gp: graph pattern

1 switch type(Cganon) do
2 case ObjectIntersectionOf or ObjectUnionOf
3 S «— rand(z{x\xgoperands(cam,”)})
4 i <0
5 foreach ¢ € S do
6 if anonymous(e) then
7 | GP[i] < GGPA(M.e,?v,P)
8 else
9 Co < rand(R(e))
10 if not visited(Cyp) then
1 | GPli] <~ GGPN(M,Co,?vo,P)
12 i<—i+1
13 gp < MERGE(GP,0,length(GP) — 1,P)
14 case QuantifiedObjectRestriction
15 if rand(0, 1) > P[4] then
16 p < getProperty(Canon)
17 Cexp < filler(Canon)
18 if anonymous(C,y),) then
19 My < genVar()
20 gp < GGPA(M,Ceyp,1,P)
21 t < (Pvo, p, 1)
22 else if rand(0, 1) > P[5] then
23 Iy <= rand(1(Cexp))
24 t < (v, p, lo)
25 else
26 Cy < rand(R(Ceyxp))
27 if not visited(Cy) then
28 My < genVar()
29 gp < GGPN(M,Cy,?v1,P)
30 else if rand(0, 1) > P[6] then
31 | w1 < genVar()
32 else
33 L My < rand(V(Cy))
34 t < (?vg, p, v1)
35 | gp < gp Ut}
// Process other types of Cuuon

inverse property of p, may be the ultimate triple pattern to
be included. The details of these procedures are not shown
in the algorithms.

Example 2: Figure4 shows the progression of SQG
through the algorithms. For simplicity, the figure only
includes the fragments that are traversed by the algorithms
for the query body generation that was started in Example 1.
Step 1 shows the generation of a class assertion triple pattern
(?vI rdf:type USRPB200) generated in line 3 of Algorithm 2.
Then, Algorithm 2 invokes Algorithm 3 to generate a nested
graph pattern (step 2), followed by processing key-value pairs
Op.r(Cp) to generate a nested graph pattern that includes a
triple pattern (?vI supportsTransmitting 11) (step 3). At last,
Algorithm 4 is invoked to merge the two graph patterns with
keyword OPTIONAL (step 4).

@ Springer

Input: G P: graph patterns; i: start index; j: end index; P:
probability thresholds
Output: gp: graph pattern

1 if i = j then
2 ‘ gp < GP[i]
3 else

4 k < rand({i, ..., j—1}hH

5 | gpi < MERGE(GP.i k,P)

6 | gpr < MERGE(GP.k+ 1,j,P)
7 | gp < comb(gpi, gpr. P)

Algorithm 3 (GGPA(M,C,0n,?v0,P)) implements sub-
procedures of generation of graph patterns. Graph patterns
are computed by traversing the model starting from an
anonymous class expression passed as Cgpnon. The result
depends on the type of anonymous class expression. The
algorithm covers all types of OWL 2 anonymous class
expressions described in [28]. Due to the space limitation,
only the processing of ObjectIntersectionOf, ObjectUnionOf
and cardinality-based object property restriction (Object-
SomeValuesFrom, ObjectAllValuesFrom, ObjectMinCardi-
nality, ObjectMaxCardinality or ObjectExactCardinality) is
shown. Specifically, if Cg;,0, is a ObjectIntersectionOf or
ObjectUnionOf, the algorithm first initializes graph patterns
G P, looks for the class expressions they operate on and
then either recursively calls the algorithm itself or calls
back to Algorithm 2 (GGPN(M,Co,?vg,P)), depending on
whether they are anonymous or not. Elements of GP are
progressively generated by the function calls. After all the
elements are built, they are merged by calling Algorithm 4
(MERGE(G P ,0,length(GP) — 1,P); if Cypon is a Object-
ComplementOf, the algorithm gets the class expression it
operates on and then either recursively calls the algorithm
itself or calls back to Algorithm 2 (GGPN(M,Cy,?vg,P)),
depending on whether the class expression is anonymous or
not; if Cynon is @ ObjectOneOf, the algorithm terminates;
if Canon 1s a ObjectHasValue or DataHasValue, the algo-
rithm gets the filler (an OWL individual or an OWL literal)
and then generates a property assertion triple pattern accord-
ingly; if Cypon 1s a ObjectHasSelf, the algorithm generates an
object property assertion triple pattern with the same subject
and object; if Cyp0, is a cardinality-based object property
restriction, the algorithm gets the property p and the filler as
OWL class expression Cy, referenced by Cepon. If Cexp is
anonymous, the algorithm generates a variable ?v; and calls
itself. Otherwise, it randomly picks an OWL named individ-
ual Iy € I(C,xp) or generates a variable ?v; and calls back
to Algorithm 2 (GGPN(M,C),?v1,P)) or simply generates
a variable ?vy or randomly picks a variable ?v; € V(Cy),
depending on the probability thresholds and the visit sta-
tus of C;. In any case, an object property assertion triple
pattern (?vg, p, 7v1) or (?vg, p, Ip) is generated and added

SPARQL Query Generator (SQG)

Table 2 Basic characteristics of the ontologies used in experiments

Ontology Class Object property Data property Class axiom Object property axiom Data property axiom
eDIANA 70 6 12 174 13 36

ToT 100 79 8 161 65 14

SAREF 112 63 31 251 89 51

SDR 321 104 21 548 203 37

Univ-Bench 43 25 7 42 47 4

WM30 351 81 20 561 88 23

into gp in the end; if Cyy,0y, is a cardinality-based data prop-
erty restriction (DataSomeValuesFrom, DataAll ValuesFrom,
DataMinCardinality, DataMaxCardinality or DataExactCar-
dinality), the algorithm gets the property p and the filler as
data range r referenced by Cg,0n and generates a variable
?v1. Then, a data property assertion triple pattern (?vg, p,
7v1) is generated and added into gp. The algorithm may
also randomly generate a filter expression with the function
getFilter Exp(r, 7vy) and add it into gp in the end.

Algorithm 4 (MERGE(GP,i,j,P)) merges graph pat-
terns indexed by m in G P, where i < m < j. The algorithm
is a divide and conquer algorithm. Lines 1-2 test for the base
case, where G P has just one column. Lines 3-7 handle the
recursive case. First, an index k, where i < k < j — 1, 1is
randomly selected, and then, the problem is divided into two
sub-problems. The algorithm recursively resolves each sub-
problem and gets the results as gp; and gp,. At last, gp; and
gpy are combined using a randomly selected operator from
{AND, UNION, OPTIONAL, MINUS, FILTER NOT EXISTS, FIL-
TER EXISTS} based on the probability thresholds P.

The run time complexity of the comb() operation is con-
stant (O (1)). So the run time complexity of the MERGE
algorithm is O(n), where n = j — i + 1 is the number of
columns in GP.

6 Evaluation

In this section, we present an evaluation of SQG with respect
to a number of metrics. Since one of our objectives was
to show that SQG can be used on different ontologies, we
reused the same set of ontologies for evaluating RODG [9],
i.e., the SDR ontology [32] developed by us, and five exist-
ing ontologies in different domains: the eDIANA ontology
[12], the IoT ontology [19,21], the Smart Appliances REF-
erence (SAREF) ontology [10,36], the Univ-Bench ontology
[41] and the WM30 ontology [39]. Table 2 summarizes the
basic characteristics of each ontology, including the number
of classes, object properties, data properties, class axioms,
object property axioms and data property axioms.

For quantitative evaluation, we selected metrics related to:
(1) Scalability—how does the query generation time increase
with the the number of queries and object descriptions? (2)
Coverage of OWL axioms—what is the percentage of OWL
axiom types included in the queries? This aspect is the most
important one since it addresses the main objective of devel-
oping SQG. (3) Coverage of SPARQL—what is the coverage
of the SPARQL language in the generated queries?

Experimental Setup: All the experiments were run on
the MacBook Pro 2016 computer. The system specification
is given below:

— Processor: 2.6 GHz quad-core Intel Core i7, Turbo Boost
up to 3.5 GHz, with 6MB shared L3 cache

— Storage: 256 GB PCle-based onboard SSD

— Memory: 16 GB of 2133 MHz LPDDR3 onboard mem-
ory

6.1 Scalability Evaluation

This section presents the assessment of how the number of
queries and the size of the datasets affect the performance.
Though there are various existing approaches to generate
SPARQL queries, as summarized in Sect.2, to the best of
our knowledge, none of the existing generators can be used
for generating large scales of SPARQL queries against object
descriptions with good coverage of SPARQL characteristics.
Therefore, it is not really possible to make any reasonable
comparisons of SQG with existing generators. In the exper-
iments, all test cases are executed with the same probability
thresholds. To make the evaluation results more intuitive,
the query generation time does not contain ontology load-
ing time, parsing time and extracting time since they are
fixed nonrecurring expenses for the whole generation pro-
cess regardless of the number of queries.

SQG underwent a comprehensive scalability/performance
evaluation with exponentially increasing number of queries
(20, 200, 2000, 20,000, 200,000, 2,000,000) against 3000
object descriptions for each of the six ontologies. The eval-
uation results are summarized in Fig. 5.

@ Springer

Y.Chenetal.

6
_ P07 e eDIANA
§1x1o5— =7
£ - SAREF
© —~ SDR
E 1x10¢4 -©- Univ-Bench
IE % WM30
2 1%10%-
o
Q
S 1x102
o

N
o ab af qF qF o
Number of Queries

Fig. 5 Query generation time for the six ontologies with 3000 object
descriptions

The testing results indicate relatively good performance
and scalability of SQG. In general, the generation time grows
linearly with the number of queries. The generation time for
20 queries in the worst case is 50 ms for [oT, whereas it does
not exceed 7 mins (366,013 ms for eDIANA) for 2,000,000
queries.

To investigate the effects of the size of the datasets in the
performance, we conducted another experiment to evaluate
query generation time of 200,000 queries against increasing
number of object descriptions (500, 1000, 1500, 2000, 2500,
3000) for each of the six ontologies. The evaluation results
are shown in Fig. 6.

The testing results indicate that the size of the datasets
does not affect the performance much. In general, the query
generation time increases slightly with the number of object
descriptions for eDIANA, SDR and Univ-Bench ontology
and remains the same for the rest ontologies. According to
the algorithms, the size of datasets may affect the perfor-
mance of procedure rand(I1(Cj)), i.e., randomly select an
OWL named individual from OWL named individuals of type
C; for triple pattern generation. However, such processes are
rarely executed by the algorithm. Since OWL individuals are
distributed among the OWL classes, the number of individ-
uals per class is relatively small.

6.2 Coverage of OWL Axioms

In this section, we present a comprehensive evaluation of the
queries generated by SQG with respect to their coverage of
the axioms of OWL. To achieve this, we focused on the cov-
erage of the signatures of the ontologies. In our experiments,
the metrics for signature coverage were collected for sets
of queries of varying size (20, 200, 2,000, 20,000, 200,000,
2,000,000) against 3,000 object descriptions for each of the

@ Springer

36000-
- - eDIANA
£300003 ¢ o —o—o—o & lOT
© = SAREF
E 240001 —~ SDR
c """ & Univ-Bench
%180001§§:—_‘—>‘.;gi§.K % WM30
)
S 12000
o Y———o——o/o\o/o

6000 I I I I I 1
500 1000 1500 2000 2500 3000
Number of Object Descriptions

Fig.6 Query generation time of 200,000 queries for the six ontologies
with different numbers of object descriptions

Table 3 Summary of the focus signatures [9]

Ontology |C|/total | O P|/total | D P|/total
eDIANA 70/70 6/6 12/12

ToT 100/100 71/79 8/8
SAREF 112/112 63/63 30/31
SDR 321/321 102/104 16/21
Univ-Bench 42/43 21/25 0/7
WM30 347/351 68/81 18/20

six ontologies. All the queries were generated with the same
probability thresholds.

Given an ontology, SQG generates SPARQL queries for
finding objects of specific types. In most cases, the ontologies
were not designed just for this particular application scenario,
and thus, some of the concepts in the signature of the ontol-
ogy are not relevant to these kinds of query. Therefore, it is
necessary to narrow down the scope of the signatures and
focus only on the signatures, termed focus signatures [9],
whose concepts are expected to be used for the generation of
the queries. The number of focus signatures (class signatures
|C|, object properties |O P| and data properties | D P|) versus
the total number of signatures for each of the six ontologies
is listed in Table 3. Below we introduce the formalization of
the three signature coverage metrics used. Then, we show the
results and analysis.

Class Coverage (CC): It is defined as the ratio of the
number of the focus classes whose individuals are bound by
at least one variable in a query g to the total number of the
focus classes.

_ HCil3Gs, rdf:type, Ci) € q,s € V}]|
B IC]

ccC ey

Datatype Property Coverage (DPC): It is defined as the
ratio of the number of the focus datatype properties that are
placed at least once as predicate in a query ¢ to the total

SPARQL Query Generator (SQG)

100%

-o- eDIANA
80% = loT

= SAREF
60% -+ SDR

8 -0~ Univ-Bench
40% % WM30
20%
0 T T T T T 1
N

W ab af A o of
Number of Queries

(a) cC

100%

-o- eDIANA -o- eDIANA
80% - loT 80% - loT
-& SAREF -# SAREF
60% -+ SDR 60% -+ SDR
e -0~ Univ-Bench -0~ Univ-Bench
S 0% - WM30 S 400 % WM30

20%

Number of Queries

(b) DPC

Number of Queries

(c) OPC

S S S
N N N N N
B A S S A A

Fig.7 Axiom coverage evaluation results

number of the focus data properties.

DP;|3(s, DP;
ppe — IDPIEG. DPi. o) € q)] o
|IDP|

Object Property Coverage (OPC): It is defined as the ratio
of the number of the focus object properties that are placed
at least once as predicate in a query ¢ to the total number of
the focus object properties.

ope 1OPEG. 0P, 0) € q)l)
0P|

In our experiments, the three metrics were collected for
the generated queries of varying size (20, 200, 2000, 20,000,
200,000, 2,000,000) for each of the six ontologies. The eval-
uation results are shown in Fig.7. It can be observed that
the metrics tend to increase with the number of queries.
Assume the threshold of the metrics is set as 80%, for focus
class/object property signatures, at least 200,000 queries are
needed to cover all ontologies; for focus data properties,
2,000,000 queries are needed to cover all but IoT.

It can also be observed that the results are different among
the ontologies. The main reasons are the structural differ-
ences of the ontologies and selection of the root class. If
a focus signature is far away from the root class, it is less
likely to be traversed by the algorithms for query generation.
Additionally, based on the algorithms, in some cases, a focus
signature may not be used for query generation by the algo-
rithms. Hence, it is likely that the signature coverage never
reaches 100%.

It is worth mentioning that other factors may also affect
the metrics results, such as probability thresholds. Details of
such discussion are not shown due to the space limitation.

6.3 Coverage of SPARQL Language

In order to guarantee a good coverage of OWL axioms, SQG
needs to provide, and thus be evaluated on, the coverage of the

constructs of SPARQL. In this section, we focus on the eval-
uation of the coverage of the types of SPARQL expressions.
This is different from other approaches known in the litera-
ture in which the objective is to generate “difficult” loads of
SPARQL queries. Our intent is to use SQG as an additional
benchmark for SPARQL query generation when OWL infer-
ence is important and not as a replacement for other kinds of
testing.

6.3.1 Keyword Coverage

The objective of the keyword coverage evaluation is to assess
the coverage of the SPARQL keywords in the generated
queries. Given a set of queries, the coverage of a keyword
is defined as the ratio of the queries that use the keyword
at least once over the total number of the queries. In our
experiments, we took into account keywords associated with
SPARQL algebra operators that occur in the bodies of the
2,000,000 queries for each of the six ontologies.

As shown in Table 4, SQG has a good coverage of the
keywords. Among the SPARQL algebra keywords, AND has
been the most commonly occurring operator. UNION and
OPTIONAL have been frequently used, too. FILTER is covered
by all ontologies except for Univ-Bench and IoT. The reasons
why Univ-Bench and IoT do not contain FILTER keyword
can be explained as follows. The FILTER keyword is used
within a filter expression, which is generated by Algorithm 2
function gen Filter Exp(r, 7v1) which takes a data property
range r as an input. Univ-Bench does not have any focus
data properties, so no filter expressions can be generated.
The data property ranges xsd:anyURI and xsd:string of [oT
are not supported in SQG.

Although queries are generated with the same probability
thresholds for each ontology, keyword coverage varies. This
is due to the structural differences of the ontologies. If an
ontology on average has fewer types of class restrictions on
a focus class, according to Algorithm 2, it is more likely to
generate SPARQL queries that do not contain any keywords.
The proportion of such queries (see Table 5) affects the rela-

@ Springer

Y.Chenetal.

Table 4 Percentage of queries using different keywords at least once

Keyword (%) eDIANA (%) IoT (%) SAREF (%) SDR (%) Univ-Bench (%) WM30 (%)
FILTER 8.81 0.00 0.27 2.02 0.00 0.03
AND 51.45 32.61 40.27 40.62 21.42 37.29
UNION 2.15 0.88 0.98 2.67 0.16 1.03
OPTIONAL 6.58 4.16 5.38 6.89 1.24 5.02
MINUS 2.27 1.41 1.82 2.45 0.41 1.70
NOT EXISTS 2.26 1.40 1.84 2.44 0.42 1.70
EXISTS 2.27 1.42 1.81 2.48 0.42 1.69
Table 5 Percentage of queries with different operator sets

Operator set (%) eDIANA (%) IoT (%) SAREEF (%) SDR (%) Univ-Bench (%) WM30 (%)
None 47.57 66.18 57.35 57.20 78.58 60.92
A 36.22 28.91 36.22 33.41 20.05 33.19
F 0.00 0.00 0.00 0.00 0.00 0.00
F,A 7.85 0.00 0.20 0.73 0.00 0.01
CPF subtotal 91.64 95.09 93.77 91.35 98.62 94.12
U 0.00 0.00 0.00 0.00 0.00 0.00
0] 0.99 1.21 2.38 2.17 0.00 1.79
F,U 0.00 0.00 0.00 0.00 0.00 0.00
F,O 0.00 0.00 0.00 0.00 0.00 0.00
AU 1.58 0.75 0.82 1.34 0.14 0.85
A, O 4.53 2.82 2.82 3.27 1.22 3.05
u,0 0.00 0.00 0.00 0.00 0.00 0.00
F,A, U 0.20 0.00 0.02 0.42 0.00 0.01
F,U,O 0.00 0.00 0.00 0.00 0.00 0.00
F,A,O 0.70 0.00 0.05 0.54 0.00 0.01
AU, 0 0.32 0.13 0.14 0.59 0.02 0.16
F,A, U, O 0.04 0.00 0.00 0.33 0.00 0.00
Non-CPF subtotal 8.36 491 6.23 8.65 1.38 5.88

tive proportion of the queries with different combinations of
the keywords.

6.3.2 Operator Distribution

The objective of operator distribution evaluation is to inves-
tigate how SPARQL operators are distributed in the queries.
We can see in Table 4, operators O = {FILTER, AND, UNION,
OPTIONAL} are the most commonly used operators in the
query bodies. Therefore, we investigated distribution of the
queries whose bodies use constructs with a specific combi-
nation of these operators. Additionally, conjunctive patterns
with filters (CPF) [8] are considered to be an important
fragment of SPARQL patterns, because they are believed to
appear often in practice [26,42]. The analysis of such queries
is also included since the queries generated by SQG cover
this pattern.

@ Springer

Definition 6 [Conjunctive pattern with filters] A conjunctive
pattern with filters (CPF) is a graph pattern that only uses
triples and the operators AND and FILTER.

Table 5 shows the proportion of the queries categorized
by the combinations of the operators. (F, A, U, O are short
for FILTER, AND, UNION and OPTIONAL, respectively.) The
results demonstrate that most of the queries contain CPF
patterns. Percentage of the queries with CPF patterns for
eDIANA, IoT, SAREF, SDR, Univ-Bench and WM?30 ontol-
ogy are 91.64%, 95.09%, 93.77%, 91.35%, 98.62% and
94.12%, respectively. It can also be seen that the queries
have a relatively good coverage of various combinations of
the operators.

SPARQL Query Generator (SQG)

100%=

Hl 16+
I 13-15
B 1012
0 79
1 46
= 13

80%—

60%—1

40%-1

20%

0%

Fig.8 Percentage of queries of different sizes

6.3.3 Number of Triple Patterns

The sizes of the queries are the counts of the number of
triple patterns contained in each query. Figure 8 illustrates the
results of the percentage of the 2,000,000 queries containing,
respectively, triple patterns in the range of 1-3, 4-6, 7-9,
10-13, 14—16 and 16 or above for each of the six ontologies.
A first observation is that the short queries (from 1 to 3)
are the most frequent (80.20%, 91.09%, 90.52%, 87.61%,
98.26% and 90.98% for eDIANA, IoT, SAREF, SDR, Univ-
Bench and WM30, respectively). Second, the proportion of
the larger queries (with the number of triple patterns per query
of 10 or above) is very small. The results are as expected
since they are similar to the real-world SPARQL query sets,
including the ones extracted from logs of the DBPedia and
SWDF public endpoints [3,8].

6.3.4 Structural Analysis

We have also performed a higher level analysis of the struc-
ture of the query expressions. In particular, we focused on

100%=

— 1 = [T
80%- |— N 25+
Bl 20-24
60%-1 B 1519
= 10-14
40%- O 59
0 o4
20%-]
0% T] P, T T T
F ¢ & F &
st & &
RN

(a) Percentage of queries with different numbers of joins

Fig.9 Query structure evaluation results

the number of join operations [3] appearing in each query
and the distribution of their types. According to Definition
2, a simple triple pattern consists of a triple where any of
the subject, predicate or object may be bound to a variable.
They can be combined into more complex patterns using
join operations, which in turn leads to six types of joins
depending on which positions the common variable appears
in each pattern: Subject—Subject (SS), Predicate—Predicate
(PP), Object—Object (OO), Subject—Predicate (SP), Subject—
Object (SO) and Predicate—Object (PO) [3].

Definition 7 [Join operation] A join operation is a conjunc-
tion of two triple patterns, where both have at least one
variable in common.

Figure 9a shows the distribution of the 2,000,000 queries
with join patterns in the ranges of 0-4, 5-9, 10-14, 15-
19, 20-24 and 25 or above for each of the six ontologies.
Similar as the distribution of the number of triple patterns,
the queries with a low number of joins (from O to 4) are
most frequent (80.30%, 92.56%, 92.00%, 88.75%, 98.53%
and 92.37% for eDIANA, IoT, SAREF, SDR, Univ-Bench
and WM30, respectively). The proportion of the queries
with higher numbers of joins is essentially negligible, in
particular when the number of joins per query is 15 or
above.

The distribution of the six join types of the queries is
shown in Fig.9b. It can be observed from the results that
SS, SO and PP are the most commonly join types in the
queries. The OO join type is relatively rare. The PP join type
occurs mostly in the cases when two triple patterns share
the common resource rdf:type as the predicate. SP and PO
do not occur in any of the test cases, but they can be easily
supported by extending the query generation algorithms if
needed.

100%=

— e e o P
Il PO
80%- I sP
— —— B o0
60%-] =3 PP
3 so
40%1 3 ss
20%-1
0% T] ((l T T T
N ° & & & >
o\?’ q,vg. 2 ‘Q,Q’o Q\é
) &
0’0

(b) Distribution of join types

@ Springer

Y.Chenetal.

7 Conclusion

This paper describes SQG—a generic SPARQL query gen-
erator, which is able to generate relatively large numbers
of random SPARQL queries for retrieving descriptions of
objects of a specific type from RDF/OWL datasets. The intent
behind the development of SQG was to provide a bench-
mark for testing systems that rely on the inference based
on the OWL semantics. Apart from applying SQG to our
specific use case of generating requests for RF devices in
SPARQL, we believe that it may be applicable to the appli-
cation scenarios where large synthetic SPARQL queries with
similar query patterns and characteristics are needed for test-
ing systems that implement Semantic Web solutions. SQG
and the generated benchmark query sets were evaluated on
six ontologies with benchmark datasets in terms of the scal-
ability/performance and the coverage of the OWL axioms
and query characteristics. The evaluation results demonstrate
that SQG is generic, scalable, and the generated queries are
of high diversity—covering both the axioms of OWL and
features of the SPaRQL language.

To the best of our knowledge, SQG is the first SPARQL
query generator that is able to automatically generate random
SPARQL queries for requesting descriptions of matching
objects while taking into account the OWL semantics in the
query formulations. However, we are not claiming that SQG
supersedes other SPARQL query generation benchmarks that
focus on generating loads that are known to be difficult to
handle by the query engines. We submit that SQG provides
features that are complementary to such benchmarks.

Acknowledgements This research was developed with partial funding
from the Defense Advanced Research Projects Agency (DARPA). The
views, opinions and/or findings expressed are those of the authors and
should not be interpreted as representing the official views or policies
of the Department of Defense or the US Government.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

@ Springer

References

1. Alug G, Hartig O, Ozsu MT, Daudjee K (2014) Diversified stress
testing of RDF data management systems. In: ISWC. Springer,
Riva del Garda, pp 197-212

2. Arenas M, Gutierrez C, Pérez J (2010) On the semantics of
SPARQL. In: Semantic web information management. Springer,
pp 281-307

3. Arias M, Fernandez JD, Martinez-Prieto MA, de la Fuente P (2011)
An empirical study of real-world SPARQL queries. In: USEWOD.
Hyderabad

4. ARQ-A SPARQL Processor for Jena (2011). http://jena.apache.
org/documentation/query/index.html. Accessed: 22 Feb 2020

5. Atzori M, Mazzeo GM, Zaniolo C (2019) QA3: a natural language
approach to question answering over RDF data cubes. Semant Web
10(3):587-604

6. Bagan G, Bonifati A, Ciucanu R, Fletcher GH, Lemay A, Advokaat
N (2017) gMark: schema-driven generation of graphs and queries.
IEEE Trans Knowl Data Eng 29(4):856-869

7. Bizer C, Schultz A (2008) Benchmarking the performance of stor-
age systems that expose SPARQL endpoints. In: Proceedings of the
4th international workshop on scalable semantic web knowledge
base systems (SSWS), Karlsruhe, Germany

8. Bonifati A, Martens W, Timm T (2017) An analytical study of large
SPARQL query logs. Proc VLDB Endow 11(2):149-161

9. Chen Y, Kokar MM, Moskal JJ (2020) RDF object description
generator (RODG). Int] Web Eng Technol 15(2):140-169

10. Daniele L, den Hartog F, Roes J (2015) Created in close interaction
with the industry: the smart appliances reference (SAREF) ontol-
ogy. In: International workshop formal ontologies meet industries.
Springer, Berlin, pp 100-112

11. Dibowski H, Kabitzsch K (2011) Ontology-based device descrip-
tions and device repository for building automation devices.
EURASIP J Embed Syst 2011(1):1-17

12. eDIANA Ontology. https://www.smartappliancesproject/
ontologies/ediana.owl. Accessed: 22, Feb 2020

13. Erling O, Mikhailov I (2009) RDF support in the virtuoso DBMS.
In: Networked knowledge-networked media. Springer, pp 7-24

14. Gorlitz O, Thimm M, Staab S (2012) SPLODGE: systematic gen-
eration of SPARQL benchmark queries for linked open data. In:
ISWC. Springer, Boston, pp 116-132

15. GraphDB. https://www.ontotext.com/products/graphdb/.
Accessed: 30 Mar 2021

16. Guo Y, Pan Z, Heflin J (2005) LUBM: a benchmark for OWL
knowledge base systems.] Web Seman 3(2):158-182

17. Haase P, MathiB T, Ziller M (2010) An evaluation of approaches
to federated query processing over linked data. In: Proceedings of
the 6th international conference on semantic systems. ACM, Graz

18. Horridge M, Bechhofer S (2011) The OWL API: a Java API for
OWL ontologies. Seman Web 2(1):11-21

19. IoT Ontology (2010). http://i-1ab.aegean.gr/kotis/Ontologies/IoT/
IoT-ontology-v2.1.owl. Accessed: 22 Feb 2020

20. Kontokostas D, Westphal P, Auer S, Hellmann S, Lehmann J, Cor-
nelissen R, Zaveri A (2014) Test-driven evaluation of linked data
quality. In: Proceedings of the 23rd international conference on
World Wide Web. ACM, Seoul, pp 747-758

21. Kotis K, Katasonov A (2012) An IoT-ontology for the represen-
tation of interconnected. Clustered and Aligned Smart Entities,
Semantic Web

22. Kotsev V, Minadakis N, Papakonstantinou V, Erling O, Fundulaki I,
Kiryakov A (2016) Benchmarking RDF query engines: the LDBC
semantic publishing benchmark. In: Proceedings of the workshop
on benchmarking linked data (BLINK 2016), Kobe

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://jena.apache.org/documentation/query/index.html
http://jena.apache.org/documentation/query/index.html
https://www.smartappliancesproject/ontologies/ediana.owl
https://www.smartappliancesproject/ontologies/ediana.owl
https://www.ontotext.com/products/graphdb/
http://i-lab.aegean.gr/kotis/Ontologies/IoT/IoT-ontology-v2.1.owl
http://i-lab.aegean.gr/kotis/Ontologies/IoT/IoT-ontology-v2.1.owl

SPARQL Query Generator (SQG)

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

MalL, Yang Y, Qiu Z, Xie G, Pan Y, Liu S (2006) Towards a com-
plete OWL ontology benchmark. In: The semantic web: research
and applications. Springer, Berlin, Heidelberg, pp 125-139
Meimaris M, Papastefanatos G (2016) The EvoGen benchmark
suite for evolving RDF data. In: 2nd Workshop on managing the
evolution and preservation of the data web (MEPDaW 2016). Her-
aklion, Crete, pp 20-35

Morsey M, Lehmann J, Auer S, Ngomo ACN (2011) DBpedia
SPARQL benchmark—performance assessment with real queries
on real data. In: ISWC. Springer, Bonn, pp 454-469

Neumann T, Weikum G (2010) The RDF-3X engine for scalable
management of RDF data. VLDB J 19(1):91-113

Owens A, Gibbins N, Schraefel M (2008) Effective benchmarking
for RDF stores using synthetic data. In: ISWC. Washington, DC,
pp 94-109

OWL 2 (2012) Web Ontology Language Structural Specification
and Functional-Style Syntax, 2nd edn. https://www.w3.org/TR/
owl2-syntax/. Accessed: 22 Feb 2020

Qiao S, Ozsoyoglu ZM (2015) RBench: application-specific RDF
benchmarking. In: SIGMOD. ACM, Melbourne, pp 1825-1838
Saleem M, Mehmood Q, Ngomo ACN (2015) Feasible: a feature-
based SPARQL benchmark generation framework. In: ISWC.
Springer, Bethlehem, pp 52-69

Schmidt M, Hornung T, Lausen G, Pinkel C (2009) SP2Bench: a
SPARQL performance benchmark. In: International conference on
data engineering. IEEE, Shanghai, pp 222-233

SDR Ontology (2018). https://SDROntology/SDR.owl. Accessed:
22 Feb 2020

Shekarpour S, Marx E, Ngomo ACN, Auer S (2015) Sina: semantic
interpretation of user queries for question answering on interlinked
data. J] Web Seman 30:39-51

Shekarpour S, Auer S, Ngomo ACN, Gerber D, Hellmann S, Stadler
C (2011 Keyword-driven SPARQL query generation leveraging
background knowledge. In: International conferences on web intel-
ligence. IEEE, Lyon, pp 203-210

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

Skiena SS (2008) The algorithm design manual, 2nd edn. Springer,
Berlin, Heidelberg

Smart Appliances REFerence Ontology. http://ontology.tno.nl/
saref/ (2015). Accessed: 22 Feb 2020

SPARQL 1.1 (2013) Query Language. https://www.w3.org/TR/
sparqll1-query/. Accessed: 22 Feb 2020

SPARQL Query Generator (2019). https://github.com/
YankeeChen/sparglquerygenerator/. Accessed: 10 Mar 2020

SSN Ontology Example: Wind sensor (2010). http://purl.oclc.org/
NET/ssnx/meteo/ WM30. Accessed: 22 Feb 2020

Unger C, Biihmann L, Lehmann J, Ngonga Ngomo AC, Gerber D,
Cimiano P (2012) Template-based question answering over RDF
data. In: Proceedings of the 21st international conference on World
Wide Web. ACM, Lyon, pp 639-648

Univ-Bench Ontology. http://swat.cse.lehigh.edu/onto/univ-
bench.owl (2004). Accessed: 22 Feb 2020

Vidal ME, Ruckhaus E, Lampo T, Martinez A, Sierra J, Polleres A
(2010) Efficiently joining group patterns in SPARQL queries. In:
Extended semantic web conference (ESWC). Springer, Heraklion,
pp 228-242

Wang SY, Guo Y, Qasem A, Heflin J (2005) Rapid benchmarking
for semantic web knowledge base systems. In: ISWC. Galway, pp
758-772

Zenz G, Zhou X, Minack E, Siberski W, Nejdl W (2009) From
keywords to semantic queries-incremental query construction on
the semantic web. J Web Seman 7(3):166-176

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

https://www.w3.org/TR/owl2-syntax/
https://www.w3.org/TR/owl2-syntax/
http://ontology.tno.nl/saref/
http://ontology.tno.nl/saref/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://github.com/YankeeChen/sparqlquerygenerator/
https://github.com/YankeeChen/sparqlquerygenerator/
http://purl.oclc.org/NET/ssnx/meteo/WM30
http://purl.oclc.org/NET/ssnx/meteo/WM30
http://swat.cse.lehigh.edu/onto/univ-bench.owl
http://swat.cse.lehigh.edu/onto/univ-bench.owl

	SPARQL Query Generator (SQG)
	Abstract
	1 Introduction
	2 Related Work
	2.1 Developing Queries by Hand
	2.2 Generating Queries from Manually Developed Query Templates
	2.3 Generating Queries from Requests in Natural Language
	2.4 Generating Queries Based on Given Queries
	2.5 Generating Queries from Datasets
	2.6 Generating Queries from a Pre-defined Schema
	2.7 Generating Queries from an Ontology
	2.8 Summary of the Reviewed Literature

	3 Formalization of Basic Concepts
	4 SQG Overview
	5 SPARQL Query Generation Algorithms
	6 Evaluation
	6.1 Scalability Evaluation
	6.2 Coverage of OWL Axioms
	6.3 Coverage of SPARQL Language
	6.3.1 Keyword Coverage
	6.3.2 Operator Distribution
	6.3.3 Number of Triple Patterns
	6.3.4 Structural Analysis

	7 Conclusion
	Acknowledgements
	References

