Full Solution Indexing for top-K Web Service
Composition

Jing Li, Yuhong Yan, Member, IEEE, and Daniel Lemire, Member, IEEE,

Abstract—Automated service composition fulfills complex tasks by combining different existing web services together. Unfortunately,
optimizing service composition is still a challenging area that needs to be addressed. In this article, we propose a novel relational
database approach for automated service composition. All possible service combinations are generated beforehand and stored in a
relational database. When a user request comes, our system composes SQL queries to search in the database and return the best
Quality of Service (QoS) solutions. We test the performance of the proposed system with a web service challenge data set. Our
experimental results demonstrate that this system can always find top-K valid solutions to satisfy user’s functional and non-functional

requirements.

Index Terms—QoS-aware service composition; top-K; database;

1 INTRODUCTION

O survive in the competing business environment, en-
Tterprises may focus on their core services and rush to
find other services via Internet. Service-oriented architecture
(SOA) combines existing services on the Internet as on-
demand software systems [1]. Compared with traditional
methods which program new systems from scratch to satisfy
customers, SOA helps lower costs of software development
and management.

In general, given a user request and goal, the web service
composition (WSC) problem is to combine together different
web services to fulfill user’s complex business requirements.
We demonstrate a real scenario of a travel plan to show our
motivation (Figure 1).

1) A tourist wants to travel from Montreal to Chicago.
First, he describes his requirement in a “Service
Description” file. The tourist needs a round trip
flight between these two cities, then, he needs a
hotel room while staying in Chicago, he wants a list
of recreation e.g., movie theatre, museum, shopping
mall. As no individual web service provides all
the information he wants, we solve the problem by
combining different services as a travel plan.

2) We choose services in the “Service Repository”,
construct a search graph from initial states to the
goal with chosen services.

3) We extract a solution from the search graph. Dif-
ferent services may have same functionality, in this
situation, we select services based on user’s non-
functional requirements.

4) We combine chosen services as a new service, return
this service as an executable solution to the user.

e] Liand Y.Yan are with the Department of Computer Science and Software
Engineering, Concordia University, Montreal, Canada.
E-mail: jing.li. hnu@gmail.com, yuhong@encs.concordia.ca

e D. Lemire is with LICEF Research Center, TELUQ, Université du Québec.
E-mail:lemire@gmail.com

In addition, recent research considers non-functional re-
quirements of services: Quality of Service (QoS), such as
availability, response time, throughput, reliability and so
on. QoS measures how well a service serves the user. The
selection of the composite service with the best QoS value
is called QoS-aware service composition problem. Integer
Linear programming (ILP) has been applied to solve this
problem [2], [3], [4]. However, ILP may lead to exponen-
tially increased computation complexity and cost when the
number of variables increases. Considering unexpected long
delay is not allowable in real e-business scenario, many
researchers solve the problem with local selection strategy
as a compromise [5], [6]. In local selection methodology,
services in different layers are selected independently, this
guarantees the problem is solved in polynomial time, but it
is easily falling into the “local maximum” problem. (A local
maximum is a maximum within some neighbor but not the
global maximum [7].)

Many in-memory approaches based on different kinds of
techniques are used to solve the composition problem. These
include A* methods [8], [9], [10], beam-stack search [11]
and planning-graph model [12], [13]. A planning-graph ap-
proach is a powerful method to solve the composition prob-
lem. This approach includes two stages: a forward expand
stage constructs a search graph and a backward searching
stage retrieves a solution. We show a set of available services
in table 1, the planning search graph of this table is shown
in figure 2. This graph contains two kinds of layers: the
proposition (P) layers contain parameters and action (A)
layers contain services. To construct a search graph, first, we
add user’s initial states to Py layer, then, search the service
repository for services whose input parameters are satisfied
in Py layer. These services are named as available services
and added into Ay layer. All parameters in F, layer and
available services’ outputs are added into P; layer, so P;
layer is a superset of P layer. We extend the search graph
layer by layer, this process ends when the graph reaches a
goal layer or no more services can be added into the graph.
If the goal states can not be found in the search graph, the

Service Query

Description Repos

Service

Search Graph
/'/7\
-

\
\

: =)

Calculate

itory

/

Transport
Service

Executable Solution

Restaurant

Recreation

Hotel
Service

Extract PLM

A

Service

Service

Fig. 1. A Web Service Composition Example.

Ay

Po
Fig. 2. A Planning Graph.

problem can not be solved, otherwise, the problem can be
solved. A backward searching stage from the goal layer to
the initial layer is applied to retrieve a solution. To find
the solution with the best QoS value, we need to check
all services’ combinations, the complexity of the backward
searching is NP-complete.

TABLE 1
A set of available services

Service Input Output
w1 A, B D
w2 B s C E
w3 C, D E
wa F

For each user request, in-memory approaches construct
a necessary graph of service connections and search the
graph to find a solution. To solve IV different user requests,
N graphs are constructed. This is time consuming. Besides,
in-memory approaches can only work when data fits in
RAM, the search space is limited by the size of physical
memory. This makes in-memory approaches non-scalable.
Last but not least, if a service in the solution is broken,

the solution is no longer available. The search graph is
reconstructed for an alternative solution.

The authors in [14] model a relational database as a
graph in which tuples and foreign keys are represented as
nodes and edges respectively. A parameterized solution is
proposed to find the minimum cost connected tree. Unfortu-
nately, this method does not hold for our problem. As in our
problem, instead of finding the minimum cost or shortest
path, we need to find a path whose output is a superset of
the goal.

Ding et al. study the time-dependent shortest-path prob-
lem [15]. To solve this problem, they design a DIJKSTRA-
based algorithm to calculate the earliest arrival time of each
node. A linear-time algorithm is designed to compute the
optimal path from originate to the terminate. Yang et al. dis-
cuss the shortest-path problem with time constraint in time-
dependent graphs [16]. A TWO-STEP-SEARCH algorithm
is proposed to solve this problem. First, they compute the
minimum cost from the starting point to each other vertex
by using the single-source shortest path algorithm. After
that, they calculate the optimal waiting time for each vertex
as the second step. These two methods aim at finding the
shortest path and are not suitable in our situation.

Attempts to resolve the service composition problems
have resulted in the utilization of relational database [17],
[18], [19]. They use “join” operators to connect matched
services, these services are seen as new available services.
The PSR (Pre-computing Solutions in RDBMS) system de-
veloped by Lee uses joins and indices to connect services
as paths and stores paths in a database [17]. The PSR
system abstracts services as single operators, while handling
user queries with multiple inputs and outputs, this system
returns all paths which meet part of user requests. Re-
dundant services may contain in the returned solution and
increase user’s cost (A service is redundant if all its output
parameters used by other services can be provided by other
services [18]). The system developed by [19] assumes all
the inputs of a service can be provided by another service.
However, in real world, normally a service only provides
part inputs of another service.

In this paper, we propose a novel approach for the
QoS-aware service composition problem, which is called
FSIDB (Full Solution Indexing using Database). That is, all
possible service combinations are generated beforehand and
stored in a relational database. When a user request comes,
the FSIDB system composes SQL queries to search in the
database and find K best QoS solutions (top-K solutions).
Compared with in-memory methods, the service combina-
tions are stored in the database and are therefore reusable.
Besides, our system takes advantage of large space available
on persistent disk. Last but not least, we find and rank top-
K paths according to the comparison of their QoS values,
these paths provide backup solutions. For example, when
searching a flight from Montreal to Chicago, we may get a
list of flight numbers provided by different companies. We
pick 5 flights as top-5 solutions ranked by prices from low
to high. If the flight with the lowest price is cancelled, the
user may book the flight with second cheapest price.

The key contributions of our work are as follows:

e We address the quality of services and calculate
globally optimized QoS values for web service com-
positions.

e We use a relational database to solve web service
composition problem with a large number of web
services and complex operators. The services’ com-
binations stored in the database are reusable. We
present algorithms to update the database e.g., ser-
vice disappearance and addition, and analyse time
complexity of these operations.

o We fetch solutions by converting the services com-
position requests into SQL statements, our system
supports several ways of searching. In case the opti-
mal solution is not available, we fetch top-K solutions
to provide backup solutions to the user. Also, we
support threshold query on multiple QoS criteria.

The rest of this paper is organized as follows: In Sec-
tion 2, we introduce the preliminary knowledge. The system
architecture and algorithms are given in Section 3. We
demonstrate a case study in Section 4 to further explain
our algorithms. Experimental results are shown in Section 5.
Related work is reviewed in Section 6 and the conclusion is
drawn in Section 7.

This article is an extended version of a conference pa-
per [20], this version presents upgraded algorithms and ex-
periments. We optimized the database schema, using fewer
tables and join operations, and as a result, the query times
have improved.

2 PRELIMINARY

In this section, we formalize definitions of web services and
web service composition.

Definition 1. An ontology rooted tree is a tuple (C, R) with
the following components:

o (' is a finite set of concepts represented as nodes in
the rooted tree.

e R is a set of direct inheritance relationships repre-
sented as edges in the rooted tree.

3

Vey,co € Cocp — ¢o & co is a child or descendant of ¢;.
Transparency: Ve, c2,c3 € Coer — ca Aca — ¢c3 =
c1 — C3.

An Ontology rooted tree is constructed according to the
similarities and differences among different entities, it is an
essence to enable semantic interpretation.

Definition 2. a web service w is a tuple (Win, Wous, P, E, @)
with the following components:

e Wi, is a finite set of typed input parameters of w.
A web service is invoked only when all its input
parameters are satisfied.

e Wouyt is a finite set of typed output parameters of w.

e P and E are sets of preconditions and effects respec-
tively. P is the availability of the inputs and E is the
availability of the outputs. The conditions are further
discussed in definition 7.

e (@ is a finite set of non-functional criteria for w.

Normally the description of a service has two compo-
nents: functional and non-functional characteristics. Non-
functional requirements—QoS criteria determine usability
and utility of a service [1]. We consider the following generic
QoS criteria of services.

1) Availability: the availability (A) of a service is the
probability a service is available, it is calculated as
A(w) = T(w)/6, T is the time period in which
the service w is available, 6 is a constant of time
period [21].

2) Performance: it is measured with response time (R)
or throughput (I). Response time in a data system
is the interval between the arrival of the request
and the beginning of delivery the response (unit:
milliseconds). Throughput is the average rate of
successful message delivered per time over a com-
munication channel (unit: requests/min).

3) Reliability: the reliability (RB) of a service is the
ability to serve correctly despite system or network
failures. It is measured by the number of transac-
tional successes per month (unit: successes/month).

4) Cost: the cost (C) of a service is the amount of money
paid to the service provider to use the service (unit:
cents).

Among these criteria: availability, throughput, and reliabil-
ity are positive criteria, the higher the value, the higher
the quality. Meanwhile, response time and cost are negative
criteria, the higher the value, the lower the quality.

Besides single QoS criterion, we would like to use a
utility value to describe multiple QoS criteria as a whole. In
this paper, we apply the Multiple Criteria Decision Making
(MCDM) approach [22] to obtain this utility QoS value. First,
we scale the value of a QoS criterion i for a service w;. For
a positive criteria, this value is scaled with Equation (1), for
a negative criteria, this value is scaled with Equation (2).

Qi ('U)g) _ anin

if lea:c _ Q:nm 7& 0
leaz _

Q' (1)
1 if Q;nax _ Q;nin =0

Ui(w;) =

QU — Qi(w;) . ;
2 _ lf maw _ mzn 0
Uiwy) = Qe —qun T T TAY
1 if Q;nlll‘ _ Q;nl’ﬂ — 0

The utility quality score of a service w; is calculated in
Equation (3).

w;) =Y Ui(w;) x W; 3)
i=1
Here, W; represents the weight of QoS criteria i, W; € [0, 1]
and > W, = 1.
i=1

Definition 3. A web service composition problem can be rep-
resented by a tuple (S, Cin, Cout, Q) with the following
components:

o Sisa finite set of services.

o (iy is a finite set of typed input parameters.

o Cout is a finite set of typed output parameters.
e () is a finite set of quality criteria.

Now we explain how to connect services, two kinds of
control structures are applied in this paper: sequence and
flow. Suppose services are represented by wi,ws, ..., w.
Services in sequence control structure are invoked one by
one (wy;ws;...;wy). Services in flow control are invoked
in parallel (wq]|wsa||...||w,). We may use single QoS di-
mension to express the performance of a composition and
compare QoS values of different compositions by either one
of the criteria.

N
A(sequence) = A(flow) = H (4)
n=1
R(sequence) Z R(wy), 5)
R(flow) —maX{R(1),..., R(wy)}. (6)
T(sequence) = T(flow) = min{T(wl) T(wp)}. ()
RB(sequence) = RB(flow) = H RB(w,). (8)
n=1
C(sequence) = C(flow) = Z C(wy,). 9)

The single QoS criterion can be calculated with Equation (4)
to Equation (9). Combine Equation (3) to Equation (9), we
can get the overall QoS score of a service composition:

S) = _Ui(S) x W (10)
i=1
Definition 4. A graph is represented as G = (W, E), where

W is the vertex set and E is the edge set. The vertex
set of graph W = {W1, W, ..., W} is partitioned into
k subsets, each set W; is called a layer, such that: for
every edge (u,v) € F with u € W; and v € W; implies
li—jl< L

A graph with a layer is a layered graph. A layer is proper
if all edges are between vertices in adjacent layers. Please

Ny /\
/\/’

g ”\D—»

Fig. 3. A Layered Graph Example.

note that services do not provide inputs to other services in
the same service layer.

Figure 3 is an example of a layered graph represents the
connection of services. We use circles to represent parame-
ters and use rectangles to represent services. In this figure,
we have four parameters (A4, B,C, D) and two services
(w1, ws). If a parameter p is one of the inputs or the outputs
of a service w, there is an edge between p and w. The
arrows represent the input and the output relations between
parameters and services. In this figure, the output parameter
C of service w; is an input parameter of ws, thus, we say w
is an input service of w,.

Definition 5. A path is a layered graph defined as a tuple
(SL, pathiy, patheys, Q) with the following components:

e pathiy, = { U {wt inlw; € Wi}t — { U {w] out|Wj €

Wittisa f1r11te set of typed input parameters

o SL={Wy|k=1:1}isaset of service layers and [is
the number of layers in the path. For each service in
a layer, the input parameters are provided by either
inputs of the path or the outputs of preceding layers.

o pathow = { U {wz out|W; € Wi}l is a finite set of

typed output parameters
e (@ is a finite set of quality criteria.

A web service combination C' can be mapped to a path.
To solve the web service composition problem, we need to
find a path between user request and goal, i.e., satisfying the
following two conditions:

d Cin 2 pathin
b Cout g pathout

Three paths can be found in Figure 3 and are listed in
table 2.

TABLE 2
Paths in Figure 3

ID pathin SL pathout
1 A, B {wl} C
2 B/C {ws} D
3 AB {{w},{w)} CD

When there are multiple solutions, we want to rank the
solutions by their QoS values and return K best solutions.

Definition 6. Top-K best solutions: while solving a web
service composition problem, we return the ranked top-
K paths based on user’s QoS constraints. Each of the
path satisfies the condition: {Ci, 2 pathin} A {Cout C
pathout}-

For example, suppose in figure 3 the user specifies his
requirement (Cly, Cout) = ({4, B}, {C}), we find two paths
ID =1 and ID = 3 (table 2) meet the requirements.

Syntactic matching without considering semantics may
lead to unsuitable solutions returned. Imaging a user is
looking for a travel service, the system takes destination, du-
ration as input, and returns a recommended travel package
as output. Since the service is requested without specifying
its precondition and effect, the system may compose a
conference searching service, which returns the information
of conference e.g., held place of the conference, duration and
registration fee. Unfortunately, this does not carry out user’s
intention.

To clearly understand users’ requirements and improve
correctness of the solution, researchers introduce semantic
feathers in service composition area. Semantic web service
matchmaking overcomes limitations of syntactic matching
and can be used to further enhance efficiency of service
discovery. This is achieved by OWL-S (Web Ontology Lan-
guage for Web Services) description language [23]. OWL-
S allows logic inference while matching web services. We
use an OWL ontologies file to define relationships among
services in the repository. An OWL file lists “concepts”
(Classes), “things” (Instances)and the relationship between
them, it is one of the most important languages for spec-
ifying ontologies. Ontologies are used to define relations
among concepts in an OWL file.

The use of semantic information allows the implemen-
tation of semantic service composition. In this paper, we
use the Web Service Challenge data set [24] to do the
experiments. In this data set, input and output parameters
of web services are also instances of concepts, so concepts
are preconditions and effects of services. Generally, the
matching degrees of services are defined as exact, plug-in,
subsume and fail. Two services are said to be exact match if
their inputs and outputs are exactly the same, it is the most
restrictive match. Plug-in match means the input set of a
service (w) is a subset of another service’s (w') input set or
the output set of w’ is a subset of output set of w.

Definition 7. Plug-in match can be represented as follows:
w Cw & Vi€ wip,i € w,,0 € Wou, 0 € Wyy,i C
iNo=0VoCoANi=17.

In this paper, we use plug-in matching degree to match
services. We use an example to show how to match ser-
vices with plug-in match. There are three concepts in our
example :“Dog”, “Mammal” and “Animal”. “Dog” is a kind
of “Mammal”, and “Mammal” is a kind of “Animal”. We
build an ontology tree to represent relationships of these
concepts. Service w; has an output parameter which is an
instance of “Dog”. We extend the output set of w,, so it
contains ancestors of “Dog” in the ontology rooted tree,
thus, the output of w; is extended to {“Dog”, “Mammal”,
“Animal”}. Web service wo has an input parameter which
is an instance of “Animal”, we say the input concept of ws
is “Animal”. Two services w; and ws can be connected if
they are exact or plug-in match. Because the input of ws is
a subset of the output of w;, w; and wy can be connected.
To avoid checking the semantic relationships every now and
then, we build an indexing table as shown in Table 3.

TABLE 3
An example of indexing table
Service Input Concepts Output Concepts
w1 Dog, Mammal, Animal
Wo Animal

3 ARCHITECTURE AND ALGORITHM

In this section, we describe the framework of our proposed
FSIDB system. Figure 4 shows an architecture overview of
our system.

Preparation. Service provider publishes web services
with WSDL interfaces. These services are loaded into the
“Web Service Repository” file, in which the functional prop-
erties and QoS values of services are registered. The OWL
ontology file defines service ontologies and can be parsed by
an OWL parser. The OWL ontology is used to infer semantic
relationships among matching services. The information of
services such as the name, input, output concepts and the
QoS values are stored in the “Service Information” module.

Path Generation. The “Path Generation” module com-
putes and stores all the possible connected paths and their
corresponding QoS values. The generated paths are stored
in a relational database, the schema of which is shown in
Figure 5. More specifically, “Automated Path Computing
Engine” computes all the possible paths. If the output of
a service wp is an input of another service ws, w; is an
input service of wy and there is a path connects them. We
avoid adding a service to a path which already contains that
service. The inputs of a service in a newly created path can
be provided by either the inputs of the path or the outputs
of a service in a proceeding service layer. All the outputs
of services in the path compose the outputs of this path.
This procedure ends when there is no more paths can be
generated. Similarly, “Automated QoS Computing Engine”
calculates QoS values of paths according to algorithm 6.

Path Query. Up to now, all the service combinations
and their relevant QoS values are stored in the relational
database. When the user specifies service composition re-
quirement, “QoS Requirement Standardization” module an-
alyzes user’s QoS requirement (the details are explained
with an example in Subsection 3.2). After that, a SQL path
query is generated. We use this SQL statement to query the
database, a list of QoS-aware solution paths are returned
to the user. This procedure is described further in Subsec-
tion 3.2.

3.1 Path Generation

Algorithm 1 PathsBuild is the main algorithm. First, we
generate paths with only one service (line 1). Then, we
repeatedly generate paths with multiple services (line 4).
This process ends when no more paths can be generated
(line 6). In this paper, we suppose there is no loop among
services. To make it more clear, if service w; is an ancestor
service of wa, wy cannot be an ancestor of wj.

Algorithm 2 SPathSetBuild generates paths with one
service. Originally, all available services are stored in a
service repository SR. For each service w in SR, we create a
new path path (line 2-4). A unique id is allocated to path, the

OWL Ontology

/ \ QoS

Standardization

—— OWL parser —»‘ Service Information FT

\Bser Requirement SQL Path Query

Composed solution

Web Service
Repository

y
Autométed Pth Automated
Computing Engine QoS

\F/\\
D -

Computing
Engine

Fig. 4. Architectural Overview.

] path v
pathID INT
c_in VARCHAR(450)
c_out VARCHAR(450)

—] concept v
c_id INT
c_name VARCHAR(15)
> p_response INT
p_throughput INT
qos_score DECIMAL(4,2)

| 2
| service v f
ws_id INT 5
"] usedService ¥
ws_name VARCHAR(15)
pathID INT
inputs VARCHAR(80)
} ws_id INT
outputs VARCHAR(80)
layer INT

response INT

throughput INT

Fig. 5. Schema of Relational Database.

input (resp.output) concepts of w are inputs (resp.outputs)
of path (line 5-7).

Algorithm 3 MulPathSetBuild generates paths with
multiple services. mulPathSets(i) denotes a set of paths
with ¢ (¢ > 2) services. The number of generated paths
decides the unique id of the first created path in this set
(line 4). For each path pathS with one service and pathM
with ¢ — 1 services, if the outputs of pathS and inputs of
pathM have overlaps, and pathM does not contain the
service of pathS, we create a new path path by connecting
them together (line 5-8). The order of service layers of path
is decided by Algorithm 5.

Algorithm 4 FindLayer checks in which layer PathS can

]
=4
Q
o
Q
1%
[0}
A

\

Path Generation

Algorithm 1 PathsBuild

Input: SR: service repository;
Output: pathsSet: a set of paths;

1: pathsSet < SPathSetBuild(SR);
2: 14+ 2;
3: repeat
4:
5
6

pathsSet < pathsSet U MulPathSet Build(i);
11+ 1;

. until (MulPathSetBuild(i) = ¢);

Algorithm 2 SPathSetBuild

Input: SR: service repository;

Output: sPathSet: a set of paths with one service;
1: counter < 1 // unique path id
2: for each service w in SR do

3: create a new path path
4: path.aw < w

5. path.pathl D < counter
6: path.in < w.in

7: path.out < w.out

8: path.resp < w.resp

9: path.thp < w.thp
10: path.cost < w.cost
11: path.avail < w.avail
12 path.relib < w.relib
13: sPathSet < sPathSet U path
14: counter < counter + 1
15: end for

16: return sPathSet

Algorithm 3 MulPathSetBuild(i)

Algorithm 5 AddLayer

Input: sPathSet, mulPathSets(i — 1);
Output: mulPathSets(i): a set of paths with ¢ services;
1: if ¢ = 2 then

2: mulPathSets(1) + sPathSet

3: end if

4: counter < pathsSet.size 4+ 1

5: for each pathS in sPathSet do

6. for each pathM in mulPathSets(i — 1) do

7: if pathS.out N pathM.in # ¢

and pathS.w ¢ pathM.w then

8: create a new path path

9: path.w < AddLayer(pathS, pathM, path)
10: path.pathl D < counter

11: path.in < pathS.in U pathM.in

12: path.in < path.in \ pathS.out

13: path.out < pathS.out U pathM.out

14: CalculateQoS(pathS, pathM, path)

15: mulPathSets(i) < mulPathSets(i) U path
16: counter < counter + 1

17: end if

18: end for

19: end for

20: return mulPathSets(i)

be added into pathM. We check from the first service layer
of pahM (line 1), if there is overlap between the outputs
of pathS and the inputs of current service layer 7 of pathM
(line 3) , the algorithm stops and returns the index of current
layer (line 8).

Algorithm 4 FindLayer

Input: pathS, pathM;

Output: index: the index of the service layer;
11+ 1

2: for each service layer i of pathM do

3. if (pathS.out N pathM.layer(i).in) # ¢ then

4 index <1

5: break

6

7

8

end if
- end for
: return index

Algorithm 5 AddLayer decides the order of services
layers in the newly created path. If pathS can be added
in front of pathM (line 2), service of pathsS is added as the
first layer of path (line 3), service layers (from 1 to k) of
pathM are added as layers (from 2 to k + 1) of path (line
4-5). If not, layers from 1 to k of pathM are added into path
as layers from 1 to k (line 8-9), then we check in which layer
the service of pathS should be added and add it into path
(line 10-11).

Algorithm 6 CalculateQoS calculates QoS values of the
new path path. The response time (path.resp), throughput
(path.thp), cost (path.cost), availability (path.avail) and
reliability (path.relib) of path are calculated according to
Equation (4)- Equation (9).

Table 4 gives an example to show how to calculate the
response time of the new path. Row 1 and row 2 show two

Input: pathS, pathM, path;
Output: path.w;
1: f « FindLayer(pathsS, pathM)
2: if f =1 then
3: path.layer(1).w < pathS.layer(1).w
4: for each service layer i of pathM do
5 path.layer(i + 1).w < pathM layer(i).w
6: end for
7: else
8. for each service layer ¢ of pathM do
9 path.layer(i).w < pathM layer(i).w

10: ifi = f — 1 then

11: path.layer(i).w < path.layer(i).w U pathS.w
12: end if

13: end for

14: end if

15: return path

Algorithm 6 CalculateQoS
Input: pathS, pathM, path;
Output: path;

1: f = FindLayer(pathsS, pathM)

2: if f =1 then

3: path.resp < pathS.resp + pathM.resp

4: else

5 i=f—-1

6. if pathS.resp > pathM.layer(i).resp then

7 path.resp < pathM.resp + pathS.resp —
pathM . layer(i).resp

8 else

9: path.resp < pathM.resp

10: end if

11: end if

12: path.thp < min{pathS.thp, pathM.thp}
13: path.cost < pathS.cost + pathM.cost

14: path.avail < pathS.avail x pathM.avail
15: path.relib < pathS.relib x pathM.relib
16: return path

paths before connection, we discuss three possibilities for
connection.

Case 1: FiindLayer = 1, pathS is added before pathM,
according to Algorithm 6 (line 3), path.resp = pathS.resp+
pathM.resp.

Case 2: FindLayer = 2, service of pathS (ws) is
added in the first layer and occurs in parallel with ws,
pathS.resp < pathM.layer(1).resp, according to Algo-
rithm 6 (line 9), path.resp = pathM.resp.

Case 3: FindLayer = 3, service of pathS (ws3) is
added in the second layer and executed in parallel with
wy, pathS.resp > pathM.layer(2).resp, according to Al-
gorithm 6 (line 7), path.resp = pathS.resp+ pathM.resp —
pathM layer(2).resp.

3.2 Path Query

After all paths are generated, we query the database for
service composition solutions. First, we standardize user’s

TABLE 4
Generate new paths.

thS.in—»{ Wy —»pathS.out
patiis:in W3 HEEEEE pathS.resp=28
28
Before (28
connection —
pathM.ln—h\\WZ Wl —HW4 l—)pathr\/l out pathM.resp=90
(30) (25) (35)
path.in—3(W3 > Wz Wl,—N W4 —>pathout | path.resp=118
W
After path. '”/ > W1 — W4 —path.out path.resp=90
connection W3,
path.in—(W2 > W4 }—> path.out path.resp=93

QoS requirement, to make sure there is no confusion for the
FSIDB system.

The process of “QoS requirement standardization” is
shown in Figure 6. When the user’s QoS requirement comes,
we first check whether or not it is an extremum QoS cri-
terion. e.g. “The user wants a solution with the cheapest
price”, we return a solution with the minimum price. Oth-
erwise, we check whether or not the user gives his threshold
value for the QoS criteria, e.g. “price less than $500”, in
this situation, a set of satisfied solutions are returned. If
the requirement is dim, for example “a cheap price”, we
automatically pick a threshold value for the user and return
satisfied solution to the user.

Then, we generate SQL statement to query the database.
The query procedure is done as follows: Firstly, find a set
of “PathID” of paths which meet the inputs and outputs
requirements of the user. Then, rank and filter the returned
paths with their QoS values according to the given thresh-
old of the user. Finally, search in the “UsedService” and
“service” table for services in the path. This procedure is
detailed described in Algorithm 7.

3.3 Database Update

Since services on the network always change, e.g., new
services being added to the network, old services fail to
work or disappear, database updating is also important. In
this subsection, we shall discuss how to add and remove
services in the database.

3.3.1 Service Disappearance

When a service disappears, we find and delete paths which
contain this service. That is, to delete relative records in
table “path” “usedService” and “service”. This procedure
is described in details by Algorithm 8.

Algorithm 7 Service composition queries

Input: inConcepts, outConcepts, constraints: user query
and QoS constraints;
Output: solServices : top-K solutions of web services;
1: solPathIDs <— Index scan on table “path” and “con-
cept” using user query;
SELECT pathl D FROM path WHERE c_in IN(
SELECT c_id FROM concept WHERE c_name IN
“inConcepts’)y AND c_out IN(
SELECT c_id FROM concept WHERE c_name LIKE
“DooutConcepts’)
ORDER BY constraints ASC LIMIT K
2: solServices < For each path in solPathlIDs, index
scan on table “service”, “usedService”;
SELECT ws_name FROM service WHERE ws_id IN(
SELECT ws_id FROM usedService WHERE pathID =
solPathID)
3: return solServices

Algorithm 8 Delete service

Input: w: disappeared service’s name;
1: delete paths which contain w ;
DELETE FROM path WHERE pathID IN(
SELECT pathID FROM usedService WHERE ws_id IN(
SELECT ws_id FROM service WHERE ws_name = ‘w’))
2: delete records in “usedService” which contain w;
DELETE FROM usedService WHERE ws_id IN(
SELECT ws_id FROM service WHERE ws_name = ‘w’)
3: delete records with w from table “service”;
DELETE FROM service WHERE ws_name = “w’

QoS Requirement

Extremum On a
QoS Criterion

Threadhold
value

finish N

\ 4

Automated Generate
Threadhold Value

lY

finish

\ 4
finish

Fig. 6. Standardizing QoS Requirement.

Time complexity: with an index a SELECT is probably
O(log(n)), so the time complexity is O(log(n)).

Case 4: To find paths which contain service B in Figure 3,
the SQL statement is:

SELECT pathID FROM usedService WHERE ws_id IN (
SELECT ws_id FROM service WHERE ws_name ='B’)

3.3.2 Service Addition

The basic process when adding a service is as follows: Create
a new path for the newly added services w, connect w
with path if there is overlap between w;, and path,,: or
between wey: and path;,. In this process, Algorithm 3 -
Algorithm 6 are used to compose new paths. After all paths
are generated, insert them into “path” and “usedService”
table, and w is inserted into “service” table.

Time complexity: Suppose the number of records in table
path is n and m is the number of rows in table “newService”.
We scan “newService” and look up values in “path”, the
time requirement is O(mlogn). To continue, we need to fetch
the data for the table used the index. Fetching data is O(n),
so far the time estimation is O(mlogn + n). We may have
0 - n x m matches to join, so the aggregation estimation is
O(m x nlog(m x n)) as there is a sort. Thus, the total time
complexity is O(m x nlog(m x n)).

3.3.3 Service Update

The idea of service updating is: first remove records contain
this service (treat it as a disappeared service). Then add this
service into database as a new service and recompute paths
contain this service (treat it as a newly added service). Time
complexity of service update is the same as service addition.

4 CASE STUDY

In this section, we give a simple but meaningful example
to explain how our algorithms work. In this example, the
ontology hierarchy contains ten concepts and the service
repository contains seven services. Service information is

9

shown in Table 5, which contains input, output concepts,
response time, throughput and cost.

TABLE 6
PATH table
pathID inConcepts outConcepts

1 A, B,C J
2 B,C EF
3 C,E H
4 C,F G
5 K H
6 H D
7 G H
8 B,C E,F H
9 B,C E,F,G
10 C,E D,H
11 C,F G, H
12 K D, H
13 G D,H
14 B,C D,E,F,H
15 B,C E,F,G,H
16 C,F D,H
17 B,C D,E,F,H

We generate paths according to Algorithm 1 to Algo-
rithm 3. We firstly generate paths with only one service.
The input and output concepts of the service are inputs
and outputs of newly generated path. Then, we generate
paths with multiple services by connecting paths with one
service to those with multiple services. This process ends
when no more paths can be generated. The generated paths
are shown in Table 6. The sequences of services in paths
are decided via Algorithm 4 and Algorithm 5 and stored in
“usedService” table (Table 7).

QoS values of paths are calculated in Algorithm 6 and
stored in the “path” table (Table 8). The single QoS value
is calculated via Equation 4 to Equation 9. The utility Qos
value is obtained via Equation 10.

For example, assume the user wants to find service
composition with input “B, C” and output “H”. We discuss
three possibilities of QoS constraints.

Case 1: The user wants to find a path with the minimum
response time. This process contains two phases, first, find
the path meets user’s functional constrains with minimum

TABLE 7
UsedService table
pathID layer ws_id
1 1 1
2 1 2
3 1 3
4 1 4
5 1 5
6 1 6
7 1 7
8 1 2
8 2 3
9 1 2
9 2 4
10 1 3
10 2 6
11 1 4
11 2 7
12 1 5

10

TABLE 5
A set of available services
Ws_id Service Input Output Response Thp Cost
1 w1 A, B,C J 25 6000 420
2 w2 B,C E,F 30 4000 360
3 w3 C,E H 28 3000 330
4 wy C F G 35 5000 400
5 ws K H 20 2500 290
6 wry H D 15 4000 480
7 ws G H 35 2000 280

Response: response time (ms) as a QoS metric
Throughput: (invocations per minute) as a QoS metric
Cost: (cents) as a QoS metric

TABLE 8
QoS table
pathID Response Throughput Cost
1 25 6000 420
2 30 4000 360
3 28 3000 330
4 35 5000 400
5 20 2500 290
6 15 4000 480
7 35 2000 260
8 58 3000 690
9 65 4000 760
10 43 3000 810
11 70 2000 660
12 35 2500 770
13 50 2000 740
14 73 3000 1170
15 100 2000 1020
16 85 2000 1140
17 115 2000 1500

response time. Then, search services in this path. The search
process is illustrated as follows:

SELECT pathID, MIN(response) FROM path WHERE c_in
IN
(SELECT c_id FROM concept WHERE c_name in ('B’,'C’))
AND c_out IN
(SELECT c_id FROM concept WHERE c_name="H’);
We find path 8 meets the requirement. Then, we search
for services in the path:
SELECT ws_name FROM service WHERE ws_id IN (
SELECT ws_id FROM UsedService WHERE pathID=8);
The services in the path are {ws, w3}

Case 2: User sets his QoS constraints as “response time <
110 and throughput > 2000”. In this case, the search process
is illustrated as follows:
SELECT pathID FROM path
WHERE response < 110 AND throughput >= 2000 AND
c_in IN
(SELECT c_id FROM concept WHERE c_name in ('B’,/C’))
AND c_out IN
(SELECT c_id FROM concept WHERE c_name="H’);

We find three paths {8,14,15} meet user’s requirements.

Case 3: The user wants to find top-2 paths with the

cheapest prices. We filter and rank the returned paths, and
the search process is illustrated as follows:
SELECT pathID FROM path WHERE c_in IN
(SELECT c_td FROM concept WHERE c¢_name in ('B’,/C’))
AND c_out IN
(SELECT c_id FROM concept WHERE c_name="H’)
order by cost asc limit 2;
The returned top-2 paths are {8,14}.

Case 4: To calculate the utility value of service wy:
We use Equation 1 to scale the utility value of throughput
(represented as Uy,,). Response time (Uy.sp,) and cost (Ueost)
are negative criteria, so we use Equation 2 to scale their
utility value. thus, we have: U,esp(w1) = 0.5, Uppp(wy) =
1, Ugost(w1) = 0.3.

Suppose each QoS criterion has a same weight, with
Equation (3), the overall utility score of service w; is
U(w1)20.6.

Case 5: To get the QoS score of a path, combine Equa-
tion (3) to Equation (9), we have:

T (path) — T™"
Tmax _ Tmzn

m x C™** — C(path)
m X (Cmaw _ Cmin)

Ul(path) = Ui(path)xW; =
i=1

I x R™** — R(path)

| % (Rmaac _ Rmin)

X Wthp+

X Wresp+ X Wcost

(11)

Here, we have n QoS criteria, m services and [layers.
According to Equation 11, U(path8)=0.41.

5 EXPERIMENTAL RESULTS

We run our experiments on a computer with the following
configuration. 1) CPU: Intel Core i5-2400 at 3.10 GHz, 2)
Mainboard: Intel C206, 3) Memory: 8GB DDR3 SDRAM
PC3-10600, 4) Harddisk: WD2500AAKX 250GB 7200 RPM
16MB cache SATA, and 5) Operating system: Windows 7
professional 64-bit. We use MySQL 5.6 as the database. We
run each experiment ten times to get the average execution
time.

5.1 Data set

We use TestsetGenerator2009 [24] to generate five data sets
and evaluate our work. Each data set contains a WSDL file
which is the repository of web services. An OWL file lists

=®=case 1

== case 2

case 3

w
1

Execution time (s)
»
L

N /‘
1002 3001 5001 7002

Number of services

10000

Fig. 7. Time for Searching Solutions with Optimal Response Time.

the relationship between “concepts” and “things”. WSLA
file describes QoS values of services. The number of services
varies from 1000 to 10000, and the number of concepts
varies from 3000 to 25000 accordingly. Each web service has
around 10 input and 20 output concepts.

5.2 Performance analysis

We generate random queries over the dataset as the user
requests and search for solutions with optimal QoS value. In
real system, very similar services may be produced, which
can be redundant [18]. If not handled properly, redundant
services waste time and resources. In the path generating
stage, it is unavoidable that paths are generated with redun-
dant services, however, in the path query stage, we use QoS
constraints to filter solutions. Paths with redundant services
may lead to a longer response time or smaller throughput,
so it is quite possible that these paths are eliminated in this
stage.

5.2.1 Time for service composition search

Figure 7 to Figure 9 show the execution time of the first
stage in path query, which find paths meet user’s functional
and non-functional requirements. Case 1 — case 3 represent
queries shown in Section 4. The execution time of retrieving
suitable paths increases as the number of web services in-
creases. After this stage, we fetch top-K solutions with QoS
constraints. The fetch time is approximately 15 millisecond.

5.2.2 Time for service disappearance

In this experiment, we randomly delete a service, then find
and delete records related to this service in the database.
This process is detailed described in Section 3.3.1. We build
index on services’ name, and compare the performance with
and without index in terms of execution time. Figure 10
shows the results. As expected, it takes more time to find
and delete records when there is no index on services’ name.

5.2.3 Time for service addition

In this experiment, we add a new service in the database,
then obtain the time of generating new paths. The process

11

==9==case 1
== case 2

case 3

] /./

1002 3001 5001 7002

Number of services

Execution time (s)

10000

Fig. 8. Time for Searching Solutions with Optimal Throughput.

7 1
==$=case 1
6

=fli=case 2

«
L

case 3

Execution time (s)
w IS
L L

~
L

-
L

1002 3001 5001 7002

10000

Number of services

Fig. 9. Time for Searching Solutions with Optimal Utility Score.

40 1

=== without index

w
vl

== with index

N w
a =3

N
=]

Execution time (s)

1001 3001 5001 7002

Number of services

10000

Fig. 10. Time for Service Disappearance.

of service addition is detailed described in Section 3.3.2.
From figure 11, we can see as the number of original ser-
vices in the database increases, the execution time increased
dramatically. This is because as the number of web services
increases, the number of newly generated paths increases
linearly.

6 RELATED WORK

A great deal of work has been done in the theory and
practice of web services. In this section, we first discuss web
service discovery approach. Then, we review related work
on web service composition.

~
=)

=$=add a service

Execution time (s)
~ w a w @
o o o o o

=
5]

o

1001 3001 5001 7002 10000

Number of services

Fig. 11. Time for Service Addition.

6.1 Web service discovery

To utilize web services on the web, developers must first lo-
cate them, finding a service on the web refers to web service
discovery (WSD) problem. Service providers register service
information on the web, thus, services can be searched
by syntactic matching, that is, specifying business name,
service name, category and tModels (Technical Models,
they support specification of additional attributes). UDDI
(Universal Description, Discovery and Integration) [25] is
an industry standard developed to solve service discovery
problem. However, this kind of matching is limited to
keyword matching and the way it can be queried. The
results produced by syntactic matching are coarse and lack
of accuracy. To overcome the above mentioned limitations,
semantic web service matchmaking is proposed to further
enhance efficiency of service discovery. This is achieved by
OWL-S [26] description language. Approaches using OWL-
S to match web services can be found in [27], [28], [29].
The authors in [27] store OWL-S descriptions in an UDDI
registry to combine the OWL-S file and UDDI data model.
Seba et al. measure services similarities as a graph for better
accuracy [29]. Taking consideration of the high computa-
tional complexity, they decompose the calculation process
in the graph into smaller subgraphs. Service similarities are
represented as similarities of decomposed subgraphs. As a
result, the time complexity of service matching is reduced.

Different service providers have different criteria on
service properties, a service property used by one service
may not appear in another service though both of them may
belong to the same service category. As a result, two services
may fail to find each other though they are relevant to the
query, and this may stand in the way of communication
between services. To solve this problem, researchers have
demonstrated that service matchmaking should be able to
deal with uncertainty in service properties. Li et al. propose
a ROSSE system on the Rough sets theory to deal with
uncertainty of service properties [30], [31]. ROSSE improves
the precision of service matching.

6.2 Web service composition
6.2.1

In-memory composition methods load service information
into RAM and construct the search graph in RAM. In the

In-memory composition methods

12

area of QoS-aware web service composition, Planning graph
model and beam-stack search are popular methods applied
to solve this problem [32], [33], [34]. Wanger et al. search
functionally similar services and store them in clusters, to
compose services, they only consider root nodes of clus-
ters [32]. Services in the same cluster are seen as backup ser-
vices for registered services. However, it is not an easy work
to allocate clusters, besides, services have different QoS
criteria, it is hard to choose a root service of a cluster. More
recently, Kil et al. [35] present a novel anytime algorithm ap-
proach to solve the QoS-aware service composition problem.
They use dynamic beam which dynamically adjust the beam
widths to solve the composition problem. Similarly, Yan and
Chen present an anytime algorithm which may return better
solution if the algorithm keeps running [33]. An extended
Dijkstra’s algorithm is applied to handle multiple inputs
and outputs and search the solution on a Plan Graph. They
also discuss how to remove redundant services in a plan to
reduce execution cost. They assume that if unsatisfied goals
or worse QoS value is caused by removing a service in a
solution, this solution does not contain redundant services.
Based on this assumption, they propose an algorithm to re-
move redundant services after they find the solution for the
problem. More research on QoS-aware service composition
can be found in surveys [36], [37].

6.2.2 Database-based composition methods

The aforementioned research focus on in-memory methods
to solve the problem, these algorithms can only work when
data fits in RAM. However, loading lots of services informa-
tion into RAM is expensive, and the search space is limited
by the available physical memory. These shortcomings have
motivated researchers to utilize relational database to solve
service composition problem [17], [19], [38].

The authors in [19] use relational database as a repository
to store services in UDDI They use “join” operator to
find service composition by matching services. Zeng ef al.
in [38] present a web service matching algorithm (SMA), this
algorithm considers semantic similarity based on WordNet.
Moreover, they put forward a Fast-EP service composition
algorithm which can be applied in relational database.
Though they consider multiple inputs and outputs in their
algorithm, they raise an assumption that, two services are
connected when one service provides all inputs of the other
service. On the contrary, in our approach, two services can
be connected if a service provides part of the inputs of
another service.

Another work [17] deals with the problem we address
here. The authors put forward a PSR system, in which
service compositions are computed in advance and stored in
tables of relational database. Searches are done by specifying
SQL statements. In the PSR system, services are abstracted
as single operator and paths have single input (output).
To handle user query with multiple goals, the PSR system
searches all paths whose outputs are part of user query
and combines them together. Our work is distinct from [17]
by generating paths as multiple inputs and outputs. We
consider services with multiple inputs and outputs, while
matching, we connect two services if the outputs of a service
can provide part of inputs of another service. Also, we
consider QoS constraints which are missing in their system.

We demonstrate that our method can find solutions with
fewer redundant services.

7 CONCLUSIONS AND FUTURE WORK

The objective of this paper is to solve the QoS-aware service
composition problem with a relational database, to this end,
we propose a FSIDB system to retrieve the top-K solutions
and return them to the user. First, we generate all possible
service combinations as paths and store them in a relational
database. Then, we compose SQL statements to query the
database for solutions which meet user’s functional require-
ments as well as non-functional requirements. Finally, we
find the top-K solutions as backup solutions in case of
service disappearance or failure. Experimental results show
that our system can always find valid solutions to solve the
problem and satisfy user requirements.

As future work, we plan to improve the scalability.
Firstly, if a query takes too much memory or time, we might
return a non-optimal answer instead of an optimal answer.
Secondly, instead of composing all service combinations,
we might focus on dominant services (i.e., services that are
more frequently queried or have better QoS value) and pre-
compose paths among these services, these paths are kept in
the database for fast delivery. When a user request comes,
we first search in the database to see whether we can find a
nearly ready-made solution in the database. Only as a last
resort do we construct a search graph to solve the problem.

REFERENCES
[1] M. Papazoglou, Web Services: Principles and Technology. Prentice
Hall, 2011.

[2] L.Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Z. Sheng,
“Quality driven web services composition,” in Proceedings of the
12th International Conference on World Wide Web, ser. WWW ’03.
New York, NY, USA: ACM, 2003, pp. 411-421.

[3] R. Berbner, M. Spahn, N. Repp, O. Heckmann, and R. Steinmetz,
“Heuristics for qos-aware web service composition,” in Web Ser-
vices, 2006. ICWS "06. International Conference on, Sept 2006, pp.
72-82.

[4] L. Cui, S. Kumara, and D. Lee, “Scenario analysis of web service
composition based on multi-criteria mathematical goal program-
ming,” Service Science, vol. 3, no. 4, pp. 280-303, December 2011.

[5] B. Benatallah, M. Dumas, Q. Sheng, and A. H. H. Ngu, “Declar-
ative composition and peer-to-peer provisioning of dynamic web
services,” in Data Engineering, 2002. Proceedings. 18th International
Conference on, 2002, pp. 297-308.

[6] W. Jiang, C. Zhang, Z. Huang, M. Chen, S. Hu, and Z. Liu,
“Qsynth: A tool for qos-aware automatic service composition,”
in Web Services (ICWS), 2010 IEEE International Conference on, July
2010, pp. 42-49.

[7] (2015, September) Maxima and minima. [Online]. Available:
https:/ /en.wikipedia.org/wiki/Maxima_and_minima/

[8] S.-C. Oh, J.-Y. Lee, S--H. Cheong, S.-M. Lim, M.-W. Kim, S.-S.
Lee, J.-B. Park, S.-D. Noh, and M. Sohn, “Wspr*: Web-service
planner augmented with a* algorithm,” in Commerce and Enterprise
Computing, 2009. CEC '09. IEEE Conference on, July 2009, pp. 515-
518.

[9] S.-C. Oh, B.-W. On, E. Larson, and D. Lee, “Bf*: Web services dis-
covery and composition as graph search problem,” in e-Technology,
e-Commerce and e-Service, 2005. EEE "05. Proceedings. The 2005 IEEE
International Conference on, March 2005, pp. 784-786.

[10] P. Rodriguez-Mier, M. Mucientes, and M. Lama, “Automatic web
service composition with a heuristic-based search algorithm,” in
Web Services (ICWS), 2011 IEEE International Conference on, July
2011, pp. 81-88.

[11] H. Kil and W. Nam, “Anytime algorithm for qos web service
composition,” in Proceedings of the 20th International Conference
Companion on World Wide Web. ACM, 2011, pp. 71-72.

13

[12] X. Zheng and Y. Yan, “An efficient syntactic web service com-
position algorithm based on the planning graph model,” in Web
Services, 2008. ICWS "08. IEEE International Conference on, Sept 2008,
pp. 691-699.

[13] S.-Y. Lin, G.-T. Lin, K.-M. Chao, and C.-C. Lo, “A cost-effective
planning graph approach for large-scale web service composi-
tion,” in Mathematical Problems in Engineering, vol. 2012, 2012, pp.
1-21.

[14] B. Ding, J. Xu Yu, S. Wang, L. Qin, X. Zhang, and X. Lin, “Finding
top-k min-cost connected trees in databases,” in Data Engineering,
2007. ICDE 2007. IEEE 23rd International Conference on, April 2007,
pp- 836-845.

[15] B. Ding, J. X. Yu, and L. Qin, “Finding time-dependent shortest
paths over large graphs,” in Proceedings of the 11th International
Conference on Extending Database Technology: Advances in Database
Technology, ser. EDBT "08. New York, NY, USA: ACM, 2008, pp.
205-216.

[16] Y. Yang, H. Gao, J. X. Yu, and J. Li, “Finding the cost-optimal path
with time constraint over time-dependent graphs,” Proc. VLDB
Endow., vol. 7, no. 9, pp. 673-684, may 2014.

[17] D. Lee, J. Kwon, S. Lee, S. Park, and B. Hong, “Scalable and
efficient web services composition based on a relational database,”
Journal of Systems and Software, vol. 84, no. 12, pp. 2139-2155, 2011.

[18] M. Chen and Y. Yan, “Redundant service removal in qos-aware
service composition,” in Web Services (ICWS), 2012 IEEE 19th
International Conference on, June 2012, pp. 431-439.

[19] H. Lakshmi and H. Mohanty, “Rdbms for service repository and
composition,” in Advanced Computing (ICoAC), 2012 Fourth Inter-
national Conference on, Dec 2012, pp. 1-8.

[20] J.Li, Y. Yan, and D. Lemire, “Full solution indexing using database
for qos-aware web service composition,” in Services Computing
(SCC), 2014 IEEE 11th International Conference on, June 2014, pp.
99-106.

[21] L. Zeng, B. Benatallah, A. Ngu, M. Dumas, J. Kalagnanam, and
H. Chang, “Qos-aware middleware for web services composition,”
Software Engineering, IEEE Transactions on, vol. 30, no. 5, pp. 311-
327, May 2004.

[22] E. Triantaphyllou., Multi-Criteria Decision Making: A Comparative
Study. Springer Science & Business Media, 2013.

[23] W3C OWL Working Group. (2012) OWL 2 Web Ontology
Language Document Overview (Second Edition). [Online].
Available: http:/ /www.w3.org/TR/owl2-overview/

[24] WS-Challenge. (2010) Testsetgenerator2009. [Online]. Available:
https://code.google.com/p/wsc-pku-tcs/downloads/list

[25] Oasis.(2007) uddi version 2.04 api specification. [Online]. Avail-
able: http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-
20020719.htm

[26] Web ontology language for web services. [Online]. Available:
http:/ /www.w3.org/submission/owl-s/

[27] N. Srinivasan, M. Paolucci, and K. Sycara, “An efficient algorithm
for owl-s based semantic search in uddi,” in Semantic Web Services
and Web Process Composition, ser. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2005, vol. 3387, pp. 96-110.

[28] S. Lagraa, H. Seba, and H. Kheddouci, “Matchmaking owl-s
processes: An approach based on path signatures,” in Proceedings
of the International Conference on Management of Emergent Digital
EcoSystems, ser. MEDES "11. ACM, 2011, pp. 169-176.

[29] H. Seba, S. Lagraa, and H. Kheddouci, “Web service matchmaking
by subgraph matching,” in Web Information Systems and Technolo-
gies, ser. Lecture Notes in Business Information Processing, J. Filipe
and J. Cordeiro, Eds. Springer Berlin Heidelberg, 2012, vol. 101,
pp. 43-56.

[30] M. Li, B. Yu, V. Sahota, and M. Qi, “Web services discovery with
rough sets,” International Journal of Web Services Research, vol. 6,
no. 1, pp. 69-86, 2009.

[31] M. Li, B. Yu, O. Rana, and Z. Wang, “Grid service discovery with
rough sets,” IEEE Transactions on Knowledge and Data Engineering,
vol. 20, no. 6, pp. 851-862, 2008.

[32] F. Wagner, F. Ishikawa, and S. Honiden, “Qos-aware automatic
service composition by applying functional clustering,” in Web
Services (ICWS), 2011 IEEE International Conference on, July 2011,
pp- 89-96.

[33] Y. Yan, M. Chen, and Y. Yang, “Anytime QoS optimization over
the PlanGraph for web service composition,” in Proceedings of the
27th Annual ACM Symposium on Applied Computing, ser. SAC "12.
ACM, 2012, pp. 1968-1975.

[34] M. Alrifai and T. Risse, “Combining global optimization with

Jing Li is a PhD student in Computer Sci-
ence at Concordia University, Montreal. She re-
ceived her Masters degree in Computer Science
from Hunan University, China in 2011. Her main
research interests are automated web service
composition and database-based service com-
position.

Dr. Yuhong Yan is an associate professor at
the Department of Computer Science and Soft-
ware Engineering at Concordia University, Mon-
treal since June 2008. Before joining Concordia,
she was a Researcher Officer in the Institute
for Information Technology (IIT) in the Canadian
National Research Councils (NRC) since Feb.
2003. Her current research focuses on Service
Computing, Mobile Computing and Cloud Com-
puting. She is exploring the domain of formal
modeling, composition, monitoring, fault diagno-
sis, reparation, and adaptation of Web service processes. She has
authored over 40 articles and papers. She is one of the organizers of
IEEE ICWS and SCC in recent years.

Dr. Daniel Lemire is a computer science profes-
sor at LICEF Research Center, TELUQ, Univer-
sit du Qubec. He has also been a research offi-
cer at the National Research Council of Canada
and an entrepreneur. He has written over 45
peer-reviewed publications, including more than
25 journal articles. He has held competitive re-
search grants for the last 15 years. He has
served as program committee member on lead-
ing computer science conferences (e.g., ACM
CIKM, ACM WSDM, ACM RecSys). His open
source software has been used by major corporations such as Google
and Facebook. His research interests include databases, information
retrieval and high performance programming.

[35]

(36]

[37]

[38]

14

local selection for efficient qos-aware service composition,” in
Proceedings of the 18th International Conference on World Wide Web,
ser. WWW '09. New York, NY, USA: ACM, 2009, pp. 881-890.

H. Kil and W. Nam, “Efficient anytime algorithm for large-scale
qos-aware web service composition,” International Journal of Web
and Grid Services, vol. 9, no. 1, pp. 82-10, 2013.

Q. Z. Sheng, X. Qiao, A. V. Vasilakos, C. Szabo, S. Bourne, and
X. Xu, “Web services composition: A decades overview,” Informa-
tion Sciences, vol. 280, no. 0, pp. 218 — 238, 2014.

Y. Syu, S.-P. Ma,]J.-Y. Kuo, and Y.-Y. FanJiang, “A survey on au-
tomated service composition methods and related techniques,” in
Services Computing (SCC), 2012 IEEE Ninth International Conference
on, June 2012, pp. 290-297.

C. Zeng, W. Ou, Y. Zheng, and D. Han, “Efficient web service
composition and intelligent search based on relational database,”
in Information Science and Applications (ICISA), 2010 International

Conference on, April 2010, pp. 1-8.

