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Abstract
This study contributes to the literature on linear algebra instruction by designing and researching a teaching sequence based 
on APOS Theory to introduce engineering students to vector spaces. The sequence offers students multiple opportunities to 
understand the concept. Another contribution is the evidence that introducing prerequisite concepts—such as equality, sets, 
and binary operations—before tackling vector space was crucial for grasping the role of proof in determining whether a set 
is a vector space. The findings confirm that, as other studies have shown, vector space is challenging for students. However, 
the results demonstrate that students were able to face this challenge. All students showed evidence of developing an under-
standing of the concept, with nine achieving a clear grasp of vector space and the role of proof by the end of the experience. 
Additionally, the progress observed—from having difficulties with symbols to successfully proving statements involving 
unconventional operations—underscores the effectiveness of the teaching approach.

Keywords Vector space · APOS theory · Genetic decomposition · Prerequisite concepts

1 Introduction

The obstacles that arise in teaching and learning linear alge-
bra are related to the nature of its elements: a network of 
interconnected definitions, axioms, and abstract theorems. 
This abstract nature of lineal algebra leads to frequent dif-
ficulties, especially with the concept of vector space. There 
is a need for approaches that can help students make sense of 
the unifying nature of this concept, enabling them to assimi-
late other concepts, such as subspaces and linear transforma-
tions, among others (Dorier & Sierpinska, 2001; Parraguez 
& Oktaç, 2010).

This paper presents the development and implementation 
of a teaching strategy to promote vector space understanding 
among engineering students. Its design is based on APOS 
theory. The participants had no prior training in mathemati-
cal logic or proof processes.

2  Background

The concept of vector space is both unifying and generaliz-
ing (Dorier, 1995). This concept embodies an abstraction of 
mathematical objects that are already abstract in themselves 
by considering their shared properties. These features make 
vector space a central and unifying idea within linear algebra 
theory and a challenging notion for students to grasp (Dorier 
& Sierpinska, 2001). To outline the necessary mathematical 
foundations for learning vector space, we conducted a litera-
ture review focused on learning obstacles. These obstacles 
share common characteristics, allowing us to group them 
into three categories.

2.1  Learning obstacles attributed to the abstract 
nature of linear algebra

One major obstacle students face stems from the formalism 
inherent in linear algebra, linked to the theory’s development 
through axiomatization. This process equipped this branch 
of mathematics with the means for the generalization and 
unification of results (Dorier, 1998). Linear algebra con-
sists of many definitions, axioms, and theorems intricately 
woven together, giving it an abstract and conceptual nature. 
This characteristic has led researchers to identify specific 
obstacles:
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Students’ difficulties with the formal aspect of the 
theory of vector spaces are not just a general problem 
with formalism but mostly a difficulty of understand-
ing the specific use of formalism within the theory 
of vector spaces and the interpretation of the formal 
concepts in relation with more intuitive contexts like 
geometry or systems of linear equations, in which 
they historically emerged. Various diagnostic studies 
pointed to a single massive obstacle appearing for all 
successive generations of students and for nearly all 
modes of teaching, namely, what these authors termed 
the obstacle of formalism (Dorier & Sierpinska, 2001, 
p. 259.)

The obstacle of formalism refers to the difficulties stu-
dents face when working with formal definitions, theorems, 
and symbolic manipulations in linear algebra, often without 
fully grasping their conceptual foundations. In the case of 
vector spaces, the abstract nature of elements like vectors, 
linear combinations, and subspaces can cause a disconnect 
from more intuitive contexts, like geometry or systems of 
linear equations.

Parraguez and Oktaç (2010) emphasize the importance 
of formalizing prior concepts (such as sets, functions, and 
binary operations) as a prerequisite for learning vector 
space. They conclude that students struggle to develop a 
coherent understanding of vector spaces without this for-
malization. This conclusion is based on the idea that learn-
ing the concept of vector space requires students to construct 
schemas for sets, binary operations, and axioms. Parraguez 
and Oktaç (2010) found that when students fail to formalize 
these preliminary concepts, they struggle to integrate them 
into a solid understanding of vector spaces.

This obstacle is also evident in argumentation tasks. 
When students are asked to prove whether a set is a vector 
space, they struggle with understanding the nature of proof 
and the role of counterexamples in the verification process 
(Mutambara & Bansilal, 2018).

2.2  Learning obstacles related to the different 
semiotic representations of linear algebra 
notions

Rosso and Barros (2013) identify a learning obstacle 
where students struggle to recognize the same mathemati-
cal object through different semiotic representations. This 
results in concepts like vectors being perceived as abstract 
definitions without meaning. Additionally, students have 
difficulties understanding functions as elements of vec-
tor spaces. For instance, Britton and Henderson (2009) 
show that some engineering students have problems devel-
oping a mental picture of a typical vector as an object 
distinct from its formula f (x) and its graph y = f (x) and 

considering it as an element in a vector space. This shift 
demands deeper abstract thinking and moving away from 
intuitive, concrete manipulations of functions. As a result, 
understanding concepts like vector spaces often turns into 
rote memorization of axioms. While students may memo-
rize the axioms, they often struggle to apply them in deter-
mining if a set is a vector space (Mutambara & Bansilal, 
2018).

Harel (2000) noted that using geometric references to 
introduce vector spaces can also present obstacles: “when 
geometry is introduced before the algebraic concepts 
have been formed, many students view the geometry as 
the raw material to be studied. As a result, they remain 
in the restricted world of geometric vectors and do not 
move up to the general case.” (p. 4). Shifting from ℝn 
to more general vector spaces is challenging, as mental 
pictures associated with ℝ2 or ℝ3 can constitute an obsta-
cle to understanding some of the general results of linear 
algebra (Gueudet-Chartier, 2004). In ℝ2 and ℝ3 students 
often rely on geometric intuition—visualizing vectors as 
arrows, linear transformations as rotations or reflections, 
and spaces as planes or lines. While helpful in two and 
three dimensions, these visualizations can mislead stu-
dents when dealing with higher-dimensional spaces where 
such interpretations are not intuitive.

2.3  Learning obstacles manifested when working 
with non‑traditional vector spaces.

When teaching vector space, examples based on spaces 
like ℝn are often used as a starting point. Generalizations 
from these spaces are then applied to introduce standard 
vector spaces such as matrices, polynomials, or continuous 
functions. These are the vector spaces typically found in 
linear algebra textbooks (Andía & Repetto, 2015). How-
ever, for some students, working with vector spaces whose 
elements are not n-tuples of numbers proves difficult. Con-
ventional algorithms are often insufficient when dealing 
with vectors from non-traditional spaces, such as (a, 1,0) , 
(1,0, a) , and (1 + a, 1, a) , in ℝ3 which involve variables and 
non-conventional operations (Kú et al., 2008). This didac-
tic obstacle appears when students encounter binary opera-
tions that differ from the generalizations of addition and 
scalar multiplication. For instance, let ⊕ be an addition 
operation defined as 

(

x1, x2
)

⊕
(

y1, y2
)

=
(

x1 + y1, x2 × y2
)

 . 
Here, instead of component-wise addition, the second 
component involves multiplication. This operation does 
not follow the usual vector addition rules, and students 
might have difficulties understanding or applying proper-
ties like commutativity or associativity, as these properties 
behave differently compared to standard vector addition.
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2.4  Proposals to overcome the identified learning 
obstacles

Various pedagogical recommendations have been proposed to 
address the learning obstacles associated with vector spaces. 
Redondo (2001) suggests using analogies to introduce abstract 
concepts associated with vector spaces. Counterexamples 
are advised for axiom verification, encouraging students to 
de-encapsulate mathematical Objects to understand underly-
ing processes (Mutambara & Bansilal, 2018). Diverse vec-
tor spaces should be explored in linear algebra courses (Kú 
et al., 2008), including generalizations of zero vectors, addi-
tive inverses, and alternative binary operations to support 
the development of vector space understanding (Parraguez, 
2013). The cognitive construction of ℝ2 and ℝ3 vector spaces 
can also be enhanced by incorporating arithmetic, algebraic, 
and geometric elements to exemplify key concepts like linear 
combinations, bases, and homogeneous linear equations (e.g., 
Rodríguez Jara et al., 2018).

For prospective engineers, there are few didactic propos-
als to strengthen their understanding of vector spaces. One 
example is the work of Fernández-Cézar et al. (2020), who 
propose modeling real engineering problems through homo-
geneous systems of linear equations to introduce the concept 
of vector space. The underlying idea of this didactic proposal 
is to counteract the formalism with which linear algebra is usu-
ally taught by showing future engineers situations where linear 
algebra functions as a tool for solving real problems. However, 
engineering students require a more comprehensive under-
standing of this concept, allowing them to tackle fundamental 
mathematical topics for their education, such as differential 
equations and control theory. These proposals can help coun-
teract learning difficulties associated with vector spaces, such 
as perceiving the associated concepts as abstract definitions 
lacking meaning. They can also help students learn to manage 
unconventional algorithms and non-traditional vector spaces.

Considering that the literature review shows that under-
standing vector space is challenging for students, we recog-
nized the need to design a didactic approach based on APOS 
theory. We considered two pedagogical suggestions from the 
literature: the formalization of prior concepts—such as sets, 
functions, and binary operations—as a prerequisite for learn-
ing the concept of vector space (Parraguez & Oktaç, 2010) 
and the use of diverse vector spaces and binary operations 
(Parraguez, 2013; Weller et al., 2002) in the design of a new 
didactic proposal.

3  Theoretical framework and research 
questions

This research is based on APOS theory, a constructivist 
theory developed by Dubinsky (Arnon et al., 2014, Ch. 
1). It adapts Piaget’s genetic epistemology to the learn-
ing of advanced mathematics. It intends to understand the 
constructions students need to do to learn mathematical 
concepts and provides tools to design specific activities 
to address the difficulties reported in the literature and to 
foster the construction of new knowledge. We considered 
using this theory as it was designed to foster students’ 
reflection, which is necessary to learn complex abstract 
concepts such as vector space.

Its main mental structures are Actions, Processes, 
Objects, and Schemas. According to this theory, when stu-
dents face a new mathematical concept, they construct new 
knowledge by reflecting on their previous knowledge. This 
construction starts with Actions on an already constructed 
Object. Actions are the structures needed to operate on 
Objects to transform them. Students using mainly Actions 
rely on memorized facts or algorithms that can be considered 
externally driven when working on those Objects. When stu-
dents reflect on their Actions, describe them, or even reverse 
the steps performed, without following them one by one, 
they evidence they have interiorized those Actions into a 
Process. They can thus reflect on such Actions without the 
need for external stimuli. This construction can be recog-
nized when students can find the result of problems without 
performing all the steps or when they can generalize proce-
dures and arguments on them. Processes can be reversed and 
coordinated with other Processes into a new Process.

When students need to operate on a particular Process, 
they become aware of it as a whole, perform Actions on 
it, and encapsulate it into an Object. They can go back 
from the Object to the Process where it came from by de-
encapsulating it. Performing new Actions on it reinitiates 
the APOS construction cycle. A Schema in APOS theory 
is an overarching structure defined as a coherent collection 
of related Actions, Processes, Objects, and other Schemas.

Although this progression is presented as a linear 
sequence, development does not always follow a straight-
forward, step-by-step path. Instead, individuals may move 
between stages as needed by the circumstances.

In APOS theory, students are considered to have devel-
oped an Action conception of a concept when they rely 
in most cases on Actions throughout their mathematical 
work. Students who give evidence of having constructed 
mostly Processes are considered to have constructed a Pro-
cess conception of the studied concept. Students showing 
an Object conception of a concept are those who evidence 
the possibility of performing Actions on Objects.
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In addition to APOS theory theoretical structures, the use 
of the theory in research and teaching relies on a crucial 
component of the theory: the genetic decomposition (GD). 
It is a hypothetical epistemological model describing the 
structures and mechanisms involved in the construction of a 
mathematical concept or topic. It is a theoretical conjecture 
predicting how a generic student constructs a concept. It is 
developed by researchers using what is known about the 
construction of a concept, historical issues, and the teaching 
experience of researchers. There is no claim that a unique 
GD exists. Several GDs can coexist but must be experimen-
tally tested and refined if necessary. The GD is used in the 
design of research instruments, in the design of learning 
situations, and in data analysis.

The didactic approach used is detailed in the method-
ology section. It included tasks aimed at helping students 
grasp the prerequisite concepts needed to understand vector 
space. This approach led us to consider a related research 
question:

How did the construction of prerequisite concepts sup-
port the construction of the concept of vector space in 
this course?

After working with the prerequisites, students were pre-
sented with the activity sets designed with the GD for vector 
space. In order to study students learning of vector space, we 
focused on the question:

Which of the constructions from the GD do students 
manifest through a didactic approach designed with 
APOS theory?

4  Method

Following the APOS-based research methodology (see 
Fig. 1), we analyze the mental constructions a group of engi-
neering students evidenced while being introduced to the 
concept of vector space. Students were enrolled in an intro-
ductory linear algebra course designed with APOS theory 
and its associated teaching methodology, the ACE cycle (see 
Sect. 4.3). The authors devised the GD used in this study 

(Sects. 4.1 and 4.2). It models the necessary constructions in 
learning the vector space concept. The activities to introduce 
vector space were designed according to the constructions 
in GD (Sect. 4.4). The students had not been introduced 
to concepts from abstract algebra, proof, or more advanced 
courses prior to this introduction to vector space.

4.1  Vector space prerequisites

Based on the suggestions from previous studies (e.g., Par-
raguez & Oktaç, 2010), we decided to start by helping stu-
dents construct the needed prerequisite concepts: equality, 
set, and binary operations. We used an available GD for set 
and binary operations (Arnon et al., 2014), and we devel-
oped a GD for equality as follows:

The construction of equality starts with Actions to deter-
mine the difference between a mathematical definition and 
a logical proposition. They allow students identifying which 
propositions need to be verified for truth. Learning about 
equality involves the Action to compare two mathematical 
expressions to determine if a statement with an equal sign 
is true based on a given definition.

When students evaluate propositions and decide if they 
are true, they interiorize these Actions into a Process where 
they can check the equality of mathematical expressions 
without needing an explicit definition. This Process varies 
depending on the situation in which the definitions are gen-
erated. If students can combine two or more correct expres-
sions using equality properties—such as being reflexive, 
symmetric, and transitive—they show the construction of 
equality, and give evidence of the encapsulation of the equal-
ity Process into an Object.

4.2  Vector space GD

Vector spaces are defined as a set of vectors V  together with 
a field F in which two binary operations that satisfy ten axi-
oms are defined (Lay et al., 2021).

We designed a GD according to this definition (see 
Fig. 2) using elements from the GD proposed by Parraguez 
and Oktaç (2010) and Arnon et al. (2014). In this GD, we 
include mechanisms to integrate the construction of axioms 
in vector spaces by characterizing them into two groups: 
first, the axioms involving an equality relation for all vectors 
(axiom with universal quantifier). Then, the axioms involv-
ing an element that satisfies a property (axiom with exist-
ence quantifier), like the existence of the neutral element or 
the additive inverse for a vector.

Constructing sets with binary operations starts with 
Actions on the elements of a given set, consisting of apply-
ing binary operations to elements of the set. When individu-
als apply different binary operations to elements of several 
sets, they can reflect on their Actions and interiorize them 

Fig. 1  APOS-based research methodology  (Adapted from Arnon 
et al., 2014)



1421Mental constructions for the learning of the concept of vector space  

into a Process where these operations are considered func-
tions. When they reflect on elements satisfying different 
membership conditions together with diverse binary opera-
tions, they interiorize them into a Process defined in terms 
of a membership condition and the binary operation Process 
defined on a set. These two Processes can be coordinated 
into a sets with binary operations Process.

Proving that a set of vectors with a binary operation sat-
isfies an axiom with a universal quantifier starts with the 
student recognizing the axiom as an equality between two 
expressions related by an equal sign. The student calculates 
the required binary operations in both members of the equal-
ity using different elements of a given set according to the 
definition of the binary operation and compares the obtained 
results in terms of their equality. When an individual reflects 
on these Actions, he/she interiorizes them into a Process and 

is aware that the equality is valid for all elements in the set. 
By coordinating this Process with that of sets with binary 
operations, students construct a new Process where they can 
verify an axiom with a universal quantifier without needing 
to check for different elements of the set.

The construction of the “property is valid” Process ena-
bles students to discuss the existence of a specific element 
that satisfies the axiom. When this Process is coordinated 
with that of the existence quantifier, a new Process is con-
structed where there is no need to list all the elements of the 
set to see the existence of an element that satisfies an axiom.

The two previous axiom-verification Processes are coor-
dinated with the Processes corresponding to the axioms that 
define the vector space into a set with two binary operations 
that satisfy the axioms defining the vector space Process. 
When students construct this Process, they have interiorized 

Fig. 2  Genetic decomposition of the concept of vector space
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the need to verify all the axioms included in the vector space 
definition and can prove their validity in different sets.

Finally, when students can consider a set verifying all 
these axioms as a whole and can perform new Actions on 
it—such as identifying if a set V  with a field F and two 
operations defines a vector space as mentioned in Parraguez 
and Oktaç (2010) or creating functions that map between 
vector spaces—they encapsulate the vector space Process 
into an Object. Figure 2 presents a diagram describing a GD 
of vector space.

In this study, we do not focus on the vector space Schema, 
which involves progressing through more abstract levels of 
understanding (Parraguez & Oktaç, 2012). As such, we 
focus on concrete cases and foundational aspects.

4.3  Design and implementation of instruction: 
the ACE cycle

The didactic experience was conducted with 20 engineering 
students enrolled in a first linear algebra course at a Mexican 
university. These students were unfamiliar with operations 
different from those traditionally defined for ℝn.

Based on the GDs, twenty tasks, including sets and unu-
sual binary operations, were developed (e.g., Sect. 4.4). 
They were organized into six activity sets, each with three 
to four tasks.

The first three activity sets focused on building the prereq-
uisite concepts, equality, set and binary operation, through 
tasks requiring proving vector specific space axioms. The 
last three activities focused on tasks to prove theoretical ele-
ments related to vector space. These tasks asked students to 
determine whether different sets and binary operations were 
or not a vector space.

Students were organized into four-member teams to work 
on the designed activity sets over six sessions. Due to the 
COVID-19 all sessions took place online and followed the 
ACE cycle from APOS theory (Arnon et al., 2014) includ-
ing: teamwork in Activities (A), whole Class discussion (C), 
and Exercises (E).

This cycle was implemented: The teacher worked each 
week with one of the six Activity sets (A) designed to help 
students do the mental constructions suggested in the GDs 
(See Sects. 4.1 and 4.2). Each team worked collaboratively 
on the tasks (A). The teacher held one hour of weekly online 
whole-class sessions (C) with each team for students to 
present their task work. The teacher encouraged students 
to reflect on their tasks’ responses. Depending on students’ 
answers, the teacher clarified their thinking. When needed, 
the teacher provided hints to foster students' progress in 
understanding the concepts. The main objective of this dis-
cussion was to help students make the constructions sug-
gested in the GDs. Tasks not solved in class sessions were 
assigned as Exercises (E) to work at home to reinforce the 

activities and the classroom discussion. The teacher was 
available online to answer student's questions about them.

4.4  Designed tasks and their analysis with the GDs

The design of the tasks enabled students to engage with 
various binary operations, sets, and vector spaces, enhanc-
ing their comprehension. Students applied these concepts 
across various contexts, such as coordinate vectors, matrices, 
polynomials, and finite fields. The tasks were not merely 
about computing but also involved analysis, reflection, and 
argumentation.

In this section, we present four tasks and their analysis 
in terms of their relation to the constructions called for by 
the GDs. They illustrate the activities the students engaged 
in and help to contextualize the results discussed in Sect. 5.

The following task was part of activity set two to promote 
the construction of set:

Task 1
Consider the set ℤp = {0,1, 2, ..., p − 1} and define 

V =
(

ℤp

)n as the set of n-tuples of numbers belonging to 
set ℤp.

(a) Show examples of elements from V  . How many ele-
ments are in set V =

(

ℤ5

)2?
(b) What are the differences between W =

(

ℤ5

)3 and V?
(c) If ℤ7 = {0,1, 2,3, 4,5, 6} and U =

(

ℤ7

)2 . What are the 
differences and similarities between U,V  and W?

A priori analysis
In this task, students could calculate the cardinality of 

different 
(

ℤp

)n sets by reflecting on the structure of their 
elements, rather than just the pn formula. This information 
was used later in the course to construct finite vector spaces 
using modular arithmetic.

Part (a) offers a chance to perform Actions to construct 
n-tuples from set V  and calculate its cardinality: the student 
can construct a list of the elements for V =

(

ℤ5

)2 by pairing 
the elements of ℤ5 and use this list to provide the requested 
examples. Reflecting on these Actions can help the student 
interiorize them into a set Process. Parts (b) and (c) offer a 
chance to reflect on the differences and similarities in the 
procedure used to generate the elements of 

(

ℤp

)n sets—more 
than just selecting a specific element or listing them. This 
reflection implies recognizing each set as a whole, which can 
be compared based on their definitions. The reflection can 
promote the encapsulation of the set Process into an Object.

The following task was included in activity set three to 
work on binary operations and equality concepts. This task 
introduces vector space axioms as properties that binary 
operations may satisfy.
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Task 2

Consider W =

��

a b

0 c

�

∶ a, b, c ∈ ℝ
+
⋃

0

�

 , that is, W 

is the set of matrices with real entries such that the com-
ponent in the second row, first column, is zero, and the 
remaining components are positive real numbers or zero. 
We define two operations on W  : an operation “oplus” of 
two elements in W  , given by A⊕ B = AB (the usual matrix 
product of A and B ); and an “otimes” operation of a scalar 

from ℝ by a matrix in W , given by: t⊗
(

a b

0 c

)

=

(

at bt

0 ct

)

 . 

If A and B are matrices and t  is a real number, is it true that 
t⊗ (A⊕ B) = (t⊗ A)⊕ (t⊗ B)?

A priori analysis
In this task, students can find a counterexample to probe 

that the property is false. A general proof of this can be 

based on the fact that t⊗ (A⊕ B) =

(

(ad)t (ae + bf )t

0 (cf )t

)

 

and (t⊗ A)⊕ (t⊗ B) =

(

(ad)t (ae)t + (bf )t

0 (cf )t

)

.

To verify the properties in this task, it is necessary to 
demonstrate equality by examining how binary operations 
apply to all elements within the given sets. Students can 
perform Actions to evaluate the operations on both sides 
of each equality using specific values and then repeat 
them with different elements to check whether the prop-
erty holds in each case. Reflecting on how these equali-
ties work in specific cases helps understanding how the 
property applies to all elements of the corresponding sets. 
This reflection fosters the interiorization of a new Process, 
allowing students to validate or invalidate an axiom with 
a universal quantifier by using generic elements to argue 
about it.

The concept of vector space was introduced in the next 
task, part of the fourth set of activities.

Task 3
Verify if the set with the given operations is a vector 

space over ℝ.

The set V =

{(

x y

0 z

)

∶ x, y, z ∈ ℝ
+

}

 with the opera-

tions defined as follows:

• Vector addition: 
(

a b

0 c

)

⊕

(

d e

0 f

)

=

(

ad be

0 cf

)

.

• Scalar multiplication: t⊗
(

a b

0 c

)

=

(

at bt

0 ct

)

.

A priori analysis
Defining x, y, z ∈ ℝ

+ implies students cannot use nega-
tive numbers or zero as arguments for the existence of zero 
vectors or additive inverses. This constraint requires students 
to reflect on the elements of set V  and the defined vector 

addition to prove these properties. Other vector space prop-
erties can be proved using real number products and power 
laws.

The task helps to evidence constructions related to vec-
tor space. Students can perform Actions to confirm the clo-
sure of binary operations by evaluating specific elements. 
Interiorizing this Action into the Process of set with binary 
operations allows for the description of how these opera-
tions act on all the set elements, using generic elements.

To confirm the validity of the vector space axioms 
involving the equality sign and universal quantifier, the 
student could evaluate both sides of the equality with spe-
cific elements. Repeating this Action for several elements 
of the set can promote interiorizing those Actions into a 
new Process, which can be coordinated with the Set Pro-
cess to construct a Process for verifying a set with binary 
operations satisfying an axiom with a universal quantifier. 
This would enable the student to argue about the validity 
of these axioms for all elements of V .

When working with the existence of the additive iden-
tity and the additive inverses, students can select elements 
from V  and evaluate them in the given operations to verify 
these properties. Repeating these Actions in the search for 
specific elements satisfying the properties can promote 
their interiorization in the corresponding Process and its 
coordination with the Set Process into a new one, involv-
ing verifying a property with an existential quantifier for 
binary operations. This would enable the student to argue 
about the validity of these axioms on V .

Task 4 was used at the course’s end to interview 
selected students and explore their understanding of the 
vector space concept.

Task 4
Let S  be a vector space over the field ℝ and suppose 

that U,V ⊆ S are two vector spaces over the field ℝ with 
the same addition and scalar multiplication operations 
defined on S. Let W  be the intersection (suppose it is 
non-empty) of U and V  ( W = U

⋂

V  ), this is, W  is the set 
formed by all vectors that are in both U and V  . If we know 
that the additive identity of U belongs to W  , Prove that W 
is a vector space.

A priori analysis
This task addresses a well-known result about vector 

subspaces, but it was assigned deliberately because the 
students had not yet worked with them when they com-
pleted the activity. This task helps us to gather evidence 
about the possible coordination of the Processes needed 
to understand axioms with quantifiers (universal and exis-
tential) and each of the specific Processes corresponding 
to the axioms defining vector spaces. The activity seeks 
to obtain evidence of constructing a single Process for 
verifying if sets with binary operations satisfy the axioms 
defining vector spaces, as proposed in the GD.
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4.5  Data collection and analysis

All student discussions were recorded during the six online 
sessions. Each intervention was assigned an identifier to organ-
ize the transcripts of the online class sessions. Additionally, the 
names of the students in the dialogues were anonymized. All 
collected data have been translated from Spanish.

Using APOS theory, each researcher independently ana-
lyzed the data to identify the procedures and constructions 
described in the GD in students’ statements. These instances 
were coded in terms of the Actions, Processes, or Objects 
proposed in the GDs and the tasks’ analysis. For example, if 
a student showed memorized arguments or dependence on 
specific vectors to verify vector space properties in task 3, 
it was interpreted as evidence of the use of Actions in that 
instance. If the student responded to most problems and the 
questions posed during the interview using Actions, we con-
sidered he evidenced an Action conception of the involved 
concept. When a student was able to generalize operations, 
describe a set of vectors, or argue about the validity of a 
property in general over a given set, we refer to it as a Pro-
cess. When a student was able to consider a Process as a 
totality and was able to do Actions on a Process, it was con-
sidered that the student constructed the concept as an Object.

After individually analyzing each session’s data using 
the criteria mentioned above, researchers compared and 
negotiated their results to reach a consensus on the mental 
constructions demonstrated by the students. This analysis 
was repeated weekly on all teams’ data to determine how the 
construction of prerequisite concepts supported the develop-
ment of the vector space concept and which of the construc-
tions from the GDs were manifested by the students.

When the six online sessions ended, four students were 
selected based on their responses during online sessions: one 
demonstrating a solid vector space construction, two show-
ing progress, and two evidencing difficulties throughout the 
sessions. Each participated in an individual interview where 
questions about vector space and task four were posed. 
These interviews aimed to contrast the structures evidenced 
by students during the lessons with new ones shown in the 
interviews to discern whether the constructions proposed by 
GDs adequately explained performance variations or if addi-
tional constructions not addressed by the GDs were shown 
(Arnon et al., 2014). This allowed us to determine whether 
these students had constructed the constructions outlined in 
the GDs at the end of the study.

5  Results

This section presents the main results of the online sessions 
and individual interviews. We highlight the GD construc-
tions that students evidenced while solving the assigned 

tasks. This section also presents empirical data that reflect 
the general trends, typical achievements, and common dif-
ficulties encountered in the group.

5.1  How did the construction of prerequisite 
concepts support the construction 
of the concept of vector space in this course?

We followed the recommendation from the literature about 
the need to introduce prerequisites. A GD for each was 
used, and activities were designed to foster the construction 
described according to APOS theory and the ACE cycle. 
When working on the first task, some students showed dif-
ficulties with the letters. They tested the proposed identities 
by substituting letters with numbers. When asked to per-
form non-standard operations with elements of a defined 
set, students would use a standard operation and, sometimes, 
they disregarded the set elements. Only two students clearly 
understood equivalence properties and sets as Objects, ten as 
Process, and eight as Action when introducing prerequisite 
concepts.

All students had difficulties to understand the purpose of 
using different binary operations when working with vec-
tors, and other sets. For example, when working with task 1, 
defined above, asking to give examples of 

(

ℤp

)n sets, student 
D proposed:

D: I chose numbers for p and n, 
(

ℤ7

)3 , then I have to 
use numbers from 0 to 6, the set elements would be 
(0,2)(0,6) and (0,0).

This student chose numbers included in ℤ7 followed 
by Actions to choose some set members. He incorrectly 
associated the role of 3 in the expression with the number 
of elements in the set. After discussing with his team, he 
corrected:

D: I see now, I don’t need 3 elements in each set mem-
ber, it is, for example, (1,3, 5) would be an element in 
the set and others with three components until com-
pleting all the set’s triads.

Students did not initially grasp the need to prove state-
ments and often overlooked valuable information about the 
sets involved in the task. A common procedure is illustrated 
by the work of a team discussing a task similar to task 3, ask-
ing to verify the commutative property of the defined sum 
for a set of matrices. Students used the standard definition 
of matrix addition instead of the one proposed in the task.

These examples show that students did indeed need the 
introduction of prerequisites. It took them time to understand 
the purpose of introducing different sets with a diversity 
of binary operations. They performed Actions on specific 
numbers. Working on the proposed activities in teams and 
discussing them with the teacher fostered their reflection 
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and promoted some students’ interiorization of Actions into 
Processes.

As students progressed through the lessons, they became 
more fluent. Eleven showed the construction of equality and 
set as Processes and three as Objects. They showed they had 
interiorized or encapsulated equivalence properties and deci-
sions on the truth of propositions. Most of them understood 
the need to validate them.

For example, when asked to generalize the product by a 
scalar for elements in 

(

ℤp

)n eleven students showed the inte-
riorization of Actions into a Process when giving a similar 
response to R’s:

R: for all vectors resulting from 
(

ℤp

)n , those vectors 
would need to be multiplied by the scalar, but then…
it is necessary to find the reminder of dividing them by 
p … it would be from 0 to p − 1 in order for the opera-
tion to be valid, that is, all the coordinates should result 
in a number belonging to the set….

These students showed the construction of the Process 
of set while being able to work on given sets and verify 
their defined properties. They showed to be able to consider 
equality, sets and binary operations as Processes as they did 
not need to use specific examples and were aware of the 
need to validate statements and developed general coherent 
arguments.

During this part of the course, students had many oppor-
tunities to reflect on and develop the prerequisite concepts. 
When finalizing this part of the experience, all students 
could operate on equality and sets: three as Object, eleven 
as Process, and six as Action. Students who, at this point, 
constructed prerequisites as Actions had other opportunities 
to reflect on them through their work on vector space.

L: To me they are equal (Fig. 3), since this side has 
the same operations, and when doing those two sums, 
here (referring to both sides of the equality) … they 
are the same.

Although this argument is not a formal proof, it shows the 
student’s need to make sure the property was valid.

Most students found binary operations complex. At the 
end of the prerequisites’ introduction, eight students showed 
their construction as Processes and two as Objects. They 
could recognize the generality of the operations needed and 
argue about their application and properties.

How did the construction of prerequisite concepts sup-
port the construction of the concept of vector space in this 
course?

Regarding the first research question, this course’s work 
on prerequisite concepts provided students with the con-
ceptual foundations necessary to begin constructing vector 
space. Students' work supported their introduction to vec-
tor space by stimulating the construction of Processes and 

Objects related to the meaning of equality identification of 
elements in various sets with binary operations and making 
them all aware of the need to validate propositions through 
argumentation or proof. These constructions supported the 
construction of vector space by making students aware of 
its definition’s main components and helping them distin-
guish different kinds of statements and how to validate them. 
These have been found in the literature and are behind stu-
dents’ difficulties when facing vector space.

5.2  Which of the constructions from the GD 
do students manifest through a didactic 
approach designed with APOS theory?

We begin by presenting a dialogue among a team of students 
as they tried to prove propositions on task 3 in the fourth 
session:

J: … We have to verify equality. First, we need to per-
form the operations both on the left and the right, and 
then verify whether it is true… As I understood, we 
have to assign values to the matrices and then do the 
operations to see if we get the same result.
E: Well, we have different properties. I remember that 
one (describes the distributive property), I mean, the 
properties, that no matter how you do it, the results 
will be the same.

J’s proposal shows he needs to perform Actions to verify 
the distributive property. He needs to use specific numbers 

Fig. 3  Student’s work on a task designed to evidence a Process con-
struction. The student did not develop the procedure expected for a 
proof, but was able to validate the proposition
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to determine its truth. E’s response suggests an awareness of 
the need to test propositions in general, which is related to 
constructing a Process. She did not ask the group to change 
their approach, so they continued using numbers to validate 
the involved propositions, disregarding the definition of the 
operations. They evidence the construction of operations and 
the need to validate equality propositions but not the applica-
tion of the corresponding binary operations.

This example illustrates the work of other teams where 
students verified vector space properties by choosing specific 
vectors from the sets and that of other students who used 
letters all representing specific numbers in the proof. They 
demonstrated the needed to perform Actions to validate 
properties defined for different sets with binary operations. 
They did not consider that verifying all the elements in the 
set should satisfy each property. They also illustrate how 
students who rely on Actions had not yet constructed the 
need for generalization to determine the truth of propositions 
including equality. This finding revealed that despite intro-
ducing prerequisite concepts, two students in the group had 
not interiorized the role of binary operations as a Process 
to verify general propositions including an equality. This 
result supports previous findings indicating that the concept 
of vector space is challenging for many students.

Returning to the second research question about the con-
structions from the GD manifested by students who could 
only use numbers in the verification, they have only con-
structed the part of the GD associated with the construction 
of Actions (Fig. 4). We can also observe that students who 
have constructed the prerequisites as Actions continue per-
forming Actions regarding vector space, which means that 
they can test the properties defining it in terms of specific 
examples satisfying the properties.

Eight students showed evidence throughout their work 
of interiorizing the Actions into Processes needed to verify 
the properties of the operation in given sets to determine if 
they were or not vector spaces. They could all argue their 
response and operate without following memorized proce-
dures. For example, when working on task 2, F can explain 
the validity of the distributive property:

F: First, we need to add both matrices, 
(

a b

0 d

)

 and 
(

x y

0 z

)

 because the task tells you that oplus doesn’t 

mean adding matrices. It means matrix multiplication. 
You are not going to do an element-by-element addi-
tion; you are going to do a multiplication, in which you 
multiply both the rows of one and the columns of the 
other. It is matrix multiplication. What he did was an 
addition, and in the one where he did scalar multiplica-
tion by a matrix, it tells us that the otimes that appear 
there is not a multiplication. It is like raising the ele-
ments of the matrix to a power.

F described, in general, how he would prove the distribu-
tive property. He showed he had interiorized Actions into a 
Process. He underlined the fact that the distributive property 
is valid for any number included in the set he was working 
with and using the defined binary operations, thus demon-
strating that he also considered the property valid for all the 
vectors, in this case, matrices, in the set.

Seven other students demonstrated the construction of 
Processes regarding other vector space properties with uni-
versal quantifiers. When asked about the validity of the addi-
tion closure in task 3, F replied:

F: In this set all matrices have the form with a, b, c in 
the reals and the zero in the second row first column. 

This is one matrix, other in the same space is 
(

d e

0 f

)

 . 

Then, we add them following the given definition for 

the sum and it results in the matrix 
(

ad be

0 cf

)

 . You can 

notice that it has the same structure, because ad, be and 
cf  are real numbers, we could have changed them by 
(

x y

0 z

)

 so the result of the sum has the same form as 

the others, it pertains to the same set, which is a vector 
space… so the addition is closed in that set.

When questioned about the existence of additive inverse 
vectors, L said:

Fig. 4  Part of the GD con-
structed by students demonstrat-
ing an Action conception of 
vector space. These students 
work with vector spaces mostly 
through concrete examples
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L:You can see we are dividing a by a , well if you 
have… let us say that a is 3, 3 divided by 3 is 1. If a 
over a is 1 and, the others are all 1 as this… (Fig. 5).

F and L show the construction of a Process for using and 
proving properties. They evidence of general thinking about 
the matrix's components and operate fluidly on them. This 
evidences their Process construction in finding a neutral ele-
ment. L says:

L: We took what we already had for the fourth [prop-
erty] as a reference, since it indicates that, if −u exists, 
it should lead us to the value of the additive neutral 
element… Well, I thought about possible numbers, 
but then I changed to (1∕a) , since when multiplying, I 
mean, when using addition, it would be a over a, (a∕a) , 
and as a result, we get the additive neutral element that 
we had obtained before.

L proposes a general structure for the additive inverse 
vector based on a generic vector u of the given set and 
applies the binary operation defined on this set. L describes 
how the general structure he proposes can prove the exist-
ence of the additive inverse elements for a given value, thus 
showing a Process construction for a general proposition 
with an existential quantifier.

These interventions evidence the construction of at least 
the Processes required to prove properties in general, thus 
demonstrating F and L’s construction of Processes for veri-
fying axioms for binary operations in general for the given 
set.

When looking for a neutral additive element in task 3 for 
the set. J and R discussed:

J: As L said, we need unknowns to make it easier.... 
We used zero as the unknown for the neutral value to 
obtain the same result…

J followed L’s argument and tried to explain it, but she 
was unclear. J shows she can perform Actions on variables. 
Her use of Actions can be seen when she refers to the use of 
“unknowns” when looking for an inverse element.

R: Since it is a product, the additive identity for prod-
uct uses 1, and I thought we could use this (in all the 

elements of the matrix), when we multiply it by 1... 
that is, it will give us again... nothing changes.

R also tries to understand J’s argument but is confused by 
his teammates’ use of zero. His proposal shows that he has 
interiorized those Actions into a Process.

J: No, I mean… it is the zero matrix. When we perform 
an addition, it gives us the same value as u…Well, here 
we have the result of a plus 0, b plus 0, 0 plus 0, and 
c plus 0, which, when replaced by any positive real 
value, gives us the same result as matrix u.

J shows she has not interiorized her Actions into a Pro-
cess since the neutral additive she uses does not follow the 
given definition.

A: Look, here it says vector addition. You say it is 
an addition, but it really is a product, so the additive 
identity would not be zeros but ones as R said.

A shows she understands that, in this case, addition has 
been defined as a product. This makes J reconsider her argu-
ment and support R.

R: Professor, can two values be an additive identity, or 
is there only one for all?
P: That is interesting. When looking at the axiom, it 
does not say that there is only one. It just says it exists.
R: I see, it is just that with L’s example, it generally 
works for all, but I imagine that using numbers like 
one would also work… For example, if we have a 
matrix, the additive identity could only have ones in 
both rows. If we apply oplus, we would get the same 
result, it would be the same, as in L’s example… and 
it’s even more general.

In this part of the interview, it is observed that R has 
interiorized the additive identity into a Process. He is still 
confused by L’s response (Fig. 5) and does not consider it 
equal to his proposal, which indicates he has not constructed 
it as an Object since he considers both responses different.

L: …instead of using 1, I used letters so… it is a 
division of a by a (Fig. 5)… again, let’s say a is 3, 3 
divided by 3 will give you 1, so, if you notice, that a 
divided by a is one. So, the others are also ones, all of 
them. What I did is different because I used variables.

Here, L shows that he has constructed the additive iden-
tity as an Object. He can do the Action needed to compare 
two representations of the same result. He considers its dif-
ferent representations equivalent and defends his procedure 
in terms its generality.

This discussion shows how J, R, and L make different 
decisions regarding the same property. They show differ-
ences in their construction of this concept, which may be Fig. 5  Vector proposed by L to verify the existence of additive 

inverses
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behind their difficulties in agreeing on a specific response. 
The discussion continues:

R: That is what I meant by whether there can be 
more than one additive identity. That made me won-
der about if there could be more than one.

Comparing different representations for the same ele-
ment involves constructing the additive identity as an 
Object. R demonstrates that he has not encapsulated his 
constructed Process, while L has.

We also find evidence of the coordination of two Pro-
cesses: Applying a binary operation to all the elements of 
a set and evaluating axioms with existence and uniqueness 
quantifiers. These students show they can use the meaning 
of the neutral element and the additive inverses to jus-
tify their decisions. This coordination involves reflection 
on the characteristics of a set’s elements and how binary 
operations act on all these elements. It led J, R, and L to 
reflect on the uniqueness and universality of those prop-
erties. This excerpt clearly evidences the construction of 
vector space as a Process.

Other students demonstrated the ability to consider 
general elements and operations in most tasks to validate 
properties of different sets. They were also able to explain 
their reasoning and coordinate two Processes into a new 
Process as outlined in the GD. They showed evidence of 
having constructed vector space as a Process. Figure 6 

shows the part of vector space GD constructed by these 
students.

Going back to the constructions these students showed, 
there is evidence that L and R demonstrated the construc-
tion of vector space as a Process. According to APOS the-
ory, they have constructed all the needed constructions as 
Processes. They could prove if different sets were or not 
vector spaces. However, they may find it challenging to 
apply Actions, for example, to prove statements about vec-
tor spaces in general. At this point, R, L, and W may have 
developed the concept of vector space as an Object, but we 
do not have sufficient evidence from the data collected to 
confirm this.

Interviews’ results
At the end of the experience, the teacher selected four stu-

dents, each from a different team and representing students 
with different levels of understanding, to be interviewed. The 
interview was planned as another opportunity for these stu-
dents to show what they had learned during the lessons and 
for the researchers to verify student’s constructions through 
their responses to the interviewer.

The analysis of two interviewed students confirmed our 
previous appreciation of their vector space construction. 
L and W were able to verify vector space axioms for new 
sets with binary operations given. To confirm, P asked L 
whether the set of second-degree polynomials with integer 
coefficients forms a vector space. L tested the addition 

Fig. 6  Construction of vector space as a Process
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properties and said, “It seems to be. I would check the sca-
lar multiplication”. When he finished these operations, he 
confirmed that the set was a vector space. P asked him if 
he was sure or if something else was needed. L responded 
that he was sure, as it held true for all real numbers. L 
did not realize that coefficients needed to be in Z . He did 
not consider that he was including, for example, rational 
numbers, thus demonstrating he had not constructed vector 
space as an Object.

Student W was confident in his knowledge. His argu-
ments were always clear. He gave evidence through the 
lessons and the interview of consistently constructing the 
last Process coordination (Fig. 2). The interviewer decided 
to test his ability to perform Actions on general vector 
spaces. What follows is his discussion with interviewer P 
when asked if the intersection of two vector spaces was a 
vector space (task 4).

This question might seem basic to those who have 
studied advanced introductory linear algebra or have been 
introduced to vector subspaces. However, none of these 
conditions apply to this course, as students had not previ-
ously worked on proving theorems or on subspaces. W 
response follows:

W: If I have two vector spaces, the intersection means 
that there exists another, let us say, a W  , which is not 
yet defined as a vector space, but which has elements 
from both V  and U , and the intersection consists of 
those elements that coincide and are enclosed in 
another space, which we will call W  . Now, here we 
want to verify that W  is indeed a vector space.
P: Do you need to prove that the addition is closed 
in W?
W: Here addition is not defined, so... would I need to 
create an addition operation here?
P: No, we know there is an addition operation defined 
in U and V  . We do not know it yet. We will use the 
same addition operation for W  since it is defined as 
their intersection.
W:…if the intersection of U  and V  is W  , then the 
addition operations in U and V  are already defined 
and they are the same, …if the elements that coin-
cide for W  can be added, then it would be as adding 
those elements of W  … I could apply the addition 
of elements from U and V  , but it would be the same 
because the intersections that coincide in U and V  
and adding them would be the same as adding the 
elements that belong to W  … I get it now! …If these 
elements have already been added in U and V  and 
always resulted in closed sets in U and V  , then the 
addition of elements in W  would also be closed in W .
P: What about scalar multiplication? Would it be 
closed?

W: If for U and V  , the multiplication by a scalar is 
already defined in both and was closed for U and V so it 
would be the same in W.
P: And what about additive inverse? Does W have an 
additive inverse? …Okay, let me repeat, suppose w1 is 
in W , what do you know about w1 then?
W: …Yes, I got it! If there is an additive inverse both 
in U and V for w1 , the additive inverse is… it repeats in 
both, which means that in W , it has to exist too because 
W is the intersection of those elements that are repeated 
in both, and if it is for both, it has to be for W too.

W had shown before the construction of a Process con-
ception of vector space. His arguments show his ability to 
compare sets and discuss the properties in their intersection 
without referring to their elements. When asked to describe the 
addition and scalar multiplication defined in U , he showed evi-
dence of encapsulation of the verification of properties related 
to the universal quantifier while describing addition and scalar 
multiplication as those defined in U and V to argue that this 
operation was also closed in W . Finally, W discussed the valid-
ity of properties related to vector space axioms. He compared 
spaces U,V , and W , thus evidencing the construction of vec-
tor space as an Object. W was not asked about the additive 
inverses, but his ability to act on vector space is enough to 
consider his construction of vector space as an Object.

When considering the development of students’ concep-
tions at the end of the experience, we agreed that two students 
showed an Action conception of vector space, fifteen students 
showed a Process conception, and three students showed an 
Object conception. Given the conditions in which this experi-
ence took place, compared to previous literature results, the 
findings obtained in this study may inform future development 
of strategies to teach vector space.

6  Discussion and conclusion

This study aimed to design a didactic strategy based on APOS 
theory for teaching vector space to university students and test-
ing it with engineering students in a first-year Linear Alge-
bra course during the second semester of their program. The 
course was designed according to a GD, including the prereq-
uisite concepts of equality, sets, and binary operations. These 
prerequisites were introduced through collaborative activities, 
helping students to gradually construct their understanding of 
vector space.

6.1  Integration of prior research

Previous research has pointed to several obstacles that stu-
dents face in learning vector space, mainly due to the for-
malism obstacle (Dorier & Sierpinska, 2001). The challenge 
lies in coordinating different semiotic representations and 
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applying vector space properties beyond traditional vector 
spaces, which often require more profound levels of abstrac-
tion (Gueudet-Chartier, 2004; Kú et al., 2008). Our study 
builds on this literature by addressing the need to formal-
ize prerequisite concepts such as equality, sets and binary 
operations (Parraguez & Oktaç, 2010), which had not been 
explored as part of a didactic strategy for introducing vec-
tor spaces. This contribution enriches the existing body of 
research by incorporating these prerequisites into vector 
space instruction and demonstrating, through empirical evi-
dence, how they positively influence students’ understanding 
and ability to engage with abstract concepts.

6.2  Contribution to research on linear algebra 
instruction

One of the main contributions of this study is the devel-
opment and implementation of a GD tailored explicitly for 
the concepts of equality, sets, and binary operations, which 
are critical for understanding vector space. While previous 
studies (e.g., Arnon et al., 2014) have developed similar 
strategies, particularly with mathematics students and the 
use of programming, this is the first time such an approach 
has been applied to engineering students, incorporating the 
prerequisite concepts as foundational elements. Moreover, 
the activities were designed to introduce students to these 
concepts and to guide them through verifying whether given 
sets of vectors with various binary operations satisfied vector 
space axioms. This successful teaching approach is a sig-
nificant addition to the literature on linear algebra teaching 
methodologies.

6.3  Response to research questions

In addressing the first research question—“How did the con-
struction of prerequisite concepts support the construction 
of the concept of vector space in this course?”—we found 
that introducing prerequisite concepts was essential for all 
students because they provided the necessary groundwork 
to engage with a more abstract concept like vector space. As 
students entered the vector space topic, these prerequisites 
served as a foundation for validating whether different sets, 
defined by various binary operations, satisfied each of the 
axioms defining vector spaces. This process supported stu-
dents’ gradual transition from dealing with isolated opera-
tions to recognizing the necessity of proving axiomatic 
properties and the distinction of the role of existential and 
universal quantifiers, as evidenced by their improved abil-
ity to argue about these properties in class discussions and 
assignments.

For the second research question—“Which of the con-
structions from the GD do students manifest through a 
didactic approach designed with APOS theory?”—our 

results indicate that students manifested all the predicted 
constructions from the GD during classroom activities, 
except for the Object construction of vector space. How-
ever, these constructions appeared with varying frequency 
among students, with many still relying heavily on Actions 
rather than Processes, highlighting the challenges of reach-
ing a more advanced understanding. Nevertheless, in the 
interviews, two students demonstrated the construction of 
vector space as an Object: one in a specific set and another 
in a general sense, although still limited by prior knowledge 
regarding proof techniques.

6.4  Challenges encountered

This study faced some challenges. First, while it was initially 
planned that students would engage in programming activi-
ties to deepen their understanding, this was only partially 
implemented due to the COVID-19 pandemic and tech-
nological limitations (e.g., some students lacked access to 
computers and relied on mobile phones with limited data). 
Despite these limitations, students adapted well to the situ-
ation. Second, some students encountered difficulties with 
the abstract nature of linear algebra, as this was their first 
exposure to the subject. While this presented a significant 
challenge, many students were still able to engage in the 
proposed activities using Actions and demonstrated an 
understanding of validating propositions regarding vector 
spaces. Although not all students could construct general 
proofs, others successfully constructed nearly all the struc-
tures outlined in the GD. By the end of the course, these 
students could discuss and use logical propositions to prove 
statements related to vector space, indicating a deeper under-
standing of the subject.
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