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The known nonlinear integral model of a turbulent thermal is generalized to the case of
the presence of the horizontal component of its motion relative to the surrounding medium (for
example, the floating-up of a thermal in a shear flow). In addition, the possibility of the presence
of a heat (buoyancy) source in a thermal is considered. In comparison with the author’s previous
work, a solution is investigated for the case of unstable background stratification of the medium.
The problem is solved in terms of quadratures. The asymptotics of the solution at large time
intervals is analyzed. The solution describes, in particular, the nonlinear effect of the interaction
of the horizontal and vertical components of the thermal motion, since each of the components
affects the rate of entrainment of the surrounding medium, i. e., the growth rate of the thermal
size and, hence, its mobility.
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1. Introduction

In a recent paper by the author [1] a theoretical study was made of the problem of the
motion of a turbulent thermal in a horizontal shear flow using the well-known model of turbulent
convection from localized sources of buoyancy and (or) momentum, which act for a short time —
isolated thermals (see, for example, [2–7] and references therein). In such a model, the region of
perturbation (thermal) is approximately represented in the form of an ascending (or descending,
depending on the sign of perturbation) “bubble” or vortex ring of variable volume and mass. The
volume of the thermal increases gradually as it captures the adjacent volumes of the environment
(for brevity, the term “entrainment” is often used). For the thermal, a system of equations of the
balance of mass, momentum and buoyancy is written. For example (see [2, Section 6.3.2], [6]),
a system of equations is considered which, up to notation, has the form

d

dt
R3 = 3βR2w,

d

dt
(R3w) = β1R

3b,
d

dt
(R3b) = −N2R3w. (1.1)

Here R, w and b are the unknown radius, vertical velocity and specific buoyancy of the thermal;
the latter has the dimension of acceleration and is expressed by the relation b = gρ′/〈ρ〉, where g
is the acceleration of gravity, 〈ρ〉 is the unperturbed density of the surrounding medium, ρ′ is the
density perturbation; N is the buoyancy frequency in the medium; β and β1 denote dimensionless
constants, the former being determined by the rate of entrainment of the surrounding medium;
in [2] the values β = 1/4 and β1 = 2/3 were considered.

The first equation of (1.1) describes the balance of mass of the moving thermal; it is assumed
that the rate of entrainment of the surrounding medium is proportional to the surface area of
the thermal and its velocity relative to the surrounding medium. We note that this equation is,
generally speaking, written inaccurately — by implication, the right-hand side should obviously
contain the absolute value of the thermal velocity relative to the surrounding medium rather
than the velocity w. Generally speaking, the vertical velocity w can also be negative (directed
downward), for example, in the case of a thermal with negative buoyancy.

In [1] the problem is generalized to the important case where the thermal can move at an
angle to the vertical. Such situations arise in a natural way when a thermal rises or descends
in a horizontal flow with a vertical shift. For example, in the presence of significant convective
instability in the atmosphere, the settling volume of air (a thermal with negative buoyancy)
moving along the horizontal with fast background flow can transfer a significant horizontal
momentum to the surface layer, in which the background horizontal flow is relatively slow, and
this may be responsible for the occurrence of sharp gusts of wind — squall winds (microsqualls)
in the surface layer.

As the thermal moves in such a flow, it also acquires a horizontal velocity relative to the
background flow. Accordingly, the generalization of the first equation of (1.1) in [1] has the form

d

dt
R3 = 3βR2(w2 +Δu2)1/2; Δu ≡ u− U. (1.2)

Here u is the horizontal velocity component of the thermal, U is the velocity of the background
horizontal flow, which depends, generally speaking, on the height, and hence, on the time it
takes for the thermal to move to a certain level. The system is also supplemented with the
equation

d

dt
(R3Δu) = −U ′R3w, (1.3)
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where the prime denotes the vertical derivative (the shear of the velocity of the background flow;
in this note it is assumed to be known and constant). This equation is analogous to the last
equation of (1.1), but describes the change in the horizontal amount of motion.

To increase generality in the equation for changing buoyancy (the last equation of (1.1)),
we additionally take into account the possibility of existence of the source of buoyancy in the
thermal:

d

dt
(R3b) = −N2R3w +Q. (1.4)

The term Q is the intensity of the buoyancy source (connected, for example, with heat generation
in the thermal [7]). Such problems with volumetric heat generation arise, in particular, in the
theory of active influences on atmospheric processes. For artificial stimulation of convection, it is
proposed to add to air, for example, a finely dispersed admixture absorbing short-wave solar
radiation. A cloud of such an (almost weightless) admixture must ascend due to heat release.
This convection is described using models such as thermals [7]. In the simplest cases, integral
heat release in such a thermal can be taken to be constant: Q = const.

The case of unstable background stratification of the surrounding medium, when N2 < 0,
was not considered in [1]. This case is of interest, in particular, in connection with the above-
mentioned mechanism of generation of microgusts in the atmosphere. It can be assumed that in
an unstably stratified medium the vertically moving volume of the medium will accelerate. But
in this case, entrainment intensifies and the volume of the thermal increases fast; consequently,
its mobility must decrease. Therefore, there exists an important question: to what extent will
the thermal in this case be carried away along the horizontal by the shear background flow —
will the thermal have time during vertical movement to “keep track” of the vertical shear of the
background flow? It is this problem that is addressed in this note.

2. Solution

A closed system of equations is considered: the second equation of (1.1) and Eqs. (1.2),
(1.3) and (1.4); the values of the sought-for quantities R, u, w and b at the initial time t = 0
(marked below with a zero index) are taken as initial data. From the first and the last of the
above-mentioned equations, passing in them to the variables W (t) = R3w, D(t) = R3b and
integrating, it is easy to obtain

R3w = A exp(t/τ) +B exp(−t/τ)− β1τ
2Q, (2.1)

R3b = [A exp(t/τ) −B exp(−t/τ)]/β1τ, (2.2)

where A and B are constants of integration and τ = 1/
√

β1|N |. Taking into account the initial
conditions, we have

A =
R3

0

2

(
w0 + β1τb0 + β1τ

2Q/R3
0

)
,

B =
R3

0

2

(
w0 − β1τb0 + β1τ

2Q/R3
0

)
.

(2.3)

Integrating (1.4), we obtain

V (t) ≡ R3Δu = Δu0R
3
0 − U ′τ {A[exp(t/τ)− 1]−B[exp(−t/τ)− 1]− β1τQt}. (2.4)
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Substituting (2.1) and (2.4) into (1.2) and integrating, we find

R(t) = R0

⎧⎨⎩1 +
4β

R4
0

t∫
0

[
W (t′)2 + V (t′)2

]1/2
dt′

⎫⎬⎭
1/4

. (2.5)

The problem is in principle solved. When Q = 0, the integral in the last expression is in principle
calculated analytically.

The integrand in (2.5) contains, in particular, the exponents exp(t/τ) growing with time. On
the time intervals t � τ the corresponding terms dominate, so that the integrand is proportional
to exp(t/τ). From here it is easy to obtain the asymptotics of the solution on large times.

3. Analysis of an important particular case

As an illustration we analyze the solution for the particular case Δu0 = 0, w0 = 0, Q = 0.
In this case, A = −B = β1R

3
0τb0/2 and the expression (2.5) can be transformed to the form

R(t) = R0

⎧⎨⎩1 +
8ββ1τb0

R0

t∫
0

[(
sh

t′

τ

)2

+ S

(
ch

t′

τ
− 1

)2
]1/2

dt′

⎫⎬⎭
1/4

.

Here the dimensionless number S ≡ (τU ′)2 is close to the inverse Richardson number for back-
ground flow (up to sign and within a factor of the order of unity). The integral in the last
expression is calculated analytically (it is convenient to use, for example, “Mathematica”, an
integrated system of computer mathematics); it can be represented as

τ
[F1(t/τ) cth(t/2τ) − F2(t/τ)]F3(t/τ)

F1(t/τ)
,

where

F1(t/τ) = {(1 + S)[1− S + (1 + S) ch(t/τ)]}1/2,

F2(t/τ) =
√
2S csch(t/2τ) ln

[√
2(1 + S)1/2 ch(t/2τ) + F1(t/τ)/(1 + S)1/2

]
,

F3(t/τ) =
{
S[−1 + ch(t/τ)]2 + [sh(t/τ)]2

}1/2
.

As is easy to verify, in the limit t � τ this integral is approximately equal to (1+S)1/2τ exp(t/τ)/2,
whence

R(t) ≈ R0

{
1 +

4ββ1τ
2b0

R0

(1 + S)1/2 exp(t/τ)

}1/4

.

On the time intervals on which the thermal has time to increase noticeably (R(t) � R0), this
yields the asymptotics

R(t) ≈ (1 + S)1/8(4ββ1τ
2b0R

3
0)

1/4 exp(t/4τ),

w(t) ≈ 1

4(1 + S)3/8

(
β1b0R

3
0

4β3τ2

)1/4

exp(t/4τ),

b(t) ≈ 1

4(1 + S)3/8τ

(
b0R

3
0

4β3β3
1τ

2

)1/4

exp(t/4τ),

Δu(t) ≈ − S1/2

4(1 + S)3/8

(
β1b0R

3
0

4β3τ2

)1/4

exp(t/4τ).
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The coefficients at the exponents depend most strongly on the initial dimensions of the
thermal. In particular, it follows from the last formula that the thermal does not keep up
with the background flow when moving along the horizontal — the thermal systematically lags
behind it when w > 0 and U ′ > 0. What also follows from the last formula is a simple
relation between two velocity components of the thermal relative to the surrounding medium:
Δu(t)/w(t) ≈ −S1/2.

4. Conclusion

The nonlinear problem of the dynamics of a turbulent thermal in which stratification, the
shear of the velocity of the background flow and heat release in the thermal are simultaneously
taken into account can be solved in terms of quadratures. The solution describes, in particular,
the nonlinear effect of interaction of the horizontal and vertical components of the motion of the
thermal relative to the surrounding medium, since each of the components influences the rate
of entrainment of the surrounding medium, i.e., the growth rate of the thermal size and hence
its mobility. The solution in the case of unstable stratification of the medium has important
specific features. The fact that a thermal is carried away by the shear flow only to a limited
extent can be of practical importance in the context of transfer of substances in the presence of
atmospheric convection.
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