
1. Introduction

Conformal projections have been used since 
the Ancient era and are still used nowadays. 
They have a wide range of applications, including 
in creating topographic maps and for numerous 
other purposes. These projections also play 
a major role in planetary cartography, which is 
one of the most interesting and dynamically 
developing fields of cartography due to the 
growing interest in the exploration of space 
and the large amount of data about celestial 
bodies that are obtained from various space 
missions. The reference surfaces applied in 
the projections that are used to map the surface 
of the Earth or of other large planets are usually 
an oblate ellipsoid or a sphere. However, a tri-
-axial ellipsoid seems to be more suitable for 
preparing maps of such irregular objects as 
asteroids or small celestial bodies. Currently, 
an increasing number of publications on this 

subject appear, including the works of the Rus-
sian cartographer Nyrtsov. His research was 
probably inspired by the works of another Rus-
sian cartographer, Lev Moseevich Bugayevskiy, 
whose studies on the projections of a tri-axial 
ellipsoid published in the 1980s should be con-
sidered as breakthrough works. Bugayevskiy 
was the author of the method of determining 
isometric coordinates on a tri-axial ellipsoid 
and of the cylindrical conformal projections, as 
well as of numerous other projections (Bugay-
evskiy, 1987, 1991). The problem of conformal 
projections of a tri-axial ellipsoid were also 
analysed by the American scientist John Parr 
Snyder, who developed a method for calculating 
so-called conformal coordinates and their 
application to create this type of projections 
(Snyder, 1995). 

The aim of this paper is to present to the 
readers the methodology of creating conformal 
projections of a tri-axial ellipsoid with the use 
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of isometric coordinates. The isometric coordi-
nates were calculated with the use of the for-
mulas developed by Bugayevskiy, which have 
the form of functions of planetographic coordi-
nates. As the data for multiple extra-terrestrial 
bodies are often expressed in form of planeto-
centric coordinates, the knowledge of the meth
ods for converting the coordinates between 
different systems might be useful. These methods 
were described, among others, in the works 
Bugayevskiy (1998) and Pędzich (2017), and 
the main definitions were also presented in the 
study by Pędzich and Latuszek (2014). Here, it 
is worth noting that the planetocentric latitude 
is the angle between the plane of the equator 
and the straight line passing through the centre 
of the ellipsoid and the given point, while the 
planetographic latitude is the angle between 
the plane of the equator and the normal to the 
ellipsoid at a given point. 

Apart from the method of calculating the iso-
metric coordinates, the paper also presents 
sample projections along with an analysis of 
their properties. 

2. An outline of the history of conformal 
projections

2.1. Beginnings and the main studies  
on conformal projections

The oldest known conformal projection is the 
stereographic projection of a sphere on a plane, 
which is attributed to Hipparchus and was 
created about 130 BC. This projection was used 
by Ptolemy to create a map of the sky in mid-2nd 
century. Ptolemy also noted an interesting pro-
perty of this projection, namely that all circles 
of the sphere are projected to circles on a plane 
(Biernacki, 1949). 

The well-known Mercator’s projection was 
first used in 1569, on his map of the world that 
consisted of 18 charts joined to create one 
whole map of the dimensions of 1.3 m by 2 m. 
Mercator entitled his map Nova et aucta orbis 
terrae desciptio ad usum navigantinum emen-
date accomodata. It was the first known cylindri-
cal equiangular projection. Mercator probably 
determined the distances between the repre-
sentations of the parallels in a graphic way 
(Snyder, 1993). 

The mathematical functions for this projec-
tion in form of an infinite series were presented 

by Edward Wright in 1599 and in a finite form 
in 1668 by James Gregory (Biernacki, 1949).

One of the most significant works for the 
conformal projections theory was the study by 
the German mathematician J.H. Lambert, 
entitled Anmerkungen und Zusätze zur Ent-
werfung der Land- und Himmelscharten which 
was published in 1772. In Chapter 6, the author 
provided, for the first time in history, the formu-
las for the conformal projection of a sphere on 
a plane. Lambert also presented a differential 
equation for the conformal projection, which 
was the basis for deriving the formulas for 
several projections of this type, including the 
conical, circular, and transverse cylindrical 
projection (Biernacki, 1949). 

In 1777, the Swiss mathematician Leonhard 
Euler published in the Acta Academiae Scien-
tiarum Imperialis Petropolitanae pro anno 1777 
three works that discussed cartographic pro-
jections, including 2 on conformal projections:

1. De repraesentatione superficiei sphaeri-
cae super plano,

2. De projectione geographica superficiei 
sphaericae.

First of all, he derived the differential equa-
tions based on the general prerequisite of 
equiangularity, and then presented the func-
tions in various equiangular projections (Bier-
nacki, 1949).

In 1781, Joseph Louis Lagrange (French 
mathematician and astronomer) published the 
work entitled: Sur la construction des cartes 
geographiques, premier et second memoir. 
Lagrange knew the works of Lambert and Euler. 
He solved the problem of the conformal pro-
jection of a rotational surface onto a plane with 
the use of the method of any function of a com-
plex variable. He also presented the formula 
for the scale of the projection. Apart from that, 
he derived the formulas for the circular projec-
tion of a rotational surface, followed by deriving 
the formulas for a sphere and an ellipsoid 
(Biernacki, 1949). 

In 1825, the German mathematician Carl 
Friedrich Gauss published the work entitled: 
Allgemeine Auflosung der Aufgabe: Die Theile 
einer gegebnen Flache auf einer andern gegeb-
nen Flache so abzubilden, dass die Abbildung 
dem Abgebildeten in den kleinsten Theilen 
ahnlich wird, where he presented the differen-
tial equation for the conformal projection of 
any two surfaces and demonstrated that the 
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problem depends only on the proportionality of 
the first fundamental forms of the surface theory. 
Then, he derived the formulas for several simple 
examples of projections used in geodesy. 
Moreover, Gauss introduced the term “confor-
mality”, which he used for the first time in 1843, 
in Untersuchungen űber Gegenstände der 
höheren Geodäsie (Biernacki, 1949). 

Another major work in the conformal projec-
tions theory was the study by Bernard Riemann, 
a German mathematician, published in 1851 
and entitled: Grundlagen für eine allgemeine 
Theorie der Functionen einer complexen ver-
änderlichen Grösse, where the author addressed 
the theoretical problem of projecting certain, 
predefined finite areas on both planes, each of 
which is enclosed by a defined contour (Bier-
nacki, 1949).

Carl Jacobi, in his study of 1886, entitled 
Vorlesungen über Dynamik (Lectures on Dyn
amics), proposed a conformal projection of 
a tri-axial ellipsoid. In order to achieve it, he 
introduced elliptical coordinates on the tri-axial 
ellipsoid (Nyrtsov et al., 2014).

2.2. Cylindrical projections

As it has already been mentioned, Mercator 
created his famous world map designed for 
navigation in 1569. Since that time, this projec-
tion has become a standard in creating this 
type of maps. 

A little earlier, in the years 1511–13, Etzlaub 
created a map of Europe and North Africa in 
a similar projection (Snyder, 1993).

The conformal transverse cylindrical projec-
tion of a sphere onto a plane described by 
Lambert was generalised for an ellipsoid by 
Gauss and used for the first time in the years 
1820–1830 to calculate the results of triangu-
lation for Hannover. Gauss did not, however, 
publish the method of the projection. It was 
presented only later by Oscar Schreiber in his 
work entitled: Theorie der Projectionsmethode 
der hannoverschen Landesvermessung, pub-
lished in Hannover in 1866. The method was 
developed by Louis Krüger in 1912, based on 
the manuscripts left by Gauss in the publica-
tions of the Institute of Geodesy in Potsdam, 
entitled: Konforme Abbildung des Erdellipsoids 
in der Ebene. On the other hand, the work For-
meln zur Konformen Abbildung des Ellipsoids 

in der Ebene, published in 1919 in Berlin by 
the Prussian Office for Land Surveying, pre-
sented formula that were adapted for practical 
calculations (Różycki, 1973). These formulas 
allowed calculating the flat rectangular coordi-
nates in narrow meridian belts. The formulas 
for the whole ellipsoid were derived in 1945 by 
E.H. Thompson and in 1962 by L. P. Lee with 
the use of elliptic integrals. The Gauss-Krȕger 
projection (in the USA referred to as the trans-
verse Mercator projection) is currently the 
basis for creating topographic maps throughout 
the world. In 1947, Martin Hotine published 
a work on the oblique cylindrical conformal pro-
jections that are a generalisation of the normal 
and transverse projections. Hotine used the 
method of double projection, i.e. projecting the 
ellipsoid onto a sphere and then the sphere 
onto a plane. He named the projection “ortho-
morphic”.

The Space oblique Mercator projection was 
developed in the years 1973–1979 by Colvo-
coresses, Snyder, and Junkins. This is a con-
formal projection designed to create maps that 
consist of satellite images. It is a modified 
cylindrical projection, where the projection 
functions are defined by the parameters of 
satellite orbits (Snyder, 1987). 

2.3. Azimuthal projections

As it has been already mentioned, normal 
equiangular azimuthal projections were known 
as early as in the Ancient era. They were used 
then to create maps of the sky. This type of 
projection is believed to have been invented 
by Hipparchus. 

In 1507, the first known map of the world in 
this projection was created by Walther Ludd 
(Gaultier Lud) of St. Die, Lorraine. First maps 
in the oblique projection were also sky maps. 
In the 4th century AD such map was created 
by Theon of Alexandria. The first known world 
map in the oblique azimuthal projection was 
published in the atlas of Jacques de Vaulx of 
1583, while the first world maps in the trans-
verse projection were created in 1542 by Jean 
Rose. The name “stereographic projection” 
was first used by the French mathematician 
François d’Aguilon (1613) in his work Optico-
rum libri sex philosophis juxta ac mathematicis 
utiles (Sossa & Korol, 2015).
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In 1924, the oblique stereographic projec-
tion of an oblate ellipsoid was developed by 
the French astronomer Roussilhe (1924). His 
work, as numerous later publications, including 
those by Grabowski (1928), Biernacki (1927), 
Christov (1964), Letoval’cev (1968), Zenin (1968), 
and Snyder (1987) provided limited range so-
lutions, usually in the form of the expansion of 
the mapping functions into power series (Bal-
cerzak, 2000). Balcerzak (2000) developed the 
functions for mapping the whole ellipsoid and the 
functions for transformation between the Gauss-
-Krüger projection and the Roussilhe projection.

2.4. Modifications of azimuthal projections, 
low-distortion conformal projections

Interesting projections are obtained as a result 
of modifying the stereographic projections: as 
a result, the lines of constant distortions change 
their shapes from circles to other curves, which 
usually reflect the shape of the borders of the 
mapped area. 

Such projection was developed by Miller in 
1953 for the area of Europe and Africa, and in 
1955 for Central Asia and Australasia. As a result 
of the polynomial transformation of the stereo-
graphic projection, he obtained a map with 
oval-shaped isolines. Similar projections were 
used by Reilly in 1973 to create a map of New 
Zealand and in 1974 by Lee who developed 
a map of the Pacific Ocean and obtained iso-
lines of more complex shapes, and, finally, by 
Snyder to create a projection for the map of 
48 states of the USA (Snyder, 1987). In 1995, 
Gonzalez-Lopez created a map of Chile with 
the use of the polynomial transformation of the 
transverse Mercator projection (Canters, 2002).

The modified stereographic projections men-
tioned above may be classified as projections 
that meet the principle formulated by the Russian 
scientist Pafnuty Lvovich Chebyshev. In 1853, 
he formulated the theorem about the “best” car-
tographic conformal projections that are char-
acterised by the lowest linear distortions. He 
also provided a criterion that allows minimising 
the oscillation of linear distortion throughout 
the projected area. According to Chebyshev’s 
principle, in the class of conformal projections, 
the projection in which the scale is constant on 
the edge of the area has the lowest oscillation 
of the natural logarithm of the length scale. Nu-
merous publications that discuss Chebyshev’s 

theorem and its application for creating projec-
tions with a constant scale on the edge of the 
area include works by: Gdowski (1969, 1971), 
Nesterov (1997), Balcerzak and Pędzich (1999), 
Pędzich (1999), Pędzich (2002), and Orihuela 
(2017). These studies describe methods of 
creating maps that meet the requirements of 
Chebyshev’s principle for various areas for an 
oblate ellipsoid. On the other hand, the work 
(Pędzich, 2019) describes the application of 
the theorem for mapping areas situated on 
a tri-axial ellipsoid.

2.5. Conic projections

In his work of 1772, Lambert presented the 
formulas for the conic conformal projection 
with two standard parallels, both for the ellip-
soid and for the sphere. Currently, this projec-
tion is commonly used in creating overview 
topographic maps. 

An interesting aspect of the conic projec-
tions is the selection of standard parallels. 
There are several criteria worth mentioning here.

The Ptolemy criterion: 
1. The scale has to be minimum at a certain, 

freely selected parallel,
2. The scale must be equal to one at this 

parallel.
The De l’Isla criterion:
1. The scales have to be identical on any 

two selected parallels.
2. The scale must be equal to one at this 

parallel.
Both these criteria were used in 1772 by 

Lambert for equiangular conic projections.
The Swiss mathematician Euler proposed 

the following criteria:
1. The scales have to be equal on two extreme 

parallels of the area.
2. On the central parallel, the linear distor-

tion has to be equal to the linear distortion on 
the extreme parallels but with the opposite 
sign (Biernacki, 1949).

This criterion was used by Witkowski to 
develop the equiangular conic projection (Fen-
na, 2007; Różycki, 1973). On the other hand, 
Kawrajski developed an equiangular conic pro-
jection that meets the following criterion: The 
scales on two extreme parallels of the area 
have to be identical and equal to the inverse of 
the scale on the central parallel (Fenna, 2007; 
Różycki, 1973).
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In 1941, Miller and Briesemeister developed 
a projection named the bipolar oblique conic 
projection. Two versions of the projection were 
created. The first one covered South America, 
with an auxiliary pole in the Pacific Ocean at 
a point located at the coordinates 20°S and 
110°W, and with the standard parallels of the 
latitudes of 17° and 59°. Then, the projection 
was used to create another version for North 
America with the auxiliary pole in the Atlantic 
Ocean at the coordinates of 45°N and 19°59’36”W 
and the same standard parallels (Fenna, 2007).

2.6. Other interesting conformal projections

Probably the most general conformal projec-
tion is the Lagrange projection. It is a generali-
sation of the projection proposed by Lambert, 
who projected one hemisphere in a circle, 
starting from the stereographic azimuthal projec-
tion in the transverse position (Fenna, 2007). 

Projections that are similar in terms of the 
graticule were developed by Eisenlohr in 1870 
and by August in 1874. They are referred to as 
two-cusped conformal projections. In creating 
his projection, Eisenlohr followed the criterion 
and principle of Chebyshev. August, on the 
other hand, developed his projection based on 
an epicycloid, hence the name: August Epicyc-
loidal projection (Fenna, 2007).

In 1833, Littrow developed an equiangular 
projection where the parallels are projected 
into ellipses and the meridians into hyperbolas 
(Szaflarski, 1955). 

In 1869, Schwartz proposed a method of 
transforming a circle into a polygon as well as 
the transformation of an ellipse into a circle and 
a sphere into five regular polyhedrons. Later, 
in 1879, Peirce used these methods as a basis 
for developing the conformal projection of 
a sphere onto a plane, where the sphere is 
projected into a square. This projection is called 
Quincuncial. Guyon developed a transverse 
version of this projection in 1886. Later, in 1925, 
Adams presented several versions of this type 
of projection: a hemisphere into a regular triangle, 
regular hexagon, a rhomb, a rectangle, a six-
-pointed star, and an ellipse (Fenna, 2007). 

2.7. Conformal projections of a tri-axial 
ellipsoid

This paper discusses the conformal pro-
jections of a tri-axial ellipsoid, which deserve 

a separate presentation. Some of them, such 
as the Jacobi projection of a tri-axial ellipsoid, 
have been mentioned above, but there are 
more known works on this subject.

Two scientists, in particular, are famous for 
their studies on conformal projections of tri-axial 
ellipsoids: Lev Moseevich Bugayevskiy and John 
Snyder. At this point, it is worth presenting 
these authors and their works. 

Lev Moseevich Bugayevskiy (1921–2010) 
was a Russian cartographer, a professor at the 
Moscow Institute of Engineering Geodesy, 
Aerial Survey and Cartography, Chair of Map 
Planning and Composition, who dedicated his 
whole career to mathematical cartography. He 
was the author of more than 130 publications. 
In his works he addressed multiple theoretical 
and practical issues, including, in particular: 
the general theory of cartographic projections, 
the distortion theory and projecting one surface 
onto another, the theoretical basis for the best 
projections, systems of coordinates, with parti-
cular focus on conformal coordinates, trans-
formations of projections, double projections, 
cartometric calculations, determining the para-
meters of reference surfaces of extra-terre-
strial bodies, the application of projections in 
creating topographic maps and maps for sea 
and aerial navigation, the design and termi-
nology of map charts in specific scales, and 
automation in mathematical cartography, etc. 
(Lapaine & Divjak, 2017).

Thus, he wrote numerous studies on carto-
graphic projections. In the context of the topic 
of this paper, the most important aspect of his 
work is the fact that he was the author of the 
method of calculating isometric coordinates on 
a tri-axial ellipsoid. He developed formulas to 
calculate these coordinates directly on the 
ellipsoid, without the need to use any additional 
auxiliary surfaces. He derived general formulas, 
which, after certain simplifications, may also be 
used on oblate ellipsoids and spheres. These 
coordinates may be the basis for developing 
various types of conformal cartographic pro-
jections in compliance with the theory of such 
projections. The study (Bugayevskiy, 1998) 
describes the method and provides the formulas 
for calculating isometric coordinates on a tri-
-axial ellipsoid. The author also presents a cy-
lindrical projection that was developed based 
on these coordinates. 

On the other hand, John Parr Snyder 
(1926–1997) was an American scientist. He 
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graduated from the Purdue University and 
Massachusetts Institute of Technology with an 
engineer’s degree in chemistry. Cartographic 
projections were his hobby. He was the presi-
dent of the American Cartographic Association 
in the years 1990–1991, the secretary of the 
Washington Map Society, he taught courses 
on cartographic projections at the George 
Mason University, but his most famous works 
were the publications about cartographic pro-
jections written for the USGS. He is the author 
of the Space Oblique Mercator projection, de-
signed for Landsat satellite images, and of the 
GS50 projection: a minimum distortion conformal 
projection designed for 50 states of the USA 
(Lapaine & Divjak, 2017). 

Similarly to Bugayevskiy, he was also an 
outstanding mathematical cartographer. In the 
context of this paper, the most interesting 
aspect is the fact that, in 1985, Snyder devel-
oped a method of determining the conformal 
projections of a tri-axial ellipsoid that was 
slightly different from that proposed by Bugay-
evskiy and applied so-called conformal coor-
dinates. He also presented an example of 
applying these coordinates in a cylindrical pro-
jection. 

Based on Jacobi’s projection, Nyrtsov et al. 
(2014) developed and analysed a transverse 
cylindrical conformal projection of a tri-axial el-
lipsoid with the use of elliptic coordinates. A similar 
projection was also presented by Karney (2017). 

The authors of this study intend to determine 
and present cartographic projections that are 
based on isometric coordinates and developed 
according to the method proposed by Bugay-
evskiy. Snyder’s method will be described in 
our next publications.

3. The methodology of developing  
conformal projections of a tri-axial  
ellipsoid

3.1. Isometric coordinates of a tri-axial 
ellipsoid according to Bugayevskiy

The study (Bugayevskiy, 1998) describes 
the method for constructing isometric coordi-
nates on a tri-axial ellipsoid. The data are the 
semi-axes a,b,c of the tri-axial ellipsoid and 
the planetographic coordinates B and L. In this 
paper, only the sequence of formulas used in 
calculations will be presented.

The following are determined, in sequence:
	 ,	 (1)

	  ,	 (2)

	  ,	 (3)

	  
 
,	 (4)

	  .	 (5)

	  ,	 (6)
	  ,	 (7)

	  ,	 (8)

	   ,	 (9)
	 ,	 (10)

	  .	 (11)

The η coordinate is calculated with the use 
of numerical integration methods. 

The above formulas are universal and may 
be used to calculate the isometric coordinates 
for a tri-axial ellipsoid, an oblate ellipsoid or 
a sphere. For an oblate ellipsoid, where a = b, 
these formulas are simplified to the form that is 
commonly applied in cartography for this type 
of surface. Assuming a = b = c, the formulas 
can be used to calculate isometric coordinates 
for a sphere.

3.2. Initial information and assumptions 
concerning conformal projections

One of the stages of creating conformal pro-
jections consists in introducing isometric co-
ordinates on the reference surface ξ,η. This 
enables us to apply the conformal projections 
theory, according to which any analytical func-
tion f of the complex variable that assigns to 
the isometric coordinates ξ,η on the original 
surface the isometric coordinates x,y on the 
image area creates a conformal projection: 

	            (12)
or in the form:

	            (13)
According to the conformal projections theory 
(Pędzich, 2019) the scale of length distortions 
in the projection (12) takes the form:
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 (14)

where ds is the arc element on the original sur-
face equal to:

   
and ds’ is the arc element on the image surface 
equal to

 .
For the tri-axial ellipsoid and the method de-
scribed here, the formula to calculate r has the 
following form (Bugayevskiy, 1998):

 (15)

Similar formulas will be obtained for projection 
(13).

The authors of this article present cylindrical 
and azimuthal projections, and many others 
that were developed with the use of the func-
tion of the complex variable.

3.3. Applied conformal projections

This chapter presents the projection func-
tions in selected conformal projections. For-
mulas are usually presented in a form that is 
separated into the real and imaginary parts, 
i.e. separate formulas to calculate x and y. The 
authors of this study have decided not to do 
so, because the functions were implemented 
in their complex form, and the separation into 
the real and imaginary parts, if necessary, was 
performed automatically with the use of the re-
levant programming functions. This implemen-
tation has been described in further sections of 
the paper.

The authors applied certain known projec-
tions, including: normal and transverse cylin-
drical projections, azimuthal projections, and 
the Lagrange projection. The application of 
such functions as sinus and arc sinus, as well 
as the square root of the complex variable to 
construct conformal projections was also con-
sidered. These functions were selected after 
a preliminary analysis of a series of complex 
variable functions.

For the normal cylindrical projection, the pro-
jection functions take the following complex form:

	    (16)
where C denotes a certain value, such as e.g. the 
radius of the sphere or the length of one of the 

semi-axes of the ellipsoid, while ξ,η are isome-
tric coordinates. 

The scale of distortion in such projection 
takes the following form:

	                            (17)

For the azimuthal projection, the projection 
functions may be presented in the complex form:

	                 (18)
The distortion scale equals:

	                 (19)

The Lagrange projection (Orihuela, 2016) takes 
the form:

          (20)
The distortion scale equals:

             (21)

The Gauss-Schreiber projection (Orihuela, 
2016), i.e. transverse cylindrical projection, 
takes the form:

 (22)
The distortion scale equals:

                 (23)

The application of such complex variable 
functions as sinus, arc sinus, and the square 
root was also analysed. The functions were 
selected after a visual analysis of the obtained 
cartographic grids that had been drawn for many 
various analytical functions. The modifications 
of these functions were also analysed by dividing 
the argument of the function, i.e. the complex 
variable, by the constant coefficient n.

Projections that apply the sinus function:

       (24)

The distortion scale equals:

	                  (25)

Projections that apply the arcus sinus function:

   (26)
The distortion scale equals:

	

                   
(27)

Projection that applies the square root:
	             (28)
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The distortion scale equals:
	                     (29)

Calculations were performed with the use of 
the formulas presented above, and then carto-
graphic grids and isolines were developed.

4. The algorithm and its implementation 
in the Octave software

The developed methodology was the basis 
for developing the algorithm and implementing 
it in the Octave software. This software is avail-
able free of charge and is used for performing 
calculations and engineering analyses, similarly 
to the Matlab software. The software is available 
at www.gnu.org/software/octave/index (GNU 
Octave, 2022).

The algorithm for calculating the coordinates 
and the scale of length distortion in conformal 
projections and for creating the visualisations 
of cartographic grids and isolines consists of 
several stages (fig. 1). It will be described on 
the example of the Lagrange projection.

The first stage consists in data input. These 
are the lengths of the a,b,c semi-axes and the 
planetocentric coordinates of points, for which 
the x and y coordinates will be calculated in 
the projection, as well as the length scale m. 
For research purposes, a set of planetocentric 
coordinates was generated for points that are 
distributed evenly on the tri-axial ellipsoid at 
intervals of one degree throughout the whole 
area of parameters, i.e. φ from –80 to 80 
degrees and λ from –150 to 150 degrees. As 
a result, two tables of planetocentric coordinates 
were obtained of the dimensions 161 by 301. 
This task was performed with the use of the 
linspace and meshgrid functions (fig. 2).

The next stage consisted in converting the 
planetocentric coordinates into rectangular co-

ordinates X, Y, Z, and then into planetographic 
coordinates (fig. 3). This was performed with 
the use of the equations of the tri-axial ellipsoid 
as a function of planetocentric coordinates 
and of planetographic coordinates. Here, the 
equations described in the work by (Bugay-
evskiy, 1998) were applied. The transformation 
of the X, Y, Z coordinates into planetographic 
coordinates involves a certain problem: at the 
value of the planetocentric longitude of ±90, an 
indefinite value of the planetographic latitude 
is obtained, because the obtained expression 

Fig. 1. Diagram of the stages of calculating  
and visualising cartographic grids and distortions  
in the conformal projections of a tri-axial ellipsoid

Fig. 2 Data input and generating the tables with planetocentric coordinates



43Conformal projections of a tri-axial ellipsoid based on isometric coordinates...

Fig. 3. Converting the planetocentric coordinates into rectangular coordinates X, Y, Z,  
and then into  planetographic coordinates

Fig. 4. Calculating the conformal coordinates

Fig. 5. The sub-integral function
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is arctan  0 
 0 . This results from the fact that 

the transformation uses the following rela-
tions to calculate the planetographic latitude: 
B = arctan  Z cos L 

 X(1 – e2) , where e is the equatorial 

eccentricity. For L=±90 the X coordinate equals 
zero, i.e. the denominator of the fraction equals 
zero, as well as the numerator. For this value 
of longitude, a different formula was applied, 
i.e. = arctan Z(1 – ea

2) sin L 
 Y(1 – e2)  , where ea a is the 

equatorial eccentricity.
The next stage consists in calculating the 

isometric coordinates ξ and η. Calculating the 
η coordinate required the application of the nu-
merical integration method. For this purpose, 
the Clenshaw-Curtis method was used. The 
method is available in the Octave software (fig. 4).

The calculations were performed with the 
use of the eta function. It is a sub-integral func-
tion (fig. 5).

Then, the calculated coordinates were de-
noted in the form of a complex variable (fig. 6) 
in line 53. The next stage consisted in calculating 
the flat rectangular coordinates with the use of 
the complex variable functions, which is calcu-
lated with the methods that are already imple-
mented in Octave. The scale of distortions was 
also calculated (fig. 6). 

After that, the cartographic grid was drawn 
and the isolines were generated (fig. 7). The 
latter were drawn with the use of the functions: 
real and imag, which divide the complex variable 
function into the real and imaginary parts.

5. Data

The source data used here were sets of plan-
etocentric coordinates that had been determi-
ned in a regular grid for the tri-axial ellipsoid. 
These coordinates were later transformed to 
sets of planetographic coordinates, which were 

Fig. 6. Calculating the flat rectangular coordinates and the scale of distortions

Fig. 7. Drawing the cartographic grid and isolines
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used to calculate isometric coordinates and 
then flat rectangular coordinates.

Due to the fact that the differences between 
the lengths of the semi-axes were rather signi-
ficant, the test object used in this study was 
a tri-axial ellipsoid that is an approximation of 
the surface of Phobos. Phobos is one of the 
moons of Mars, which has been studied by car-
tographers for decades. Parameters of a triaxial 
ellipsoid as the reference surface of the follow-
ing semi-major and semi-minor axis length: 
a = 13.00 km, b = 11.39 km and c = 9.07 km 
were assumed (Wilner et al., 2010).

6. Results and analysis

The isometric coordinates were calculated 
based on the Bugayevskiy method. However, 
a major problem was noticed. The η coordinate 
exceeds the range from -π to π. As a result, 
certain projections require rescaling the ξ and η 
coordinates to adjust the value of η to this range. 

First, the flat rectangular coordinates were 
calculated in the cylindrical projection. Based 
on the calculated coordinates, a cartographic 
grid was drawn that was limited to the latitude 
belt of φ ∈ �–60°, 60� with the interval ∆φ = 10°  
and ∆λ = 10°. In the background, the distribu-
tion of length distortions was presented (with 
the use of the length distortion scale formula) 
in form of isolines. The results are presented in 
(fig. 8).

The drawing shows that meridians are rep-
resented as straight lines in the equiangular 
cylindrical projection. The distances between 

the representations of meridians on the plane 
are varied, in spite of the same intervals in 
planetocentric longitude. The central meridian 
is represented as a section of the x axis of the 
system of flat rectangular coordinates. The 
equator is projected as a straight line that is 
situated on the y axis of the set of flat rectan-
gular coordinates. At the same time, the other 
parallels are projected in form of curves, whose 
curvature increases with the growing distance 
from the projection of the equator. The isolines 
of length distortions are arranged in a linear 
form, parallel to the y axis. The equator is pro-
jected without any distortions (scale equals 1). 
The distortions increase with the decreasing 
distance to the poles (scale is higher than one). 
Slightly lower distortions may be obtained if 
the coordinates are multiplied by a constant 
coefficient, e.g. 0.7, which results in the distor-
tion distribution presented in (fig. 9). In such case, 
the scale on the equator is 0.7, and reaches 
one at medium latitudes.

The application of the isometric coordinates 
according to Bugayevskiy may also help us 
obtain other projections, such as the azimuthal 
projection. However, the direct application of 
the formulas may bring the result presented in 
(fig. 10). 

Such overlapping of the grid results from the 
fact that the range of the η coordinate exceeds 
the range from -π to π. Thus, the η and ξ coor-
dinates should be multiplied by the same con-
stant value in order to obtain a range of the η 
coordinate that falls into the range from -π to π. 
The projections will remain conformal, but the 

Fig. 8. The cartographic grid and the distribution of distortions obtained in the normal cylindrical projection 
created with the Bugayevskiy method
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cartographic grid will look like the grid presented 
in (fig. 11). The grid was generated for the 
southern hemisphere, because, according to 
formula 18, the south pole is projected in the 
origin of the system of coordinates. In order to 
project the north pole in the origin of the system 
of coordinates, the η coordinate should be pre-
ceded by a minus sign. The projections of the 
parallels take an elliptic shape, which becomes 
more similar to a circle with the decreasing 
distance from the pole. The distribution of dis-

tortions is interesting: on the equator, the scale 
of distortion equals one and decreases towards 
the pole. This may be modified by multiplying 
the projection functions by a constant value, 
e.g. 2.

Another projection analysed in this article is 
the Lagrange projection. Figure 12 presents the 
cartographic grid and the distribution of distor-
tions in this projection. This time, the grid was 
limited to the planetocentric latitudes from -80 
to 80 degrees and the longitudes from -150 to 

Fig. 9. The cartographic grid and the distribution of distortions obtained in the normal cylindrical projection 
created with the Bugayevskiy method with a scale coefficient of 0.7

Fig. 10. The cartographic grid in the normal azimuthal projection created based on the isometric coordinates 
according to Bugayevskiy
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150 degrees. The projections of meridians and 
parallels have circular or elliptic shapes. The 
shapes of isolines also resemble circles, with 
the centre at the centre of the map.

Figure 13 presents the cartographic grid and 
the distribution of distortions in the Gauss-
-Schreiber projection. The grid was drawn for 

the planetocentric latitudes from 0 to 80 de-
grees and the longitudes from -180 to 180. The 
southern hemisphere is projected in a similar 
way. This projection may be considered to be 
a transverse cylindrical projection. The distribu-
tion of distortions is interesting. As the distance 
from the projection of the pole increases, the 

Fig. 12. The cartographic grid and the distribution of distortions in the Lagrange projection

Fig. 11. The grid and distribution of distortions obtained in the azimuthal projection. The grid is limited  
to latitudes from 0 to 80 and longitudes from -180 to 180. It is drawn with 10 degree intervals
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Fig. 13. The cartographic grid and the distribution of distortions in the Gauss-Schreiber projection

Fig. 14. The cartographic grid and the distribution of distortions in the projection with the use of the function 2 sin  z 
 2   
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shapes of isolines become increasingly similar 
to straight lines. Their curvature increases in 
the proximity of the projection of the pole.

For the sinus function, formulas (24) and (25) 
were applied to generate several grids and 
isolines of distortion in the range of coordinates 
from -80 to 80 degrees of planetocentric latitude 
and from -180 to 180 for planetocentric longitude, 
adopting different values of the n coefficient.

For n = 2, the grid and distribution of distor-
tions presented in (fig. 14) were obtained. The 
result is very interesting. The areas located 
near the poles are extremely distorted, so that 
the potential application should be limited to 
certain ranges of geographic latitudes and lon-
gitudes.

As the value of the n coefficient increases, 
the obtained grids become more and more si-

milar to those in cylindrical projections. This is 
obvious, as the obtained values of the argu-
ments of the function, for which the values of 
the function become more similar to those in 
cylindrical projection, are decreasing. The grid 
for n = 3 is presented in (fig. 15), and for n = 8 
in (fig. 16).

For the arcus sinus function, formulas (26) 
and (27) were applied to generate several grids 
and isolines in the range of coordinates from 
-80 to 80 degrees of planetocentric latitude and 
from -180 to 180 for planetocentric longitude, 
adopting different values of the n coefficient. 
Selected grids and distribution of distortions 
are presented in the illustrations below. The 
grid for n = 3 is presented in (fig. 17), for n = 4 
in (fig. 18), and for n = 8 in (fig. 19). Here, one 
may also conclude that, as the value of the n 

Fig. 15. The cartographic grid and the distribution of distortions in the projection created with the use  
of the function 3 sin  z 

 3   
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Fig. 16. The cartographic grid and the distribution of distortions in the projection created with the use  
of the function 8 sin  z 

 8   

Fig. 17. The cartographic grid and the distribution of distortions in the projection created with the use  
of the function 2 arcsin  z 

 2   
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Fig. 18. The cartographic grid and the distribution of distortions in the projection created with the use  
of the function 4 arcsin  z 

 4   

Fig. 19. The cartographic grid and the distribution of distortions in the projection created with the use  
of the function 8 arcsin  z 

 8   
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coefficient increases, the obtained grids become 
more and more similar to those in cylindrical 
projections. For the coefficient value n = 8 the 
grids in (fig. 16) and (fig. 19) are very similar.

Grids were also developed for projections 
that were created with the use of other functions. 
However, the obtained results either resembled 
the previous ones, or were rather unusual, as 
those presented in (fig. 20). It presents the car-
tographic grid and the distribution of distor-
tions in the projection created with the use of 
the square root function. The cartographic grid 
was drawn for the planetocentric latitudes 
ranging from -80 to 80 and longitudes from 
-180 to 180. The obtained result was rather 
unusual. In this projection, the equator is pro-
jected in form of three fragments, one of which 
is parallel to the x axis, while the other two are 
parallel to the y axis. 

7. Conclusion

The paper presents the methodology for 
creating conformal projections of a tri-axial 
ellipsoid with the use of isometric coordinates. 
Apart from that, the possibilities to implement 
this methodology in the Octave software are 
presented. The authors described the proper-
ties of selected conformal projections. For this 
purpose, cartographic grids and isolines of 
distortion were developed. 

The paper demonstrates that performing the 
calculations and creating visualisations of data 
in conformal projections of a tri-axial ellipsoid 
are not difficult tasks. Unfortunately, popular 
GIS packages do not offer the possibility to 
create these types of projections. The imple-
mentation of these projections in GIS software 
would enhance them by providing additional 
functionalities.

Fig. 20. The cartographic grid and the distribution of distortions in the projection created with the use  
of the square root function
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