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SOME RESULTS ON THE JOIN GRAPH OF FINITE GROUPS

ZAHRA BAHRAMI AND BIJAN TAERI ∗

Abstract. Let G be a finite group which is not cyclic of prime power order. The join graph ∆(G) of

G is a graph whose vertex set is the set of all proper subgroups of G, which are not contained in the

Frattini subgroup G and two distinct vertices H and K are adjacent if and only if G = ⟨H,K⟩. Among

other results, we show that if G is a finite cyclic group and H is a finite group such that ∆(G) ∼= ∆(H),

then H is cyclic. Also we prove that ∆(G) ∼= ∆(A5) if and only if G ∼= A5.

1. Introduction and results

There are many ways to associate a graph to a ring or a group, see for example [5, 6, 9, 10, 12, 14, 20].

In this context, it is natural to ask for the relation between the structure of the group, given in

group theoretical terms, and the structure of the graph, given in graph theoretical terms. Sharma

and Bhatwadekar [19] introduced the co-maximal graph associated with algebraic structures. The

generating graph Γ(G) of a finite group G is the graph whose vertex set is set of the elements of G

and two distinct vertices a and b are connected by an edge if and only if G = ⟨a, b⟩. A series of papers

investigate some questions concerning generating graph, see for example [7, 8, 13, 14, 15, 16].

For a finite group G different from a cyclic group of prime power order, Ahmadi and the second

author [1] defined an undirected simple graph ∆(G) whose vertices are the proper subgroups of G,

which are not contained in Φ(G), the Frattini subgroup of G, and two vertices H and K are adjacent

if and only if G = ⟨H,K⟩. Note that by the condition on vertices, ∆(G) has no isolated vertices.
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The contraction of a pair of vertices u and v of a graph produces a graph such that u and v are

replaced with a single vertex w such that w is adjacent to the union of the vertices to which u and v

were originally adjacent. In vertex contraction, it doesn’t matter if u and v are adjacent if they are

adjacent, the edge is simply removed upon contraction (see [17, page 231]).

Let G be a finite non-cyclic group. Note that an element of Φ(G) is not adjacent to any element of

G. Thus all elements of Φ(G) are isolated vertices in the generating graph Γ(G) of G, and for every

a ∈ G \ Φ(G), the subgroup ⟨a⟩ is a vertex in ∆(G). By contracting some suitable vertices of Γ(G)

we obtain a subgraph of ∆(G): in Γ(G), we contract all elements of Φ(G) with any element of G, this

means that we remove all isolated vertices. Then we contract all generators of ⟨a⟩, for all a ∈ G\Φ(G);

this means all nonincident vertices of the form aj , where gcd(j, |a|) = 1, are identified. In this way we

obtain a subgraph of ∆(G). For example, if G is isomorphic to one of the groups Zp ⋊Zq or Zp ×Zp,

(Zn is the cyclic group of order n), where p and q are distinct primes, then the vertex contraction of

generating graph of G is just the join graph of G. As an another example, by vertex contraction of

Γ(S3), (Sn is the symmetric group on n letters), we obtain ∆(S3) (see Figure 1).

...

(123)

..

(1)

..

(132)

..

(12)

..

(13)

..

(23)

.

(a)

..

⟨(123)⟩

..

⟨(12)⟩

..

⟨(13)⟩
..

⟨(23)⟩
.

(b)

Figure 1. (a) Γ(S3) and (b) ∆(S3)

Let ∆ be a graph with vertex set V (∆). The degree of a vertex v ∈ V (∆), denoted by deg(v), is

the number of edges incident to v. If the vertices v and u are adjacent (non-adjacent), then we write

v ∼ u (v ≁ u). The maximum degree, the minimum degree and the diameter of ∆ are denoted by

θ(∆), δ(∆) and diam(∆), respectively. If ∆1 and ∆2 are isomorphic graphs we write ∆1
∼= ∆2.

For a group G, we denote by π(G) and M (G) the set of all prime divisors of |G| and the set of

all maximal subgroups of G, respectively. The set of all Sylow p-subgroups of G, where p ∈ π(G) is

denoted by Sylp(G). For a subgroup H of G, we denote the number of subgroups of H, which are

not contained in the Frattini subgroup Φ(G), by n(H). In particular if Φ(G) = 1, then n(H) is the

number of non-trivial subgroups of H. The core of H in G is denoted by coreG(H).

Ahmadi and the second author [1], studied some properties of the join graph ∆(G); in particular,

they showed that ∆(G) is connected and its clique number (the size of the largest of complete subgraph)

is equal to |M (G)|. It follows that if ∆(G) ∼= ∆(H), then |M (G)| = |M (H)|. They classified finite

groups with planner join graph [2]. Also they classified finite groups with regular join graph [3].

http://dx.doi.org/10.22108/ijgt.2020.123287.1625

http://dx.doi.org/10.22108/ijgt.2020.123287.1625


Int. J. Group Theory 10 no. 4 (2021) 175-186 Z. Bahrami and B. Taeri 177

In [4] we classified finite groups whose join graphs have domination number ≤ 2 and independence

number ≤ 3, and showed that ∆(G) ∼= ∆(A4) if and only if G ∼= A4. Also we showed that if the

independence number of ∆(G) is less than 15, then G is solvable; moreover if the equality holds and

G is non-solvable, then G/Φ(G) ∼= A5.

In this paper, we continue the study of ∆(G). One may pose the following question is: If G and

H are finite groups such that ∆(G) ∼= ∆(H), then is it true that G ∼= H? The weaker version of the

question is: if G and H are finite groups such that ∆(G) ∼= ∆(H) and G belongs to a class X, then is

it true that H ∈ X? In section 2, we show that if G is abelian (resp. nilpotent) and H is a group such

that ∆(G) ∼= ∆(H), then H may be non-abelian (resp. non-nilpotent). Thus in general the answer to

both question is not yes. Therefore we may investigate some particular classes of groups or particular

groups. To start we consider the class of cyclic groups and prove that

Theorem A. Let H be a finite cyclic group and G be a finite group such that ∆(H) ∼= ∆(G). Then

G is cyclic.

We show that if G is cyclic of order pn1
1 pn2

2 · · · pnk
k , where pi’s are distinct primes, then we can

determine n1, . . ., nk, from the join graph of G. Furthermore given the join graph of any finite group

G, we can determine whether G is cyclic or not.

In section 4 we consider the alternating group A5 and obtain a characterization of A5 in term of its

join graph:

Theorem B. Let G be a finite group. Then ∆(G) ∼= ∆(A5) if and only if G ∼= A5.

Based on the works of this paper we pose the following questions.

Question 1. Let G be a finite group. If ∆(G) ∼= ∆(An), n ≥ 6, then G ∼= An?

Question 2. Let G be a finite simple group and H is a finite group such that ∆(G) ∼= ∆(H), then H

is a simple group?

Question 3. Let G and H are finite simple groups such that ∆(G) ∼= ∆(H), then G ∼= H?

2. Some non-isomorphic groups with the same join graph

In this section we show that if G is abelian (resp. nilpotent) and H is a group such that ∆(G) ∼=
∆(H), then H may be non-abelian (resp. non-nilpotent). We show there exist non-isomorphic groups

with the same join graphs.

We start with the following easy Lemma.

Lemma 2.1. If G is a finite group, then θ(∆(G)) = max{deg(M) | M ∈ M (G)}.

Proof. For every vertex H in ∆(G), there exists M ∈ M (G) such that H ≤ M . If H ∼ K, then it is

clear that M ∼ K, and so deg(H) ≤ deg(M). This completes the proof. □
http://dx.doi.org/10.22108/ijgt.2020.123287.1625
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Note that for M ∈ M (G), deg(M) is equal to the number of proper subgroups of G which are not

contained in M . The following Lemmas 2.2 and 2.3 below play a fundamental rule in the study of

isomorphism of join graphs.

Lemma 2.2. Let G and H be finite groups. Let φ : ∆(G) −→ ∆(H) be an isomorphism and M ∈
M (G). Then there exists a unique maximal subgroup N of H such that φ(M) ≤ N and N = φ(K),

where K ≤ M . In particular deg(M) = deg(N) and n(M) = n(N).

Proof. Suppose, for a contradiction, that there exist maximal subgroups N1 and N2 of H such that

φ(M) ≤ N1 and φ(M) ≤ N2. Since φ is bijective, there exist subgroups K1 and K2 of G such that

φ(K1) = N1 and φ(K2) = N2. Since φ(M) is not adjacent to N1 and N2, it follows that K1 and

K2 are not adjacent to M . Hence K1,K2 ≤ M . Therefore K1 ≁ K2, and so φ(K1) ≁ φ(K2), which

implies that N1 ≁ N2 , a contradiction. Thus there exists a unique maximal subgroup N of H such

that φ(M) ≤ N . Now if K is a vertex in ∆(G) such that φ(K) = N , then φ(M) ≁ φ(K), which

implies that M ≁ K. Thus K ≤ M.

Now suppose that φ(M) ≤ N and N = φ(K), where K ≤ M . Since φ(M) ≤ N and deg(M) =

deg(φ(M)), by Lemma 2.1, we have deg(M) ≤ deg(N). On the other hand deg(K) = deg(N) and by

Lemma 2.1, deg(N) ≤ deg(M). Hence deg(N) = deg(M). Clearly for every maximal subgroup M of

G, all non-adjacent vertices to M in ∆(G) are subgroups of M , which are not contained in Φ(G). I

follows easily from deg(N) = deg(M), that n(M) = n(N). □

Lemma 2.3. Let G and H be finite groups and φ : ∆(G) −→ ∆(H) be an isomorphism. If Φ(G) =∩
M∈A M , where A ⊆ M (G), then Φ(H) =

∩
N∈B N , where B = {N ∈ M (H) | φ(M) ≤ N,M ∈ A}.

Proof. Assume, for a contradiction, that Φ(H) ⪇
∩

N∈B N . Thus
∩

N∈B N is a vertex of ∆(H), and

so there exists a vertex K of ∆(G) such that φ(K) =
∩

N∈B N . Hence for every N ∈ B, φ(K) ≤ N ,

which implies that φ(K) ≁ N . Thus φ(K) ≁ φ(M), for all M ∈ A . Therefore for every M ∈ A ,

K ≁ M , which implies that K ≤ M . It follows that K ≤ Φ(G), which is a contradiction. □

In order to obtain examples of groups G and H with isomorphic join graphs such that G is abelian

but H is non-abelian, we prove the following Proposition.

Proposition 2.4. Let G be a p-group of order pn with |Φ(G)| = pn−2. If ∆(G) ∼= ∆(H), then H is a

p-group or H ∼= Zpn ⋊ Zqm, where q is a prime number and Φ(H) ∼= Zpn−1 × Zqm−1.

Proof. Since G is nilpotent, G = MiMj , for every distinct Mi,Mj ∈ M (G). Hence |Mi ∩ Mj | =
|Mi||Mj |/|MiMj | = pn−2, and so Φ(G) = Mi ∩ Mj , for every distinct Mi,Mj ∈ M (G). Therefore

Lemma 2.3 implies that Φ(H) = Ni ∩Nj , for every Ni, Nj ∈ M (H).

First suppose that H is nilpotent. Then H ∼= P1×· · ·×Pm, where Pi ∈ Sylpi(H), 1 ≤ i ≤ m. Since

p+1 = |M (G)| = |M (H)| =
∑m

i=1 |M (Pi)|. So m = 1 and p1 = p. It follows that H is a p-group and

H/Φ(H) ∼= Zp × Zp.
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Now suppose that H is not nilpotent. Then H contains a non-normal maximal subgroup N . Since

N ∩ Nh = Φ(H), for all h ̸∈ N , we see that H = H/Φ(H), where : H → H/Φ(H) is the natural

epimorphism, is a Frobenius group with the Frobenius complementN . Suppose thatK is the Frobenius

kernel of H. Then K is unique normal maximal subgroup of H. For if K ≤ M , where M is a maximal

subgroup of H, then M = M ∩H = M ∩KN = K(M ∩N) = KΦ(H), which implies that K = M .

Thus |N | = |H : K| = q, where q is a prime number. Since N is a maximal subgroup of H, it follows

that K is a normal minimal subgroup of H. Therefore p + 1 = |M (H)| = 1 + |K|, and so |K| = p.

Hence H ∼= Zp ⋊ Zq, where q | p − 1. Now suppose that P ∈ Sylp(H) and Q ∈ Sylq(H). Since

PΦ(H)/Φ(H)◁H/Φ(H), we have PΦ(H)◁H. Hence H = PΦ(H)NH(P ) = NH(P ), and so P ◁H.

Also Φ(P ) ≤ P ∩ Φ(H). If Φ(P ) ⪇ P ∩ Φ(H), then there exists maximal subgroup M of P such

that P = M(P ∩ Φ(H)). So H = PQ = M(P ∩ Φ(H))Q = MQ, which is a contradiction. Therefore

Φ(P ) = P ∩ Φ(H), and so P/Φ(P ) ∼= Zp, which implies that P is cyclic. Since for every maximal

subgroup M of Q, PM is a maximal subgroup of H, we have Q∩Φ(H) ≤ Q∩PM = (Q∩P )M = M ,

and so Q∩Φ(H) ≤ Φ(Q). Thus Φ(Q) = Q∩Φ(H), and hence Q/Φ(Q) ∼= Zq. Therefore H ∼= Zpn⋊Zqm

and Φ(H) = Φ(P )× Φ(Q) ∼= Zpn−1 × Zqm−1 . □

By above Proposition if G is a 2-group of order 2n with |Φ(G)| = 2n−2 and ∆(G) ∼= ∆(H), then it is

clear that H is a 2-group of order 2m with |Φ(H)| = 2m−2. For example, we have ∆(Q8) ∼= ∆(Z2×Z2).

From ∆(Z3×Z3) ∼= ∆(S3) and S3 = Z3⋊Z2 we see that, if G is abelian or nilpotent and H is a group

such that ∆(G) ∼= ∆(H), then H may be non-abelian or non-nilpotent respectively.

3. Join graph of cyclic groups

In this section we proceed to prove the Theorem A and obtain some results about the join graph of

a cyclic group. We show that if G is cyclic of order pn1
1 pn2

2 · · · pnk
k , where pi’s are distinct primes, then

we can determine n1, . . ., nk, by the join graph of G. Furthermore we see that by the join graph of

any finite group G, we can determine whether G is cyclic or not. We find non-identity automorphism

of the join graph of a finite cyclic group.

In what follows we assume (unless otherwise stated) that G is a cyclic group of order pn1
1 pn2

2 · · · pnk
k ,

where pi’s are distinct primes, n1 ≤ n2 ≤ · · · ≤ nk and k ̸= 1. We say that (n1, n2, . . . , nk) is the type

of G. Also for every subgroup H of G of order pr11 pr22 · · · prkk , we say that (r1, r2, . . . , rk) is the type of

H, where 0 ≤ ri ≤ ni and 1 ≤ i ≤ k. For every 1 ≤ i ≤ k, let Mi ∈ M (G) be the unique maximal

subgroup of G, which is of order |G|/pi.

Lemma 3.1. By above assumption if H ∈ V (∆(G)), then deg(H) =
∏

j∈J(nj + 1) − 1, where J =

{j | pnj

j | |H|}.

Proof. Put J ′ = {1, 2, . . . , k} \ J . It is clear that

deg(H) = |{K ∈ V (∆(G)) | pni
i divides |K|, for all i ∈ J ′}|.

http://dx.doi.org/10.22108/ijgt.2020.123287.1625
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Hence |K| =
∏

i∈J ′ p
ni
i

∏
j∈J p

rj
j , where 0 ≤ rj ≤ nj . Therefore the number of subgroups K such that

⟨H,K⟩ = G is equal to
∏

j∈J(nj + 1). Since G is not a vertex, the number of adjacent vertices to H

is equal to
∏

j∈J(nj + 1)− 1. □

Corollary 3.2. Let G be a cyclic group. Then the degrees of Pi ∈ Sylpi(G) and Mi are equal to ni

and
∏k

i̸=j=1(nj + 1)− 1, respectively.

Now we consider the following condition which is important to study the join graph of a finite cyclic

group.

Condition Φ: We say that finite group G satisfies the condition Φ, if Φ(G) ⪇
∩

M∈C M , where

C ⊊ M (G).

Lemma 3.3. Let G be a finite cyclic group and H be a finite group. Then the following hold

(1) If ∆(G) ∼= ∆(H), then H satisfies condition Φ.

(2) If H is cyclic, then ∆(G) ∼= ∆(H) if and only if G and H have the same type.

Proof. (1) It is clear that every cyclic group satisfies the condition Φ. So by Lemma 2.3, H satisfies

the condition Φ.

(2) We use the notation preceding Lemma 3.1. Since G satisfies the condition Φ, it follows that

there exists at least one vertex Ti ≤
∩
{Mj | 1 ≤ j ≤ k, j ̸= i} of ∆(G). Clearly Ti is adjacent to

Mi and is non-adjacent to Mj , where j ̸= i. On the other hand it is easy to see that deg(Ti) = ni.

Therefore from the join graph of a cyclic group we can determine the type of the group. Suppose that

H is cyclic and let φ : ∆(G) −→ ∆(H) be an isomorphism. By Lemma 2.2, there exist Nj ∈ M (H),

1 ≤ j ≤ k, such that φ(Mj) ≤ Nj . Clearly φ(Ti) ∼ Ni. Now if there exists an index j distinct from

i such that φ(Ti) ∼ Nj , then by Lemma 2.2, Nj = φ(K), where K ≤ Mj . Therefore Ti ∼ K, and

so Ti ∼ Mj , which is a contradiction. Thus φ(Ti) is adjacent to exactly one maximal subgroup of H

and is not adjacent to other maximal subgroups of H. On the other hand deg(Ti) = deg(φ(Ti)) = ni.

Hence above argument implies that H is of type (n1, n2, . . . , nk).

Now we prove the converse. Suppose that the type of H is (n1, n2, . . . , nk) and it is equal to the

type of G. Let |H| = qn1
1 qn2

2 · · · qnk
k , where qi is a prime. Define φ : ∆(G) −→ ∆(H) such that T and

φ(T ) have the same type for every vertex T of ∆(G). Two distinct vertices T1 and T2 are adjacent if

and only if pni
i divides |T1| or |T2| for every 1 ≤ i ≤ k. Since Tj and φ(Tj) have the same type, where

j ∈ {1, 2}, it follows that for every 1 ≤ i ≤ k, qni
i divides |φ(T1)| or |φ(T2)|. Thus φ(T1) and φ(T2)

are adjacent, and so ∆(G) ∼= ∆(H). □

Using the notation preceding Lemma 3.1, for every Mi, 1 ≤ i ≤ k, there exists at least one vertex

H such that H ≤
∩
{Mj | 1 ≤ j ≤ k, j ̸= i}. Therefore |H| = pr11 pr22 · · · pni

i · · · prkk , with 0 ≤ rj < nj

and j ̸= i. By Lemma 3.1, deg(H) = ni, and so ni is the degree of vertices which are adjacent to Mi

and not adjacent to other maximal subgroups. Thus we can find the type of a cyclic group by its join

graph.
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Now we prove the Theorem A.

Proof of Theorem A. Let M (G) = {M1, . . . ,Mn}. Since by Lemma 3.3, G satisfies the condition

Φ, we have
∩n

i̸=j=1Mj ⊈ Mi, for all 1 ≤ i ≤ n. Now we choose 1 ̸= ai ∈
∩n

i ̸=j=1Mj \ Mi, for all

1 ≤ i ≤ n. Hence ai ̸∈ Mi and ai ∈ Mj , for all j ̸= i. Put a = a1a2 · · · an. If G ̸= ⟨a⟩, then

there exists maximal subgroup Ml such that a ∈ Ml. We can write a = a1 · · · al−1alal+1 · · · an, clearly
a1 · · · al−1, al+1 · · · an ∈ Ml, so al ∈ Ml, which is a contradiction. Thus G = ⟨a⟩. □

Notice that by Lemma 3.3 and proof of Theorem A we have the following result.

Corollary 3.4. Let G be a finite group. Then G is cyclic if and only if G satisfies condition Φ.

Proposition 3.5. Let G be a finite group. Then G is a cyclic group if and only if for every vertex

Mi ∈ M (G), i ∈ I = {1, 2, . . . , k}, there exists vertex Hi such that Hi ∼ Mi and Hi ≁ Mj, for j ∈ I

and j ̸= i.

Proof. Suppose that G is cyclic. Since G satisfies the condition Φ, for all i ∈ I,
∩
{Mj | j ∈ I, j ̸= i}

is a vertex which is adjacent to Mi and is non-adjacent to all Mj ’s, i ̸= j ∈ I. Now we prove

the converse. Suppose that for i ∈ I there exists vertex Hi such that Hi ∼ Mi and Hi ≁ Mj ,

i ̸= j ∈ I. Therefore Hi ≰ Mi and Hi ≤
∩
{Mj | j ∈ I, j ̸= i}. Since Hi ≰ Φ(G), it follows that∩

{Mj | j ∈ I, j ̸= i} ≰ Φ(G). Hence for all i ∈ I, Φ(G) ⪇
∩
{Mj | j ∈ I, j ̸= i}. Clearly G satisfies

the condition Φ, and so by Corollary 3.4, G is cyclic. □

By Proposition 3.5, from the join graph of any finite group G, we can determine whether G is cyclic

or not. For example, let G be a finite group whose join graph shown in Figure 2. The clique number

of ∆(G) is 3 and so |M (G)| = 3. Since each maximal subgroup of G is adjacent to a vertex H such

that H is non-adjacent to other maximal subgroups, by Proposition 3.5, G is cyclic. We note that G

is of type (n1, n2, n3). For every vertex H which is adjacent to exactly one maximal subgroup Mi, we

have deg(H) = ni. Thus it is clear that the type of G is (1, 1, 2) and so G ∼= Zp1p2p23
.

...................

Figure 2.

Recall that a connected graph is Eulerian if and only if all vertices have an even degree (see [21,

Theorem 1.2.26.]).
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Proposition 3.6. Let G be a cyclic group of type (n1, . . . , nk), where k > 1, then,

(1) δ(∆(G)) = n1 and θ(∆(G)) =
∏k

i=2(ni + 1)− 1.

(2) diam(∆(G)) ≤ 2 if and only if |π(G)| = 2.

(3) ∆(G) is Eulerian if and only if all ni are even numbers.

Proof. (1) It is clear, by Lemma 3.1.

(2) First suppose that diam(∆(G)) ≤ 2 and |π(G)| ≥ 3. Let Pi and Pj be two Sylow subgroups. It

is clear that Pi and Pj are not adjacent. Since diam(∆(G)) = 2, so there exists a vertex H such that

Pi and Pj are adjacent to it. Therefore |H| = |G|, a contradiction. Thus |π(G)| = 2.

Now to prove the converse suppose that |π(G)| = 2 and |G| = pnqm. We have daim(∆(G)) = 1 if

and only if ∆(G) is complete if and only if n = m = 1 (see [1, Theorem 2.5]). Let daim(∆(G)) ̸= 1.

Hence there exist non-adjacent vertices in ∆(G). Suppose that H and K are non-adjacent. Since for

every vertex T , pn | |T | or qm | |T |, we conclude that pn divides |H| and |K| (or qm divides |H| and
|K|). Therefore H and K are adjacent to Q ∈ Sylq(G) (or P ∈ Sylp(G)). Thus diam(∆(G)) = 2.

(3) First suppose that ni’s are even numbers. By Lemma 3.1, for every H ∈ V (∆(G)), deg(H) =∏
j∈J(nj + 1)− 1, and so deg(H) is even. Thus ∆(G) is Eulerian.

Now to prove the converse suppose that ∆(G) is Eulerian. For every 1 ≤ i ≤ k, by Corollary 3.2,

there exists a vertex of degree ni, which implies that ni’s are even. □

We conclude this section by proving that the automorphism of the join graph of cyclic group is

non-trivial.

Proposition 3.7. Let G be a cyclic group, then Aut(∆(G)) ̸= {id}.

Proof. We consider two cases:

Case (i). There exists i such that ni ≥ 2. Then there exists vertices M and H of orders |G|/pi
and |G|/pni

i , respectively. Put S = {M,H}. Define φ : ∆(G) −→ ∆(G) as:

φ(K) =


M if K = H

H if K = M

K if K ̸∈ S

Let T1, T2 ∈ V (∆(G)). We show that T1 ∼ T2 if and only if φ(T1) ∼ φ(T2). Hence we consider three

cases:

(1) First suppose that T1, T2 ∈ S. We have φ(T1), φ(T2) ∈ S and it is clear that T1 ≁ T2 if and only

if φ(T1) ≁ φ(T2).

(2) Suppose that T1, T2 ̸∈ S so φ(T1) = T1 and φ(T2) = T2. Thus the results is clear.

(3) Finally if T1 ∈ S and T2 ̸∈ S. Let T1 = M . So φ(T1) = H and φ(T2) = T2. Therefore M ∼ T2 if

and only if pni
i divides |T2| if and only if H ∼ T2. Similarly for T1 = H we have H ∼ T2 if and only if

M ∼ T2.
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Case (ii). ni = 1 for every 1 ≤ i ≤ k. Then |G| = p1p2 · · · pk. Consider maximal subgroups M1

and M2 (recall that the order of Mi is |G|/pi). Put

Si = {H ∈ V (∆(G)) | H ≤ Mi,H ≰ Mj}

where i, j ∈ {1, 2}. Let H ∈ V (∆(G)) and |H| = pr11 pr22 · · · prkk , where ri ∈ {0, 1}. Hence H is of type

(r1, r2, . . . , rk). If H is in S1 or S2, then H is of type (0, 1, r3, . . . , rk) or (1, 0, r3, . . . , rk), respectively.

If H ̸∈ S1∪S2, then H is of type (1, 1, r3, . . . , rk) or (0, 0, r3, . . . , rk). Note that S1∩S2 = 1. We define

φ : ∆(G) −→ ∆(G) by

φ(H) =


H if H ̸∈ S1 ∪ S2

H1 if H ∈ S1

H2 if H ∈ S2

Such that if H is of type (0, 1, r3, . . . , rk), then H1 is of type (1, 0, r3, . . . , rk). Similarly if H is of type

(1, 0, r3, . . . , rk), then H2 is of type (0, 1, r3, . . . , rk). It is easy to see that φ is an isomorphism. This

completes the proof. □

4. Characterization of the alternating group A5 by its join graph

Recall that the number of maximal subgroups of an elementary abelian p-group of rank n is equal

to (pn − 1)/(p− 1). Now we ready to prove the Theorem B.

Proof of Theorem B. If G ∼= A5, then it is clear that ∆(G) ∼= ∆(A5).

Now to prove the converse, let ∆(G) ∼= ∆(A5) and φ : ∆(A5) −→ ∆(G) be an isomorphism.

We know that Φ(A5) = 1 and |M (A5)| = 21. Also A5 has two maximal subgroups with trivial

intersection, and so by Lemma 2.3, there exist two maximal subgroups M1 and M2 of G such that

M1 ∩M2 = Φ(G). We claim that G is non-nilpotent. Assume, for a contradiction, that G is nilpotent.

Since G = M1 ×M2 and |G : Mi| = pi, where pi is a prime, i = 1, 2, we see that G ∼= Zp1 × Zp2 . If

p1 = p2 = p, then |G| = p2. Since |M (G)| = p+ 1 = 21, p = 20, a contradiction. Thus p1 and p2 are

distinct and G ∼= Zp1p2 . Hence |M (G)| = 2, which is a contradiction.

Therefore G is non-nilpotent. We know that A5 has 5 maximal subgroups Ni
∼= A4, 1 ≤ i ≤ 5. If

there exist i, j such that Ni∩Nj = 1, then 60 = |A5| = |A5 : Ni∩Nj | ≤ |A5 : Ni||A5 : Nj | = 25, which

is a contradiction. Hence for distinct 1 ≤ i, j ≤ 5, Ni ∩Nj ̸= 1. By GAP [11], one can check that for

any pairwise distinct 1 ≤ i, j, k ≤ 5, Ni ∩Nj ∩Nk = 1. Now by Lemma 2.2, for 1 ≤ i ≤ 5, there exist

Mi ∈ M (G) such that φ(Ni) ≤ Mi, and n(Mi) = 9. Also Lemma 2.3 implies that for any pairwise

distinct 1 ≤ i, j, k ≤ 5, Mi ∩Mj ̸= Φ(G) and Mi ∩Mj ∩Mk = Φ(G). First suppose that Mi is normal,

for all i = 1, 2, . . . , 5. It is clear that for 1 ≤ i ≤ 5, |G : Mi| is a prime number. Since G = MiMj ,

for all distinct 1 ≤ i, j ≤ 5, we have |G : Mi| = |MiMj : Mi| = |MiMj |/|Mi|. Suppose that for i ̸= j,
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|G : Mi| = p, |G : Mj | = q, where p and q are prime numbers, then

p = |MiMj : Mi|

=
|MiMj |
|Mi|

=
|MiMj ||Mj |
|Mi||Mj |

= q|Mj |/|Mi|,

and hence |Mj | = |Mi| and p = q. Thus |G : Mi| = p for all 1 ≤ i ≤ 5. Note that since G = MiMj ,

|G : Mi ∩Mj | =
|MiMj |

|Mi ∩Mj |

=
|Mi||Mj |

|Mi ∩Mj ||Mi ∩Mj |

=
|MiMj |/|Mi|
|MiMj |/|Mj |

= |G : Mi||G : Mj |.

On the other hand G = Mk(Mi ∩Mj), and so

|G : Mk ∩ (Mi ∩Mj)| =
|Mk(Mi ∩Mj)|

|Mk ∩ (Mi ∩Mj)|

=
|Mk(Mi ∩Mj)|

|Mk ∩ (Mi ∩Mj)|
|Mk|
|Mk|

= |G : Mi ∩Mj ||G : Mk|

= |G : Mi||G : Mj ||G : Mk|.

Hence |G : Φ(G)| = |G : Mi∩Mj∩Mk| = p3, which implies that G is nilpotent, which is a contradiction.

Therefore there exists i such that Mi ⋬ G, hence d = |G : Mi| ≥ 3. Since Φ(G) = coreG(Mi), the

core of Mi in G, it follows that G/Φ(G) is isomorphic to a subgroup of Sd. Suppose, if possible,

that |G : Mi| ≥ 6. Then Mi is conjugate to a maximal subgroup T of G, where n(T ) = 5 or 7,

a contradiction. So |G : Mj | ≤ 5. Now if |G : Mj | = 3 or 4, then G/Φ(G) is isomorphic to a

subgroup of S3 or S4, respectively. Since S3 and S4 have no subgroup H with |M (H)| = 21, we have

|M (G/Φ(G))| ̸= 21, a contradiction.

Therefore |G : Mi| = 5, which implies thatG/Φ(G) is isomorphic to a subgroup of S5. Since A5 is the

only subgroup of S5 with 21 maximal subgroups, G/Φ(G) ∼= A5. It follows that ∆(G/Φ(G)) ∼= ∆(A5).

On the other hand we have ∆(A5) ∼= ∆(G), which implies that ∆(G) ∼= ∆(G/Φ(G)). Therefore

|V (∆(G/Φ(G)))| = |V (∆(G))|, and so for every H ∈ V (∆(G)), Φ(G) ≤ H. For every Pj ∈ Sylpj (G),

where pj ∈ π(G), Pj is a vertex in ∆(G) and Φ(G) ≤ Pj . Since G is non-nilpotent, |π(G)| ̸= 1. Hence

for j ̸= k, Φ(G) ≤ Pj ∩ Pk = 1, and so Φ(G) = 1. Thus G ∼= A5. This completes the proof. □
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