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Abstract: Rapid and accurate prediction and evaluation of accident consequences
can provide scientific basis for decision-making of nuclear emergency measures.
Accident source term estimation under reactor accident conditions is an important
part of nuclear accident consequence evaluation. In order to accurately estimate
the information of radioactive source terms released from nuclear power plants
to the environment, an inversion model of accident source terms based on BP
neural network algorithm (BPNN) was constructed. And to resolve the defect
that BPNN is easy to fall into local minimum during training process, genetic
algorithm (GA) was used to optimize the weights and thresholds of BPNN. In this
paper, referring to the release rates of radioactive source term from the Fukushima
nuclear accident. The release rates of 131I and 137Cs diffused into the environment
in stable atmosphere were taken as the two target outputs of the GA-BPNN, and
the meteorological data for one hour at fixed monitoring points were taken as the
target inputs. And the simulation results showed that for the release rate of 131I
and 137Cs, the mean relative errors of the training and the testing sample sets were
both below 2 % which indicates that the GA-BPNN model not only improves the
shortcoming of BPNN, but also increases the speed and accuracy of source term
inversion.
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1. Introduction

Three severe nuclear accidents in human history have shown the risk of leakage of
radioactive material for nuclear power plants, and some appropriate measures play
an important role in making recommendations for the protection of the public and
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environment. Reliable source term estimation method can provide the necessary
data for the evaluation of nuclear accident consequences and decision making. Pre-
vious experience showed that when the serious nuclear accident happened, reactor
core damaged inside the equipment severely, thus the data were often difficult to be
obtained. Therefore, a viable approach to access the source term is to use some kind
of inverse modeling based on atmospheric transport modeling and environmental
monitoring data, which is called nuclear accident source term inversion [1].

The source term studied in this paper refers to radioactive substances released
from specific sources into the atmosphere, including the release of radionuclides
species, quantity, release rate and mode [2]. At present, inversion models available
for accident source term inversion are least square estimation [3], Genetic Algo-
rithm (GA) [4], Kalman Filter and Extended Kalman Filter [5], Artificial Neural
Network (ANNs) [6]. Jeong H.J. et al. (2005) estimated the source release rate
of Yenong-Kwang nuclear power station using the least square estimation method
combined with the Gauss plume atmospheric diffusion model and meteorological
data [3]. This method is more suitable for studying linear systems. The GA is easy
to combine with other diffusion models, but it depends on the initial population
selection [4]. Sun S D et al. (2019) used air dispersion models and environmen-
tal measurements to determine the atmospheric release rate with EnKF [5]. The
leakage and diffusion of radioactive materials in a nuclear accident is complex and
non-linear process.

The first three methods rely on the position of the measurements and the air
dispersion scenario strongly. Back propagation neural network (BPNN) algorithm
has the sharp advantages of high fault tolerance, self-organization, adaptive and
self-learning [6]. This method is more suitable for multivariate nonlinear systems,
which can maximize the probability of distilling the source information correspond-
ing to system variables from large amounts of independent information and has
good explanation ability. However, an inherent defect that led to fall into local
minimum trap during the BPNN learning process. To overcome the problem and
improve convergence speed, GA is usually used to optimize the BPNN for enhanc-
ing the estimation accuracy. Xue X H et al. (2015) constructed the hybrid model
based on the combination of GA and BPNN for the purpose of improving the safety
monitoring accuracy and stability of high slopes [4]. The learning process of the
BPNN was optimized by using the GA to obtain the optimal solution of network
connection weights in order to improve nonlinear magneto telluric (MT) inversion
by Wang et al. (2018) [7].

In the nuclear accident consequence assessment, the radionuclide with high
yield, medium half-life, more obvious radiation biological effect, gaseous or volatile
eventually released to the environment need to be considered [8]. Inhaling or in-
gesting 137Cs distributes the radioactive material in the soft tissues, especially the
muscles, and increases the risk of cancer [9]. The equivalent 131I release is used
as a criterion for serious accidents in the international nuclear incident classifica-
tion table. It is difficult to get the proportion of each radioactive substance when
many kinds of radioactive substances diffuse into the atmosphere. In this paper,
the method based on GA-BPNN was proposed for nuclear accident source term
inversion by the ability of BPNN self-learning, which took the release rates of 131I
and 137Cs as the two output targets. The inputs of neural network were composed
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of the environmental monitoring data of nuclear accidents and gamma radiation
dose rate of nuclear power plants. The release rates obtained in this study are the
rates of stable diffusion of radionuclides in the atmosphere after a period of time.
The accuracy of the inversion model was analyzed by comparing the actual output
with the expected output. The experimental results showed that the GA-BPNN
could make full use of the global searching capability of the GA and the local opti-
mization of the BPNN. To a certain extent, the operation efficiency and calculation
accuracy of the genetic neural network were improved Compared with the single
BPNN inversion model.

2. Methodology

2.1 BP neural network

Artificial neural network is suitable for modeling multivariate nonlinear complex
system relationships and has the advantages of small error and high precision. The
most commonly used is the neural network based on error back propagation multi-
layer feedforward neural network algorithm (Multiple-layer feed forward network),
called BP neural network. BP neural network model is composed of input layer,
output layer and hidden layer. The learning process of BP neural network consists
of forward propagation and backward propagation [10]. A typical three layers BP
neural network was shown in the Fig. 1, where the input signal, output of hidden
layer, output of output layer, the target signals are represented by Xi, Yh, Zj and
Tj respectively. The connection weight from the input node “i” to the node “h”
of hidden layer is represented by ωih, and the connection weight from the node of
hidden layer h to the node of the output layer j is represented by ωhj . N1, N2,
N3 respectively represent the numbers of the input layer, hidden layer, and output
layer node.

The basic idea of BP learning algorithm is to minimize the back propagation of
error by adjusting and modifying the connection weights ω of the network until the
error meets the conditions. The essence of BP neural network is to find a mapping

Fig. 1 Schematic diagram of a typical BP neural network structure.
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function from input variables to output variables, and the mathematical theory
has proved that it can achieve an arbitrary nonlinear mapping process. It needs
to be pointed out that once the BP neural network has been trained well, only the
forward propagation instead of back propagation needs to be used. So, the source
inversion method based on BP neural network greatly saves more time than other
inversion methods, which is suitable for nuclear accident source term inversion.

2.2 Genetic algorithm

The BP training may lead to a local rather than a global error minimum. The local
error minimum that has been found may be satisfactory, but if it is not, a network
with more neurons may do better job. Alternatively, one might run the problem
using several different sets of initial conditions to see if they lead to the same or
different solutions. Further, in the present work, care has been taken to avoid
localization by properly determining the number of hidden neurons. Although this
number is chosen on trial and error basis, trials started with the average value of
number of inputs and outputs and then varied around that value to find the best
number of hidden neurons. Another problem with BP is its slow converging nature
that leads to little longer training time.

GA is a theory and Mendel’s genetic theory proposed a parallel random search
optimization algorithm based on the simulation of natural genetic mechanism and
biological evolution theory of Darwin’s evolution [11]. The basic idea is that the
nature biological evolution principle of “natural selection and survival of the fittest”
is introduced to optimize the parameters of the structure of population coding, ac-
cording to the choice of adaptation degree function and through genetic selection,
crossover and mutation screening of individual, adaptation of a body is preserved,
adaptation of individuals are eliminated, new groups not only inherits a genera-
tion of information and better than generation. Such repeat cycles until meet the
condition [12].

The basic elements of GA include chromosome coding, fitness function, genetic
operation and operation parameters. The chromosome coding method is the coding
method of the training sample.

2.3 Optimization by GA

GA with probability choice as the main means, adept at global search, the organic
combination of the two algorithms, enhance the learning ability of the network,
many scholars did a lot of research work management on how to combine genetic
algorithm and BP neural network integration [4].

Standard GA flow was adopted to simultaneously optimize BPNN weights and
bias for improving the prediction accuracy in this study. Optimization by GA could
shorten the training time and enhanced the convergence speed with determining
suitable initial threshold of each node and connection weights between nodes in-
stead of beginning from a random number. The process of BPNN optimized by GA
included group initialization, fitness function, selection operation, crossover oper-
ation and mutation operation. In the process, fitness was regarded as a stopping
criterion. The optimization procedure was planned in detail as shown in Fig. 2.
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Fig. 2 Flow chart of the GA-BP neural network algorithm in the inversion of the
source term.

3. Numerical experiment

3.1 Design of BPNN structure

According to the above-mentioned analysis, 7 of input layer nodes (wind direction,
wind speed, atmospheric stability, precipitation type, gamma radiation dose rate,
location of the measurement, release height) and 2 of output layer nodes (release
rate of 131I and 137Cs) were determined in BPNN.

The number of hidden layer nodes was determined by the numerical experiments
performed with MATLAB R2016a (see Section 4.1)

3.2 Data collection

Reference to the release rate range of the Fukushima nuclear accident and the
release type PWR1-PWR9 of accident in the reactor safety study of the United
States [13], the release rate of 131I was chosen to be between 1011 and 1014 Bq·h−1,
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and the release rate of 137Cs was chosen to be between 1012 and 1015 Bq ·h−1.
The expected outputs of BPNN were taken in the above ranges. In the ST-DOSE
module of InterRAS, the environmental impact factors such as wind direction,
wind speed, wind distance, atmospheric stability and precipitation type were set
up, and the gamma dose rates monitored within one hour from the position of
1.0 km, 2.0 km, 5.0 km, 25.0 km and 50.0 km to the nuclear power plant after the
nuclear accident occurs were obtained [14]. Atmospheric stability has six levels, A,
B, C, D, E and F which is replaced by 1, 2, 3, 4, 5 and 6 for the convenience of
later data processing. (The experimental background of this study was the stable
release of radionuclides in the atmosphere, that is, only considering the atmospheric
stability of D). Precipitation could be divided into NONE, Light rain, Moderate
rain, Heavy rain, Light snow, Moderate snow and Heavy snow, which were also
replaced by 1, 2, 3, 4, 5, 6 and 7. The experimental data contained 20000 sets of
training data and 1000 sets of test data, and some of the data was shown in Tab. I.

3.3 MATLAB

All of numerical experiments were performed by coding with neural network toolbox
in MATLAB R2016a. The training function ‘trainlm’, transfer function ‘tansig’ in
the neural network were used. The training time, training target error and study
rate was 100, 0.00001 and 0.01, respectively.

4. Results and discussion

4.1 Determination of the number of hidden layer nodes

A typical three-layer BPNN was established with 7 input layer nodes, 2 output layer
nodes and a hidden layer. If the number of hidden layer nodes are too few, the
neural network will not be trained. However, if the number of hidden layer nodes
are too many, it may prolong the network training time, and it is easy to fall into
the local extreme points, and the “over fitting” phenomenon appears. To determine
the number of hidden layer nodes, trainings were performed by MATLAB at the
number of hidden layer nodes that changed from 20 to 70. The training results
were shown in Fig. 3 and Fig. 4. From Fig. 3 and Fig. 4, the training means square
errors and the training errors decreased with the increased nodes and appeared
unstable. Low error at a node number of 65 indicated that the prediction ability of
model was stronger. Therefore, a 7-65-2 BPNN was determined since more nodes
mean longer training time, which contained 7 input layer nodes, 65 hidden layer
nodes and 2 output layer nodes.

4.2 Inversion by BPNN and optimization by GA

The GA optimization was performed on the above 7-65-2 BPNN. The population
size, evolution algebra, probability of crossover and mutation probability were 200,
0.2, 0.2 and 0.1, respectively. The fitness curve and error curve of the genetic
algorithm were shown in Fig. 5. The red curve represented the optimal individual
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Fig. 3 Training mean square errors at different numbers of hidden layer nodes.

Fig. 4 Training errors at different numbers of hidden layer nodes.

variation for 131I in the process of genetic algorithm optimization and the blue
represented the optimal individual variation for 137Cs.

Fitness value was used to evaluate the superiority of the individual. A bigger fit-
ness value suggested a better individual that had more chances to reproduce, whose
excellent properties could be inherited. From Fig. 5, the fitness curve appeared
smooth above 60 of generation, and it indicated that the weights and thresholds
have been optimized.
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Fig. 5 The fitness curve and error curve.

Thus, the weights and thresholds optimized were used to optimize the original
BPNN. In principle, BPNN uses input data to achieve inversion target through
testing process. 90 groups were randomly selected to compare the prediction results
with the actual targets from the 1000 sets of test samples. In Fig. 6, about 67 % of
the test samples of 131I and 137Cs can be achieved the desired output after BPNN
inversion. The error of BPNN was large, so the performance of the model needs
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(a) Predicted result of 131I by BPNN. (b) Predicted result of 137Cs by BPNN.

Fig. 6 The predicted results of BPNN.
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to be further improved. After optimization, the inversion result of the GA-BPNN
model was shown in Fig. 7. From Fig. 7, more than 90 % of test relative training
errors for 131I or 137Cs by GA were below 0.2. This indicated that the predicted
data obtained by GA-BPNN were much closer to the source release rate of the
nuclear power plant when serious accident occurred. It realized that the accuracy
of source term inversion by BPNN could be improved after optimization by GA.
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Fig. 7 The predicted results of GA-BPNN.

Prediction time, mean square error and mean test relative error were selected
to characterize model performance. From Tab. II, the model proved to be more
accurate than conventional methods, with the mean training relative errors for
131I and 137Cs below 2 %. This indicated that the model can be used to inversed
98 % of the source information based on the environmental data from monitoring
station around the nuclear power plant and the doses of radionuclides. In addition,
training error and training time of BPNN inversion model was obviously reduced,
and the prediction stability was improved after optimization by GA. The mean
test errors after optimization by GA were below 0.1, and it decreased significantly
relative to the errors by BPNN, especially for 131I. This method can provide source
information quickly and accurately for nuclear accident emergency.

5. Conclusion

In this paper, a BPNN has been proposed for source term inversion during a nuclear
accident, which contains 7 input layer nodes, 65 hidden layer nodes and 2 output
layer nodes. The neuron network was also optimized by GA for overcoming the
inherent defect that leads to fall into a local minimum trap during BP neural
network learning process. The conclusions by numerical experiments performed
with MATLAB software could be described as the following:

1. The mean training relative errors for 131I and 137Cs are both below 2 %. The
mean test relative errors for 131I and 137Cs are both below 12 %. It indicated
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that the method refers to the 7-65-2 BPNN could be used for source term
inversion during a nuclear accident once the BPNN were trained well by a
lot of data available.

2. The mean training relative error, mean square error of training, training time
and test relative error after optimization by GA are all less than those values
by BP. It suggested that the optimization by GA could afford an enhancement
in accuracy of source term inversion during a nuclear accident.

Although only the poor real data can be obtained since nobody can perform a series
of appropriate experiments with nuclides, the method described in this paper can
use the data from nuclear accident consequence system developed by each nuclear
power plant to build the BPNN model in emergency preparedness, and estimates
the source term with the real data during an accident.
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