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Nucleon exchange mechanism is investigated in the central collisions of °Ca 4 ***U and *®Ca +
2387J systems near the quasi-fission regime in the framework of the Stochastic Mean-Field (SMF)
approach. Sufficiently below the fusion barrier, di-nuclear structure in the collisions is maintained
to a large extend. Consequently, it is possible to describe nucleon exchange as a diffusion pro-
cess familiar from deep-inelastic collisions. Diffusion coefficients for proton and neutron exchange
are determined from the microscopic basis of the SMF approach in the semi-classical framework.
Calculations show that after a fast charge equilibration the system drifts toward symmetry over a
very long interaction time. Large dispersions of proton and neutron distributions of the produced
fragments indicate that diffusion mechanism may help to populate heavy trans-uranium elements

near the quasi-fission regime in these collisions.

PACS numbers: 24.10.Jv; 21.30.Fe; 21.65.4f; 26.60.+c

I. INTRODUCTION

Much experimental effort has been spent to synthe-
size super-heavy elements by fusion mechanism of heavy
systems [1-5]. It is crucial to choose the right projectile-
target combinations in order to have the largest prob-
ability for forming a compound nucleus that leads to
production of the desired super-heavy element. Among
different possibilities, formation of compound nucleus in
collisions with deformed actinide targets with neutron
rich projectile, so called hot fusion, provides a suitable
choice for synthesizing of these elements [1-3]. However,
in heavy systems compound nucleus formation is severely
inhibited by the quasi-fission mechanism [6, 7]. In quasi-
fission, the colliding ions attach together for a long time,
but separate without going through compound nucleus
formation. During the long contact times many nucleon
exchanges take place between projectile and target nu-
clei. A number of models are developed for a description
of the reaction mechanism in the quasi-fission process
[8-10]. In a recent work, the quasi-fission mechanism
in 49Ca + 238U and *8Ca + 238U collisions was investi-
gated in the mean-field approach of the time-dependent
Hartree-Fock theory by Oberacker et al. [11]. The cal-
culations carried out at bombarding energies around the
fusion barrier exhibit an important difference between
the collisions 4°Ca + 238U and *8Ca + 233U. In the colli-
sions with neutron rich isotope of calcium, for increasing
bombarding energy quasi-fission mechanism diminishes.
Hence the cross-section of the composite system forma-
tion goes up with bombarding energy as compared to
the collisions with the stable calcium projectile. Calcula-
tions also show in the quasi-fission regime, in both colli-
sions, large number of nucleon transfer takes place from

* ayik@tntech.edu
T bulent.yilmaz@science.ankara.edu.tr
 oyilmaz@metu.edu.tr

heavy target to light projectile with increasing numbers
as the bombarding energy goes up towards the fusion
barrier. Slightly below the fusion barrier the mean val-
ues of the proton and neutron drift toward symmetry,
and can reach large values of AZ =~ 10, AN ~ 21 in
40Ca induced collisions, and AZ ~ 6, AN ~ 9 in **Ca
induced collisions, respectively. The mean-field descrip-
tion of the TDHF can determine only the mean values of
the proton and neutron drifts. On the other hand, it is
very interesting and important to provide a description of
the fragment mass and charge distributions in the quasi-
fission reactions. As seen from Fig. 1, sufficiently below
the fusion barrier, di-nuclear structure in the collisions is
maintained to a large extend. This figure shows the den-
sity profiles in the reaction plane near maximum overlap
obtained in TDHF calculations in the central collisions of
10Ca + 238U (a) and *8Ca + 238U (b) systems at energies
Een = 202.0 MeV and E.,, = 198.7 MeV, respectively.
Red lines indicate the position of window planes. The
windows are perpendicular to the symmetry lines and
pass through the minimum density planes at each instant
of the collision process. Consequently, it is possible to
describe nucleon exchange as a diffusion process familiar
from deep-inelastic collisions [12]. In this work, we inves-
tigate nucleon exchange mechanism in the quasi-fission
reactions in head-on collisions of 4°Ca, + 233U and “8Ca +
2381J systems at a bombarding energy slightly below the
fusion barrier by employing the Stochastic Mean-Field
(SMF) approach [13]. The SMF approach gives rise to a
Langevin description for neutron and proton exchanges
characterized by diffusion and drift coefficients. We cal-
culate these transport coefficients in the semi-classical
framework in terms of the mean-field description of the
TDHF solutions without any adjustable parameters. As
a result of large contact times in the quasi-fission reac-
tion, on the top of large drift toward symmetry, fragment
mass and charge distributions have a very broad disper-
sions in both 4°Ca + 238U and “8Ca + 238U systems.
These results indicate that in the collisions of heavy sys-



tems, in addition to fusion, nucleon diffusion mechanism
may help to populate heavy trans-uranium elements in
the quasi-fission regime.

In section 2, we present a brief description of the nu-
cleon diffusion mechanism based on the SMF approach.
In section 3, we discuss transport coefficients for proton
and neutron exchanges. In section 4, the result of calcu-
lations presented for central collisions of °Ca + 233U and
48Ca + 238U systems. Conclusions are given in section 5.

II. DIFFUSION MECHANISM

In this work, we consider proton and neutron transfer
mechanism in head-on collisions in the 4°Ca + 238U and
48Ca + 238U systems at bombarding energies below the
fusion barrier near the quasi-fission regime. Specifically
we carry out calculations for 4°Ca + 238U and *®Ca +
2381 systems at E., = 202.0 MeV and E., = 198.7
MeV, respectively. As seen from the TDHF calcula-
tions in [11], near the quasi-fission regime, colliding ions
stick together for a long time. At energies below the
fusion barrier, as seen in Fig. 1, system maintains a bi-
nary structure to a large extent, and a visible window
appears between the projectile-like and target-like part-
ners. Therefore, we can analyze nucleon exchange mech-
anism, by employing nucleon diffusion concept based on
the SMF approach. The phenomenological nucleon ex-
change model and diffusion description has been applied
extensively for analyzing deep-inelastic heavy-ion colli-
sions [12]. The SMF approach provides a more accu-
rate microscopic framework for diffusion mechanism and
extracting transport coefficients of relevant macroscopic
variables without any adjustable parameters and taking
the full collision geometry into account. In the SMF ap-
proach, the standard description is extended beyond the
mean-field by incorporating the mean-field fluctuations
in terms of generating an ensemble of events according
to quantal and thermal fluctuations in the initial state
(for details please refer to [13]). In extracting transport
coefficients for nucleon exchange, we take the proton and
neutron numbers of projectile-like fragments as indepen-
dent variables. We can define the proton and neutron
numbers Z7\(t), N{(t) of the projectile-like fragments in
each event by integrating over the nucleon density on the
projectile side of the window as [14, 15],

(R) = formmn (25). o

Here, A denotes the event label, z( (t) indicates the lo-
cation of the window, and p)(7,t), pj (7, ) are the local
densities of protons and neutrons. We take z-axis as the
collision direction and the position z (t) of the window
plane is determined from the TDHF calculations. As de-
scribed in [14-17], the local density is projected on the
reaction plane and the window is located at the lowest
density plane on the neck at each time step. According to
the SMF approach, the proton and neutron numbers of
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FIG. 1. (Color online) Density profiles in the reaction plane
near maximum overlap in the central collisions of °Ca + 238U
(a) and BCa + 28U (b) systems at energies Ec.m. = 202.0
MeV and E¢.m. = 198.7 MeV, respectively, obtained in TDHF
calculations. Red lines indicate the position of window planes.

the projectile-like fragment follows a stochastic evolution
according to the following Langevin equations,

i (b ) = [ (00,

() .

In this expression, the right hand side denotes the pro-
ton vy (t) and neutron v, (t) drift coefficients in the event

*lul

A, which are determined by the proton current jw)p(’l“, t)

and neutron current j2, (7,t) through the window. In
the SMF approach, the fluctuating proton and neutron
currents are defined as [18],
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where the summations ¢ and j run over a complete set of
single-particle states for protons and neutrons a = p,n
Drift coefficients fluctuate from event to event due to
stochastic elements of the initial density matrix p;‘i and
also due to the different sets of the wave functions in
different events. As a result, there are two sources for



fluctuations of the nucleon current: (i) fluctuations that
arise from the state dependence of the drift coefficients,
which may be approximately represented in terms of
fluctuations of proton and neutron partition of the di-
nuclear system, and (ii) the explicit fluctuations v, (t)
and dv;) (t) which arise from the stochastic part of proton
and neutron currents. For small amplitude fluctuations,
we can linearize the drift coeflicients around their mean
values v, (t) and v, (t) to obtain,
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Stochastic part of the fluctuations 61}1’)\(15) and v} (t) are
specified by uncorrelated Gaussian distributions. These
distribution have zero mean values duv)(t) = 0, dvp(t) =
0 and their variances in Markovian approximation are
determined by [14-17]

dvp (t)ovp (t') = 26(t — t') Dz (t), (5)

and
S0 ()ov) (') = 26(t — t') D (t). (6)

Here, Dzz(t) and Dyn(t) denote diffusion coefficients
for proton and neutron exchange, and the mixed diffusion
coefficient is zero Dy z(t) = 0.

By taking the average over the generated ensemble of
the Langevin Eq. (2), the mean values evolve according

to,
i (200 ) = e (320

(). "

The mean values of drift coefficients are determined by
the proton and neutron fluxes. These fluxes are calcu-
lated in the mean-field description of the TDHF equa-
tions with the mean values of proton and neutron cur-
rents,

. (7 h D7 1)V, (7,
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where n; = 1 for occupied and n; = 0 unoccupied states.

In order to calculate the fluctuations of proton and
neutron numbers, we use the stochastic part of Eq. (2)
around the mean evolution,
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where the derivatives of drift coefficients are evaluated at

the mean trajectory. The variances and the co-variance
of neutron and proton distribution of projectile frag-

—\2
ments are defined as 0%y (t) = (Nf‘ - Nf‘) ,02,(t) =

(M- (22 -2).
Multiplying both side of Langevin equations Eq. (9) by
N} — N} and Z7 — Z7, and taking the ensemble average,
we find evolution of the co-variances are specified by the
following set of coupled differential equations,
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These co-variances describe a correlated Gaussian func-
tion for the proton and neutron distribution P(N, Z,t)
of the project-like or the target-like fragments,
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with p = O'JQVZ/O'NNdzz. The mean values N, Z denote
the mean neutron and proton numbers of the target-like
or projectile-like fragments. The set of coupled equa-
tions for co-variances are familiar from the phenomeno-
logical nucleon exchange model, and they were derived
from the Fokker-Planck equation for the fragment neu-
tron and proton distributions in the deep-inelastic heavy-
ion collisions [19, 20].

III. TRANSPORT COEFFICIENTS

A. Nucleon diffusion coefficients

The proton and neutron diffusion coefficients D, and
Dy, act as sources for determining co-variances in the
coupled Egs. (10-12). In earlier investigations, expres-
sions these diffusion coeflicients in the Markovian limit
have been deduced from the SMF approach in the semi-
classical framework. We present the results here, and



for details we refer [14-16]. In the particular case of the
head-on collisions, the expressions of proton and neutron
diffusion coefficients are

Dzz \ / dp,
Dnyn ) ) 27h
{ (‘r07pa:7 )
(x07pw7 )
Here, fg/n (T, pzyt) o xoand fp/n (2, pzyt) |u=z, are the
reduced Wigner functions in the collision direction for
protons/neutrons, which are obtained by integrating co-
ordinates and momenta over the window plane as dis-
cussed in Appendix of ref. [14]. The Wigner functions
are calculated with the single-particle wave functions for
protons and neutrons, which are originating from target
(T') and projectile (P) nuclei, respectively. The quantity
) denotes the volume of the phase space on the window
plane.
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B. Nucleon drift coefficients

In order to solve co-variances from Egs. (10-12), in
addition to the diffusion coefficients D,, and D, we
need to know the rate of change of drift coefficients in the
vicinity of their mean values. According to the SMF ap-
proach, in order to calculate rates of the drift coefficients,
we should calculate neighboring events in the vicinity of
the mean-field event. Here, instead of such a detailed
description, we employ the fluctuation-dissipation theo-
rem, which provides a general relation between the diffu-
sion and drift coefficients in the transport mechanism of
the relevant collective variables as described in the phe-
nomenological approaches [12]. Proton and neutron dif-
fusions in the N-Z plane are driven in a correlated manner
by the potential energy surface of the di-nuclear system.
As a consequence of the symmetry energy, the diffusion in
direction perpendicular to the beta stability valley takes
place rather rapidly leading to a fast equilibration of the
charge asymmetry, and diffusion continues rather slowly
along the beta-stability valley. Fig. 2 illustrates very
nicely the expected the mean-drift paths in the central
collisions of 4°Ca + 238U and *8Ca + 238U systems. The
drift paths is obtained from the solution of the mean-field
description of the TDHF equations. The di-nuclear sys-
tem drifts towards symmetry during long contact time,
but separates before reaching to the symmetry. Following
this observation and borrowing an idea from references
[20, 21], we parameterize the N; and Z; dependence of
the potential energy surface of the di-nuclear system in
terms of two parabolic forms,

U(Ny,Zy) = ~a(zcos0 — nsinf)?

1
—i—iﬁ(zsin@—&—ncosH)Q. (16)

Here, z = Zy — Z1, n = Ny — N1 and 0 denotes the
angle between beta stability valley and the N - axis in

the N — Z plane. We can determine these angles from
the mean-drift paths in Fig. 2. The quantities Ny and
Zy denotes the equilibrium values of the neutron and
proton numbers, which are approximately determined by
the average values of the neutron and proton numbers of
the projectile and target ions, Ng = (Np + Nt) /2 and
Zy = (Zp+ Zr) /2. The first term in this expression
describes a strong driving force perpendicular to the beta
stability valley, while the second term describes a relative
weak driving force toward symmetry along the valley.
Following from the fluctuation-dissipation theorem, it is
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FIG. 2. Mean drift paths of projectile-like fragments in (N, Z)
plane in the central collision of *°Ca + 233U (a) and **Ca +
238U (b) systems at energies Ee.m. = 202.0 MeV and Ecm. =
198.7 MeV, respectively, obtained in TDHF calculations.

possible to relate the proton and neutron drift coefficients
to the diffusion coefficients and the associated driving
forces, in terms of the Einstein relations as follows [20,
21],

" _ Dy OU _  DynOU
" T N ' T on
= Dyn [—asind (zcosf — nsin )
+5cosf (zsinf + ncos b)) (17)
and
v Dzz0U _ | Dzz0U
i T 0z T 0z



= Dyz [+acosf (zcosf — nsinb)
+0siné (zsinf + ncosh)]. (18)

Here, the temperature T is absorbed into coefficients «
and (3, consequently temperature does not appear as a
parameter in the description. We can determine o and 3
by matching the mean values of neutron and proton drift
coefficients obtained from the TDHF solutions. In this
manner, microscopic description of the collision geome-
try and details of the dynamical effects are incorporated
into the drift coefficients. In the liquid drop picture, the
potential energy surfaces in perpendicular to the stabil-
ity valley and along the stability valley have parabolic
behaviors. Therefore we expect both coefficients o and
B to be positive. However, as a result of the quantal ef-
fects arising mainly from the shell structure, we observe
that these coefficients exhibit fluctuations as a function
of time, which can also be viewed as a function of the
relative distance between ions. In Egs. (8-10) for co-
variances, we also need derivatives of drift coefficients
with respect to proton and neutron numbers of projectile-
like fragments. A great advantage of this approach, we
can easily calculate these derivatives from drift coeffi-
cients to yield,

Ovy, .
aNl = —DNN (O[Sln2 0 + /8C082 0) ) (19>
Ov, 2 )
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OV o Dyy (B a)sinBeosd (22)
o, = Dzz a) sin 6 cos 6.

IV. RESULTS

Employing the diffusion mechanism described in the
previous section, we investigate nucleon exchange mech-
anism in central collisions of °Ca + 23%U and %®Ca +
2381 systems near the quasi-fission region at bombard-
ing energies F., = 202.0 MeV and E., = 198.7 MeV,
respectively. In the collision geometry, the elongation of
deformed 238U target nucleus is taken as perpendicular
direction to the beam (side collision). These energies
are slightly below the fusion barriers. As a result, col-
liding ions stick together with a visible neck for a long
time, and separate without forming a compound nucleus.
Time dependent single-particle wave functions are deter-
mined from solutions of the TDHF equations by employ-
ing the code developed by P. Bonche et al. with the
SLy4d Skyrme effective interactions [22]. Fig. 2 shows
the mean-drift paths of the projectile-like fragments in
(N, Z) plane obtained in the TDHF calculations in the
collisions of 4°Ca + 233U and *8Ca + 233U systems. After
a rapid charge equilibration, the system drift toward the
symmetric fragmentation, which is specified by proton
and neutron numbers Zp = 56 and Ny = 83 for the *°Ca

+ 238U system and Zy = 56 and Ny = 87 for the 4°Ca +
238U system. The tangent of angle made by the mean-
drift path with the N- axis is about tan§ = 2/3 for both
systems. We use these values in parameterization of the
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FIG. 3. (Color online) Proton drift vz (dashed line) and neu-
tron drift vn (solid line) coefficients in the central collisions
of *°Ca + 23U (a) and *®Ca + 2**U (b) systems at ener-
gies Ecm. = 202.0MeV and Fc.,. = 198.7 MeV, respectively,
obtained in TDHF calculations.

driving potential energy in Eq. (16) for both systems. In
both collisions, the system stick together approximately
from an initial touching time ¢; = 8.0 x 10722 seconds
until separation time at ty = 1.4 x 10729 seconds. We
observe that during the contact time, the mean num-
ber of proton and neutron drifts are about z(¢5) = 10,
n(ty) = 21 in the 4°Ca + 238U system, and z(t;) = 6,
n(ty) =9 in the *®Ca + 238U system, respectively. Even
though the sticking time is about the same in both col-
lisions, the smaller drift in “Ca induced collision is due
to the smaller bombarding energy by about 3.0 MeV.
Dashed and solid lines in Fig. 3 show the proton and neu-
tron drift coefficients in the 4°Ca + 238U system (a) and
in the 48Ca + 238U system (b) as a function of collision
time, which are obtained by the mean-field description of
the TDHF'. Because of small amplitude vibrations of the
window positions, drift coefficients exhibit small fluctua-
tions in time. This figure illustrates smoothed drift coef-
ficients obtained by averaging over short time intervals.
Probably due to shell effects, in *°Ca, induced collision



protons exhibit a rapid drift toward asymmetry during
the initial phase of the collision, followed by persistent
drift toward symmetry in both proton and neutron num-
bers in both systems. We determine the dimensionless
parameters «(t) and B(t) in Egs. (17,18) by matching
the proton and neutron drift coefficients to the results
of obtained in TDHF calculations. In 4°Ca induced col-
lision, the parameter «(t) during the early times takes
relatively large positive values around «(t) ~ 0.20 until
about 1.4 x 1072! seconds while at later times it takes
small fluctuating values around a(t) ~ F0.05. On the
other hand parameter 3(t) take much smaller positive
values f(t) ~ 0.001 as expected, also fluctuating in time.
These coefficients exhibit similar behavior in the *®Ca
induced collision. As noted above, we believe that fluc-
tuations in these parameters are due to quantal effects
arising mainly from the underlying shell structure.
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FIG. 4. (Color online) Proton diffusion Dzz (dashed line)
and neutron diffusion Dy n (solid line) coefficients in the cen-
tral collisions of *°Ca + 238U (a) and *®*Ca + 233U (b) systems
at energies Ec,. = 202.0 MeV and Ecn,. = 198.7 MeV, re-
spectively, obtained in semi-classical framework of the SMF
approach.

We calculate diffusions coefficients in Eq. (15) for pro-
ton and neutron exchange in the semi-classical frame-
work by employing the Wigner functions, which are de-
termined in terms of the time-dependent single-particle
wave functions of the TDHF solutions. The reduced
Wigner functions are obtained by integrating over the

phase-space volume on the window plane. The reduced
Wigner functions exhibit fluctuations as a function of
single-particle momentum and can take small negative
values in classically forbidden regions. We eliminate
these fluctuations and negative values of Wigner func-
tions by performing a smoothing procedure as outline in
[17]. Dashed and solid lines in Fig. 4 show the proton
and neutron diffusion coefficients in 4°Ca (a) and **Ca
(b) induced collisions as a function of time. Diffusion
coefficients also exhibit small fluctuations in time due to
small amplitude vibrations of the window positions. This
figure illustrates smoothed diffusion coefficients obtained
by averaging over short time intervals. Mainly as a result
of the Coulomb barrier, the neutron diffusion coefficients
are nearly twice as large as compared to the proton dif-
fusion coefficients, in both systems.
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FIG. 5. (Color online) Proton dispersion ozz (dashed line),
neutron dispersion oy n (solid line) and mixed dispersion ozn
(dotted line) of the fragment distributions (projectile-like or
target-like) in the central collisions of *°Ca + **U (a) and
“8Ca + 2°U (b) systems at energies Ee.m. = 202.0 MeV and
FEem. = 198.7 MeV, respectively.

We solve the coupled differential equations (10-12)
for co-variances with the initial conditions 0% ,(t;) =
0% n(ti) = 0% (ti) = 0. The results are plotted in Fig.
5 as a function time. Dashed and solid lines in the fig-
ure show proton and neutron dispersions oz (t), onn (t)
and the square-root of co-variances ozy(t) in “°Ca (a)

and *8Ca (b) induced collisions, respectively. The co-



variances o7y (t) take negative values until 5.0 x 1072}
seconds and 3.2 x 102! seconds in *°Ca and *®Ca induced
collisions, respectively.

Therefore, the square-root of co-variances are not
shown in these time intervals. We observe that at
the separation instant in the 4°Ca 4 23%U collision,
the dispersions of proton and neutron distributions are
ozz(tf) =19 and onn(tf) = 29, and the co-dispersion
is onz(tf) = 23. The proton dispersion is nearly fac-
tor of 2.0 larger than the mean number of proton drift,
while neutron dispersion is about 1.5 larger than the
mean number of neutron drift. Target nucleus losses
about 10 protons and 21 neutrons, but it can gain more
protons and neutron by diffusion mechanism. On the
other hand, at the separation instant in the **Ca + 238U
collision, the dispersions of proton and neutron distri-
butions are ozz(t;) = 14 and onn(tf) = 21, and the
co-dispersion is onz(ty) = 15. The proton dispersion
is nearly factor of 2.5 larger than the mean number of
proton drift, while neutron dispersion is about 2.0 larger
than the mean number of neutron drift. Target nucleus
losses about 6 protons and 9 neutrons on the average, but
it can gain more protons and neutron by diffusion mecha-
nism. Therefore, in these collisions, diffusion mechanism
near quasi-fission regime can help to populate elements
heavier than uranium target nucleus. Probability distri-
butions of the projectile-like or target-like fragments at
the exit channel are determined by the correlated Gaus-
sian of Eq. (13), in which the magnitudes of co-variances
and mean-values are taken at the separation instant of
the collision. Fig. 6 shows equal probability lines for
population of target-like fragments at the exit channel
in the (N, Z) plane in the °Ca (a) and **Ca (b) in-
duced collisions. Probability of populating a fragment
with neutron and proton numbers (Na, Z3) relative to
populating the fragment with mean neutron and proton
numbers is determined by e~¢, where C' indicate num-
bers on the equal probability lines in Fig. 6. In this
figure dots at the centers of ellipses indicate the elements
with the mean neutron and proton numbers at the exit
channel. The mean values of neutron and proton num-
bers at the exit channel are (N =125,7, = 82) and
(Ng =137,Z, = 86) in 4°Ca and *8Ca induced collisions,
respectively. As an example, we can see from this figure,
the probability of populating a heavy trans-uranium ele-
ment with (Ny = 155, Z5 = 98) relative to the populating
the element with mean neutron and proton numbers is
about e7%® = 0.6 in the 4°Ca + 23%U collision. The rel-
ative population probability of the same element in the
48Ca + 238U collision has about the same magnitude.
Fig. 7 illustrates the dispersion o44(t) of total mass
number distributions of the projectile-like fragments or
target-like fragments as a function of time in °Ca (a)
and **Ca (b) induced collisions, respectively. The total
dispersion is calculated from 02 4, = 0%, + 0% n +20% -

We note that the correlated Gaussian function of Eq.
(13), which is specified by the first two moments, pro-
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FIG. 6. (Color online) Equal probability lines for populat-
ing target-like elements with C' = 0.5,1.0,1.5 in the central
collisions of *°Ca + 238U (a) and **Ca + 2*¥U (b).

vides an approximate description of the fragment popu-
lation. The approximation is reasonable within the range
of +0 44 around the center points, but becomes gradu-
ally unreasonable as we move out from the center points
near to the tail of the distribution functions. For exam-
ple, as seen from the upper ends of C' = 1.5 lines in Fig.
6, we observe finite but small probabilities for populating
fragments even exceeding the total mass of the system.
Therefore, in particular near the tail region, more accu-
rate description of the fragment population probability
is required.

In the present work, we do not discuss the energy dis-
sipation and the excitation energy deposited in the pop-
ulated fragments during nucleon diffusion process. How-
ever, we can provide an estimate of the excitation energy
deposited in the fragments with mean values of protons
and neutrons in the exit channel. It is possible to calcu-
late the total excitation energy E* deposited in the mean
fragments at the exit channel according to,

E* = o + Q — TKE, (23)

where @) denotes the @-value and the TKE is the asymp-
totic value of the total kinetic energy at the exit channel.
We calculate the TKE for the mean-fragment exit chan-
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FIG. 7. (Color online)Total mass dispersion oca4 of the frag-
ment distribution of the fragment distributions (projectile-like
or target-like) in the central collisions of *°Ca + #**U (a) and
®Ca + 228U (b) systems at energies Ecm. = 202.0 MeV and
Fem. = 198.7 MeV, respectively.

nel by employing the TDHF computer program in ref.
[22]. Since the interaction time is very long, the initial
relative kinetic energy totally dissipates and the TKE at
the exit channel is essentially determined by the Coulomb
repulsion. Because of very long interaction times, it is
reasonable to consider the equilibration of the excitation
energy. Under this circumstance, the excitation energy
between the mean fragments is shared in proportion to
their mass numbers,

Ay
Ef =B 2L 24
1 Atot ( )
and
Ay
E; =FE* . 25
2 Atot ( )

In 49Ca + 238U system, A; = 71 and Ay = 207 with
Aior = 278, we find Q = 102.2 MeV and TKE = 192.3
MeV. In *8Ca + 233U system, A; = 63 and Ay = 223
with Aior = 286, we find Q = 38.3 MeV and TKFE =

186.0 MeV. Calculation gives for the excitation energies
E; = 28.6 MeV, E; = 83.4 MeV in the 1°Ca + 238U
system, and Ef = 11.2 MeV, E5 = 39.8 MeV in the
48Ca + 238U system.

V. CONCLUSIONS

We investigate nucleon exchange mechanism in the
central collisions of 4°Ca + 233U and *®Ca + 238U systems
below the fusion barrier near the quasi-fission regime.
Sufficiently below the fusion barrier, colliding system
maintains a di-nuclear structure. As a result, it is pos-
sible to describe nucleon exchange as a diffusion mech-
anism which is familiar from the description of deep-
inelastic heavy-ion collisions. The standard mean-field
description based on the TDHF equations determines the
mean drift path in the N-Z plane. In order to describe
fluctuations around the drift path, we employ the mi-
croscopic basis of the SMF approach, which incorporates
the mean-field fluctuations beyond the average descrip-
tion of the standard TDHF. We calculate diffusion coef-
ficients for proton and neutron transfer mechanisms with
the help of the SMF approach in the semi-classical frame-
work. Proton and neutron diffusion occurs in the N-Z
plane in a correlated manner according to the potential
energy surface of the di-nuclear system. The potential en-
ergy surface along the beta-stability line and perpendicu-
lar to the stability line are parameterized in terms of two
parabolic forms. Employing Einstein relations, we de-
duce simple analytical expressions for proton and neutron
drift coefficients. Parameters of the drift coefficients are
determined with help of the mean drift path obtained in
the TDHF calculations. We determine the co-variances
of the neutron and proton distributions of the projectile-
like fragments. Calculations show that after a fast charge
equilibration, large amount of mean drift in the numbers
of protons and neutrons toward symmetry. We find large
dispersions of the proton and neutron distributions of the
projectile-fragments during very long interaction times.
The mean numbers of proton and neutron of the target
nucleus decrease due to drift toward symmetry. On the
other hand, large values of proton and neutron disper-
sions indicate that diffusion mechanism helps to popu-
late heavy trans-uranium elements near the quasi-fission
regime.
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