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Abstract

We present an experimental set-up permitting Raman and luminescence spectroscopy
studies in a commercial Physical Properties Measurement System (PPMS) from
Quantum Design. Using this experimental set-up, gaseous, liquid and solid materials, in
bulk or thin film form, may be investigated. The set-up is particularly suitable for the
study of the spin-lattice coupling in strongly correlated oxide materials utilizing several
different stimuli, e.g. magnetic and electric fields, high pressure and low temperatures.
Details for the Raman extension, sample holder assembly and optical design, as well as
data acquisition and measurement routine are described. Finally, we present
exemplary results collected using the set-up, measured on reference materials, as well
as on a correlated transition metal oxide.
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Introduction
Large efforts in the field of material science are spent on the development of novel
functional materials. In this context, strongly correlated electron systems are a class of
materials that promise a multitude of applications. Several transition metal oxides are
being considered for the designing of new devices, owing e.g. to their magnetic, elec-
tric and dielectric [1-3] or optical and photovoltaic properties [4,5]. In such materials,
the functionalities or physical properties are determined by the localization and delo-
calization of charge carriers [6]. As a result, magnetic, (di)electric, thermal, and optical
properties are correlated with each other [6]. Inelastic light scattering from electronic
charge density and phonons in correlated materials is a promising approach to evaluate
such correlation properties [7]. This approach is deemed to be particularly fruitful if it can
be done under the simultaneous influence of several stimuli that probe these properties
such as, e.g. magnetic and/or electric fields, pressure and/or temperature.
Raman spectroscopy for instance is a versatile technique for studying structural proper-

ties, lattice distortions, and e.g. the coupling of spin and lattice degrees of freedom. This
is due to different types of excitations that can be studied under the influence of external
stimuli leading to observation of shifts in vibrational frequencies, changes in peak inten-
sities and polarization states. This was successfully employed to study structure-property
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relationships in strongly correlated transition metal oxides [8,9]. A particular strength
of electronic Raman scattering is the possibility to detect information on the electron
dynamics from different regions of the Brillouin zone.
A Raman set-up for in-situ measurements of such properties at low temperature, mag-

netic field, electrical field and high pressure was constructed as an extension to the
QuantumDesign, Inc. Physical Properties Measurement System (PPMS) [10] - a standard
cryogenic device in many laboratories world wide. An optical probe and an automatized
data acquisition system were designed and linked with the already automatized temper-
ature and magnetic field control provided by the PPMS. Several material properties can
thus be investigated in the same PPMS set-up, using the standard set of options such
as resistivity, magnetization or heat capacity, as well as using extensions permitting e.g.
magneto(di)electric measurements [11] or the here proposed Raman spectroscopy set-
up. Dedicated custom-made devices for Raman spectroscopy with multiple excitations
not using a Quantum Design PPMS were reported in literature previously [12,13].
We present results collected on different reference systems, such as ruby and H2, as

well as a transition metal oxide, Ba3NbFe3Si2O14, a langasite material with magnetically
induced electronic polarization.

Experimental apparatus andmethods
PPMS host system and Raman extension

The Raman set-up is based on a commercial Quantum Design, Inc. PPMS [10] which
incorporates (i) a cryostat providing a controllable variable temperature in the 2 - 400 K
interval and (ii) a superconducting magnet up to 9 T (superconducting magnets up to 16
Tesla are available). The native hardware control of temperature and magnetic field pro-
vided by the PPMS was used and a new extension, permitting the collection of Raman
spectroscopy data, was designed and fabricated. The Raman extension comprises the fol-
lowing parts: (a) The custom-made Raman top part (including several imaging lenses,
beamsplitter, notch filter, white light illumination andCCD camera) and amodified PPMS
Raman insert (using multifunction probe temperature sensor) serving as a sample/DAC
holder. (b) A miniature nonmagnetic diamond anvil cell (DAC). (c) A 488 nm argon-
ion CW laser system. (d) A Shamrock spectrometer with thermoelectrically cooled CCD
detector.
The data acquisition, including Raman spectroscopic module (Solis, Andor Technology

Ltd.), as well as software control of PPMS temperature and magnetic fields, was imple-
mented using the QD PPMS third party option. A schematic view of the set-up is shown
in Figure 1. It comprises a probe, akin to the commercially available multifunction probe
(MFP), albeit mechanically more resistant, providing optical and electrical contacts to the
sample, and an optical illumination/data collection system. A single sapphire optical win-
dow creates an interface between the evacuated interior of the magnet cryostat and the
Raman top part.
Pictures of the upper optical part of the PPMS Raman extension, sample holder and

diamond anvil pressure cell are shown in Figure 2(a)-(c), respectively. Magnetic field may
be applied up the (+/-) maximum accessible value of the PPMS system. Electric field can
also be applied, as indicated by the arrow in Figure 1, using an external voltage source.
The high pressure conditions are created using miniature nonmagnetic diamond anvil
cell (DAC), specially designed to hold pressure stable during temperature scans [14]. The
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Figure 1 Schematic view of the PPMS Raman set-up. BS - beamsplitter, F - optical filter, L - lens, NF - notch
filter, and OW optical window.

DAC is made in a piston-cylinder configuration with a vertical optical axis and a max-
imum diameter of 10-13 mm. The maximal pressure for diamonds with 0.3 mm culets
is ∼60 GPa. Our Raman extension is suitable for long-term experiments lasting several
days, exploiting the typical operational parameter space of the PPMS.

Optical design

Raman spectra are recorded with a SR-303I-A Shamrock 303i spectrometer (Andor Tech-
nology) coupled by a single mode optical fiber to the PPMS Raman extension. The
spectrometer is equipped with 1200l/mm grating and thermoelectrically cooled multi-
channel CCD detector (iDus, Andor Technology, 1024×256 pixels, -50°C). A linearly
polarized argon ion laser (488 nm line) is used for the excitation at powers up to 15 mW.
The spectral axis is calibrated by the fluorescence lines of a neon lamp. Inside the PPMS,
Raman spectra are collected in the back scattering geometry, at a resolution of about 4
cm−1. Elastically backscattered fundamental light (488 nm) is filtered out using a narrow
band notch filter (Semrock Inc.). The accuracy of the spectral measurements, result-
ing from the wavelength calibration procedure and experimental conditions, is estimated
to be about 2 cm−1. Typical acquisition times vary between 20 - 120 sec. Experimen-
tally accessible ranges of temperature, pressure, magnetic and electric fields available for
spectroscopic acquisitions correspond to 3 - 350 K (higher temperatures with additional
heating possible), 0 - 60 GPa, 0 -±9 Tesla and 0 -±10MV/m, respectively. So far, spectral
acquisitions involving strong electric fields have been carried out outside the PPMS only.
Typically, the experimental arrangement involves application of hundreds of volts across
a sample which is few tens of micrometers thick.
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Figure 2 Detailed view of the optical set-up. (a) Picture of the custom-made PPMS Raman top part. (b)
Modified PPMS multi-function probe with a miniature diamond anvil cell. (c)Miniature diamond anvil cell
with focusing/imaging lens mounted at the top.

Alignment andmeasurement routine

Measurements are taken in the back scattering geometry. Due to space limitation inside
the cryostat and low temperature conditions right angle scattering geometry is difficult
to achieve in the described set-up. For sample illumination and focusing, white light
is coupled via an optical fiber into the set-up and applied in transmission. Prior the
measurements the optical system is pre-aligned and tested outside the cryostat using a
room-temperature probe stand.
A standard (high-pressure) experiment is done in the following way. (i) The sample is

mounted onto the Raman probe using ambient-pressure sample holder or DAC. For high-
pressure experiments specific sample-, ruby- and pressure transmitting medium loading
procedures have to be applied as described in Ref. [14]. (ii) The sample is aligned with
the optical set-up and inserted into the PPMS cryostat. (iii) Single measurements are per-
formed manually or an automatized measurement sequence is programmed using the
PPMS third-party option together with the spectrometer software scripting option.

Exemplary results and discussion
Ruby fluorescence lines

Cr3+-doped Al2O3, also known as ruby, is a well-established standard material with inter-
esting properties that led to significant technological advances both in academia and
industry [15]. For instance, ruby was the material that led to the invention of the first laser
by Maiman in 1960 [16]. The characteristic red color of ruby is related to electronic tran-
sitions involving the Cr3+ ions manifested in the two fluorescence lines, R1 and R2 [17].
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Ruby is furthermore a well-established pressure gauge in optical high-pressure experi-
ments [18] and hence has been studied extensively. Zeeman splitting in single crystalline
ruby has been observed in pulsed magnetic fields up to 60 T and hydrostatic pressure up
to 10 GPa [19]. In the presented PPMS Raman set-up static magnetic fields up to 9 T (16 T
with different cryostat) and hydrostatic pressure up to 60 GPa can be achieved. In Figure 3
the magnetic field dependence for the ruby R1 line at 5 K and 34 GPa is depicted. Ruby
can hence serve as a local (in-situ) probe of the magnetic field (�λ/�H ∼ 0.046 nm/T).

Hydrogen conversion

Hydrogen is the most common element in the known universe. It exists in two different
spin isomers, ortho hydrogen with two parallel proton spins and para hydrogen with two
antiparallel proton spins. At room temperature and ambient pressure the ortho- to para
hydrogen ratio is approximately 1:3. This equilibrium ratio is temperature dependent and
at low temperatures the equilibrium state is para hydrogen. H2 conversion, from ortho-
to para hydrogen can be traced by measuring H2 rotational modes (rotons), i.e. the inte-
grated intensities of the rotational Raman peaks. Figure 4(a) shows H2 conversion data
collected using the PPMS Raman extension. The H2 conversion rate is strongly enhanced
under hydrostatic pressure [20]. In the presented PPMS Raman set-up the combined
effect of hydrostatic pressure and highmagnetic fields can be studied. The evolution of the
rotational Ramanmodes (from 0 h (black line) to 8 h) at∼20 K, 9 Tmagnetic field, and 27
GPa hydrostatic pressure is depicted. Vibrational Ramanmodes (vibrons) of hydrogen can
be observed in a factor of 10 higher frequency range. Figure 4(b) illustrates the hydrogen
Q1(1) vibron at temperatures close to room temperature (300 K) and at low tempera-
ture (5 K) for both zero and 9 T magnetic fields. Hydrogen vibron modes are sensitive to
structural changes and a clear difference between fluid and solid hydrogen is observed.
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Figure 3 Exemplary measurements showing the magnetic field dependence of ruby (Cr3+-doped
Al2O3) fluorescence lines at 5 K and 34 GPa. Inset shows the shift of ruby fluorescence line with applied
magnetic field.
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Figure 4 Exemplary measurements showing (a) the ortho-to-para conversion of molecular hydrogen
at∼20 K at applied magnetic field (9 T) and high pressure (27 GPa) and (b) the hydrogen vibron
Q1(1) at 5 K and 300 K in zero and 9 Tmagnetic field.

Spin-phonon coupling in a strongly correlated oxide

Langasite materials are well known for their piezoelectric and non-linear optical prop-
erties [21,22]. A recent interest in the magnetic and electrical properties of langasite
materials is due to the discovery that they could crystalize in a Kagomé-like lattice struc-
ture consisting of rare-earth and transition metal cations [23,24]. While a detailed report
of the study of the spin-phonon coupling in those materials is beyond the scope of this
article, we present here Raman spectroscopy data collected in our set-up as a function of
temperature and magnetic fields. Simple qualitative analysis are also included, in order to
illustrate the typical studies which may be performed on such materials.
Ba3NbFe3Si2O14 crystallizes in the non-centrosymmetric trigonal P321 space group

with 23 unit cell atoms. Magnetic Fe3+ ions are arranged in triangle units on a triangu-
lar lattice [23]. The structure is non-polar and hence no spontaneous polarization can be
expected for point group 32 [25]. It has been reported that Ba3NbFe3Si2O14 undergoes
an antiferromagnetic phase transition at approximately 27 K [23]. A much larger Curie-
Weiss temperature of θ ≈ −175 K [26], reflects the large magnetic frustration in the
system [27]. The magnetic transition is accompanied by a symmetry lowering from P321
to C2 [28]. Further details on the magnetic structure and Ramanmode assignment can be
found in literature [25,29,30].
Unpolarized Raman spectra on a single crystal of Ba3NbFe3Si2O14 recorded as a func-

tion of temperature and magnetic field are shown in Figure 5. All T and H dependent
measurements were done with an the incident beam along the [1-10] direction. For bet-
ter visualization spectra (50 - 300 K) have been shifted vertically with a linear offset. The
phonon spectrum of Ba3NbFe3Si2O14 exhibits a frequency hardening and narrowing of
the line-width on reducing temperature.
In a quasi-harmonic approximation, the frequency shift can be attributed to the vol-

ume change only and anharmonic effects due to phonon-phonon and spin-phonon
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Figure 5 Exemplary measurements showing the magnetic field and temperature dependence of
Raman spectrum of Ba3NbFe3Si2O14 along the [1-10] direction. The black arrows indicate the 506 cm−1

phonon mode. (a) Ba3NbFe3Si2O14 Raman spectra as a function of temperature in zero magnetic field.
(b)+(c) Detail view showing the influence of magnetic fields to the 5 K Ba3NbFe3Si2O14 Raman spectrum.
(d) Frequency shift of the 506 cm−1 mode around the phase transition temperature TN in zero magnetic
field. Dashed line indicates TN, extracted from magnetic and heat capacity measurements (not shown).

interaction are ignored. Nevertheless, additional changes in the phonon frequencies
when approaching TN are evident, as shown in Figure 5(d). For instance, the 506 cm−1

phonon mode reveals softening behavior with an onset above TN and a subsequent
hardening below 25 K. Similar behavior is observed for the other modes, suggesting spin-
phonon coupling. Figure 5(d) also illustrates precision and stability of the Raman set-up,
which allow detection of a magnetic transition involving a change of only a fraction of
wavenumber.
The magnetic field dependence of the unpolarized Raman spectra of Ba3NbFe3Si2O14

at 5 K is shown in Figure 5(b)+(c). In this measurement the magnetic field was set to
the highest value (9 T) and the first Raman spectrum was collected. Subsequently, the
magnetic field was swept from 9 T to -9 T. At a first glance, a comparably ‘strong’ change
in the integrated intensity of the 310, 416 and 506 cm−1 modes and in the position of the
615 cm−1 mode are found. Furthermore, several new modes appear at 250, 322, 760 and
840 cm−1 when the field is changed from 9 T to -9 T. The influence of the magnetic field
on phonon modes 506, 573, 675 and 982 cm−1 is weak and only the 416 and 615 cm−1

modes exhibit major changes in the frequency [31].
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Recently, the magnetic (and structural) properties of related langasites were found to
be greatly affected by application of pressure [32], suggesting the relevance of T,P,H-
dependent Raman studies on Ba3NbFe3Si2O14 and other strongly correlated materials.

Conclusion
A Raman and luminescence spectroscopy system for the study of strongly correlated
electron materials is presented. The system is designed as an extension of the Quantum
Design, Inc. PPMS and allows for measurements in a large temperature range (3 - 350 K),
high magnetic fields (0 - 9 T), high pressure (0 - 60 GPa) and electric field strengths up to
10MV/m. Gaseous, liquid and solid materials, in amorphous, poly- and single-crystalline
bulk form or as a thin film can be studied. Exemplary results for ruby and solid hydro-
gen at low temperature and high hydrostatic pressure and high magnetic field are shown.
Finally results of the study of the spin-phonon coupling in the complex transition metal
oxide Ba3NbFe3Si2O14 are presented and discussed.
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