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A B S T R A C T

This paper first describes a temporal-causal network model for recognition of emotions shown by others. The
model can show both normal functioning and dysfunctioning, such as can be the case with certain types of
dementia. More specifically the focus of the paper is on a specific type of therapy that has been incorporated in
the model (thus becoming adaptive) to study the effects and potentials of this therapy to improve the dys-
functional behaviour. Simulations have been performed to test the model. A mathematical analysis was done
which gave evidence that the model as implemented does what it is meant to do. The model can be applied to
obtain a virtual patient model to study the way in which recognition of emotions can deviate for certain types of
persons, and what a therapy can contribute to improve the situation.

Introduction

Computational methods are used more and more often to get insight
into human functioning and dysfunctioning. By designing a human-like
computational model for normal functioning of certain mental and/or
social processes, it can be explored what alterations make the model
show dysfunctional behavior, and verify how that relates to the em-
pirical literature. Such a computational model can be a basis for a so-
called virtual patient model. An important source of knowledge for the
design of a human-like computational model is found in the fields of
Cognitive and Social Neuroscience, and in what is encountered in the
practice of medical clinics. The work reported in this paper results from
a cooperation between researchers in AI and in medical practice.

The focus of this study is on social functioning and dysfunctioning
resulting from a certain type of dementia, in particular the behavioral
variant of frontotemporal dementia (bvFTD); see (Piguet, Hornberger,
Mioshi, & Hodges, 2011), and on the effect of a certain type of therapy. As
will be explained in Section 2 in more detail, one of the problems en-
countered is difficulty in recognizing emotions of others, in particular the
negative ones, even while emotion contagion can still function properly.

To model such human processes in a way that is justifiable from a
neuroscientific perspective, knowledge of the underlying mechanisms in
the brain is necessary. Dynamics and cyclic connections play an important
role in such brain mechanisms, and therefore a modeling approach is
needed that can handle cyclic dynamic processes. The Network-Oriented

Modeling approach based on temporal-causal networks used here is able
to satisfy these needs (Treur, 2016b; Treur, 2018).

In this paper, the first part focuses on creating the model, experi-
menting with the model and verifying the model. First, Section 2 con-
tains background knowledge on the processes addressed and on the
therapy that was addressed. In Section 3 the basic temporal-causal
network model is introduced. Section 4 describes the simulation ex-
periments for the addressed case, both for normal functioning and for
dysfunctioning. Section 5 shows how the addition of a certain type of
therapy (repetitive Transcranial Magnetic Stimulation: rTMS) leads to
an adaptive network model. Section 6 describes the simulation ex-
periments for the adaptive model with this therapy. Section 7 describes
how the adaptive model was verified by mathematical analysis. Section
8 is a discussion. Finally, Section 9 concludes the paper.

Neuropsychiatric background of bvFTD and a therapy

In the Netherlands, over 270.000 people have dementia. After
cancer and heart- and vascular diseases it is the most common cause of
death. The majority of people that suffer from dementia (70%) have the
most common form: Alzheimer’s disease. No cures for the disease have
been found yet, and due to the aging of society its future perspective
does not seem bright. Expectations are that over 500.000 people will
have some form of dementia in 2040, in 2055 this number is expected
to be over 690.000 (Alzheimer Nederland, 2017).
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Alzheimer’s disease might be the most common form of dementia,
but is certainly not the only one. One other form of dementia that can
be distinguished is Frontotemporal Dementia. Frontotemporal dementia
(FTD) is the second most common cause of early-onset dementia and
exists in two forms: the behavioral variant of frontotemporal dementia
(bvFTD), which concerns progressive deterioration in social function
and personality, and primary progressive aphasia (PPA), which deals
with a decline in language skills (Piguet et al., 2011). This paper fo-
cusses on the behavioral variant of frontotemporal dementia (bvFTD).
The behavioral variant of frontotemporal dementia is a neurodegen-
erative disorder associated with progressive degeneration of the frontal
lobes, temporal lobes, or both (Piguet et al., 2011, Rascovsky et al.,
2011). These deal with the social functioning of a human and can be
seen as the social center of your brain. The control of your behaviour
lies in those areas, when these areas are damaged it affects your be-
haviour and personality.

The initial symptoms for someone that has bvFTD are not clearly
present and only small changes are shown at the early stages. Moreover,
symptoms that are present at the early stages have often much in
common with other mental problems like depression, stress, adjustment
problems or lapses of judgment and self-control (Eslinger, Moore,
Antani, Anderson, & Grossman, 2012), which makes it hard to correctly
connect the symptoms with the correct disease. An important aspect to
pinpoint the onset of the disease is interviewing a close family member
to evoke the start of the symptoms. Alterations in social cognitions
represent the earliest and core symptoms of bvFTD and this results in
emotional disengagement and socially inappropriate responses or ac-
tivities (Ibanez & Manes, 2012; Kumfor & Hodges, 2017). One of those
symptoms that slightly slips into the lives of someone that has bvFTD
and his spouses is apathy and withdrawal from social activities.
Someone seems less goal-driven and has difficulties initiating con-
versations (Lanata & Miller, 2016). Moreover, there is a lack of interest
and progressive social isolation (Piguet & Hodges, 2013).

Another symptom is loss of empathy. Patients with bvFTD have dif-
ficulties interpreting and/or processing the emotional states of self and
others. This results in a lack of self-awareness, but also a lack of empathy
and sympathy towards others. Spouses of patients often report difficulties
in connecting with the patient on an emotional level since they show less
sympathy, are not able to understand social cues, and lack interpersonal
warmth (Lanata & Miller, 2016; Piguet & Hodges, 2013).

One of the last core symptoms concerns disinhibition. Patients could
show inappropriate behaviour in public and towards strangers such as
offensive jokes, cursing, telling stories, hugging, and kissing. Also, beha-
vioral acts such as impulsivity, gambling, excessive buying, criminal be-
haviour, or changes in eating preferences are seen within patients (Piguet
et al., 2011; Lanata & Miller, 2016; Piguet & Hodges, 2013). In this paper,
the following case, experienced in the clinic, is used as an illustration.

The case is as follows:
Box 1

The case on which the model is based on

Case:
A 55 year old man who was recently diagnosed with

bvFTD visited our outpatient clinic with his wife. While ex-
plaining the difficulties she met in the home situation, she
started crying. The patient followed the conversation, and at
this point he looked at her, his own eyes got watery, but he
looked dazzled. Upon the question how he thought his wife
was feeling, he answered that his wife was probably feeling
happy. On the Ekman 60 faces test, he scored 43 out of 60
items correctly, which is below the cutoff of 46. His subscores
were: Anger 8/10, Disgust 9/10, Anxiousness 8/10, Happiness
8/10, Sadness 5/10, Surprise 5/10.

The case explains that in patients with bvFTD there may be a dis-
sociation between emotion contagion and facial emotion recognition.
Specifically, the recognition of sadness shown by others is particularly
difficult. Some studies of social cognition in bvFTD have already shown
that facial emotion recognition is disturbed, with the exception of
happiness. For example, damaged recognition of negative emotions
such as anger and disgust have been described (Gossink et al., 2018). As
adopted from the medical experts (Commu, Treur, Dols, & Pijnenburg,
2018):

“Applying the animal model of empathy of Frans de Waal, emotional
contagiousness is the most inner layer, present from early evolution
in most vertebrate animals (de Waal, 2009). Following the hy-
pothesis that empathy in humans, and more specific in bvFTD, will
exhibit a ‘Recapitulati in reverse’, the outlayers of the Russian Doll,
symbolic for more advanced evolutionary social cognitive abilities
will be lost first and the inner layer of emotion contagion will be
preserved and even more prominent in advanced dementia:
‘Heightened emotional contagion in mild cognitive impairment and
Alzheimer's disease is associated with temporal lobe degeneration’,
by (Sturm et al., 2013), as is illustrated in this case.”

As explained above, one of the core symptoms of bvFTD are changes
in social cognition which results in inappropriate social behaviour and
change of personality. For relatives of the patient, this symptom strikes
the most as the patient changes as a person and might not be recognized
as himself anymore. As of today, no cure has been found for bvFTD
(Boxer & Boeve, 2007), while a delay of decline could make a crucial
difference for a patient and its relatives.

Repetitive Transcranial Magnetic Stimulation (rTMS) is a method
which can improve network efficacy in several neuropsychiatric dis-
orders (Eldaief, Press, & Pascual-Leone, 2013). It is a technique in
which brain activity is changed by using a short magnetic pulse. A small
coil of wire is placed on the scalp to pass electrical energy across the
scalp and skull. For example, when the coil is placed on the brain area
that is responsible for movement of the thumb, the magnetic pulse
causes the thumb to move. By using it repetitively, in this way, brain
activity can be changed in the long term (Wassermann, 1998).

Repetitive TMS has been used successfully for many different
subjects with psychiatric disorders such as depression, auditory
verbal hallucinations, schizophrenia, and obsessive-compulsive dis-
order (Slotema, Dirk Blom, Hoek, & Sommer, 2010). Unfortunately,
research in the field of dementia is limited. However, research that
has been done has shown positive outcomes: improvements were
found in alleviating neuropsychiatric symptoms and cognitive defi-
cits (Elder & Taylor, 2014). Consequently, research in the field of
rTMS with bvFTD is even more limited. As of today, one study has
been performed in which rTMS therapy has been used on patients
with diagnosed bvFTD. Results showed that rTMS may improve the
cognitive performance and suggest that rTMS may also improve
daytime functioning, but no improvements of mood were found
(Antczak et al., 2018). However, this does not directly imply that
social cognition improves as well.

The researchers in medical practice with whom a collaboration has
been formed within this project have set up a research program to use
rTMS to improve social functioning in bvFTD. In this part, it is hy-
pothesised that for bvFTD patients rTMS will improve network efficacy
of the social brain: when used for stimulation of the relevant areas it
will strengthen the connections that were weakened by bvFTD. By de-
signing a computational model including the rTMS therapy and its
impacts, the effects of this therapy can be analysed computationally by
simulation and evaluated for future purposes.

The temporal-causal network model

This section describes the temporal-causal network model for the
interpretation of emotions. The model describes how interpretation of
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emotions takes place, focussing on recognizing emotions shown by
others. Patients with the behavioural variant of frontotemporal de-
mentia (bvFTD) show emotional disengagement and social responses or
activities that are not suitable. In particular, this model focuses on the
part where people with bvFTD are unable to recognize and attribute
emotional states to self and others. This can lead to the effect that
emotions are misinterpreted or even not recognized. The model can
both show how the process of recognizing and attributing emotional
states works regularly and when it is affected by bvFTD.

A conceptual representation of a temporal-causal network model
represents in a declarative manner states and connections between
them that indicate (causal) impacts of states on each other, as assumed
to hold for the application domain addressed. The states have (activa-
tion) levels that vary over time. The following three notions are main
elements of a conceptual representation of a temporal-causal network
model:

Connection weight ωX,Y Each connection from a state X to a state Y
has a connection weight value ωX,Y representing the strength of the
connection, between −1 and 1.
Combination function cY(..) For each state a combination function
cY(..) to aggregate the causal impacts of other states on state Y.
Speed factor ηY For each state Y a speed factor ηY to represent how
fast a state is changing upon causal impact.

The conceptual and numerical representation of the model in-
troduced will be presented in this section. The model is designed by
integrating a number of theories some of which were discussed in
Section 2, and elements from Damasio (1994; 1999; 2018)’s view on
emotions and feelings, and Iacoboni (2009) on mirror neurons and
social contagion.

The developed model shows the difficulties that persons with bvFTD
can have regarding recognition of emotions. Not only the recognition of
emotions of others is included, but also the experience of own emo-
tional feelings which includes mirror links from observed emotions.
Fig. 1 gives an overview of the conceptual representation of the model.
The following notations are used for the state names:

ws world state
ss sensor state
srs sensory representation state
bs belief state
ps preparation state
cs control state
es execution state

For each state a label LPn refers to the corresponding numerical re-
presentation of the update equation of the state, as described below. An
overview of the states, their connections and weights can be found in
Table 1. States or weights with subscript h or s correspond to the
emotional feelings happy or sad. An example is ssh meaning the sensor
state for the own emotional response for happy (sensing the own body
state, for example, the own smile). States indicated by a B correspond to
the observation of emotional expression(s) of another person B. For
example, srsB,h means the sensory representation state of B having a
happy face. Finally, subscript e is used to indicate if someone is showing
any emotion. Therefore, wsB,e means the world state of person B
showing an emotion, for example, an emotional face. Overall, the upper
part (the first three causal pathways) are used for recognizing the
emotional state of someone else (person B).

The lower part (the other two causal pathways) is used to model
feelings of own emotions using body loops and as-if body loops as de-
scribed by Damasio (1994, 1999, 2018). The model presented here
incorporates parts of the model described by (Treur, 2016b, Ch. 9). The
part that is included from this model are the bottom two cycles of states

with the body loops affecting the body state x of a person, representing
own emotional feeling according to the theory of Damasio (1994, 1999,
2018). In this model, body state x can be either s (sad) or h (happy)
corresponding to the emotion. This emotion can also be expressed by
another person B. Therefore, the communication of, for example, body
state h (happy) to B expresses that the person self knows that B feels h
(happy). The connections from srsB,h and srsB,s to psh and pss, respec-
tively, provide mirroring functionality to the preparation states, fol-
lowing Iacoboni’s (2009) findings. These connections make the person
feel what the other person expresses.

Most connection weights have a positive value between 0 and 1
according to the strength of the effect they have on consecutive states.
However, suppressing effects are modeled by using a negative weight. A
few of those negative weights occur in the model. The connection
weights with a negative value are ω3,h,s, ω3,s,h, ω7,h,s, ω7,s,h, ω3,h, and
ω3,s.

A conceptual representation of the temporal-causal network model
can be transformed in a systematic manner into a numerical re-
presentation of the model (Treur, 2016b):

At each time point t each state X connected to state Y has an impact
on Y defined as =t X timpact ( ) ( )X Y X Y, , where ωX,Y is the weight of
the connection from X to Y

Based on the combination function cY(…) the aggregated impact of
multiple states Xi on Y at t is:

=

= ( )
t t t

X t X t

aggimpact c impact impact

c

( ) ( ( ), , ( ))

( ), , ( )
Y Y X Y X Y

Y X Y X Y k

, ,

, 1 ,

k

k

1

1

where Xi are the states with outgoing connections to state Y
Using the speed factor ηY the effect of aggimpactY(t) on Y is exerted

over time gradually:

+ = +Y t t Y t t Y t taggimpact( ) ( ) [ ( ) ( )]Y Y

or

=dY t
dt

t Y taggimpact( ) [ ( ) ( )]Y Y

Thus, the following difference and differential equation for Y are ob-
tained:

+ = + [ ( ) ]Y t t Y t X t X t Y t tc( ) ( ) ( ), , ( ) ( )Y Y X Y X Y k, 1 ,k1

= [ ( ) ]dY t
dt

X t X t Y tc( ) ( ), , ( ) ( )Y Y X Y X Y k, 1 ,k1

The states related to LP1, LP2, LP3, LP6, LP7, LP11, LP12, LP16,
LP19, LP20, LP23, LP24, and LP25 make use of the identity combina-
tion function c(V)= id(V)= V. Those for LP8, LP9, LP13, LP14, LP17,
LP18, LP21, and LP22 make use of the scaled sum combination func-
tion, which is represented numerically by:

= = + +V V V V V Vc ssum( , , ) ( , , )k k
k

1 1
1

where λ is the scaling factor. Finally, states related to LP10 and LP15
make use of a logistic function to get a binary all-or-nothing effect of
these communications.

= =
+ +

++ +V V V Vc alogistic
e e

e( , , ) ( , , ) 1
1

1
1

(1 )k k V Vk1 , 1 ( 1 )

Example simulation experiments for the model without therapy

To explore the behaviour of the designed temporal-causal network
model, two scenarios were simulated in Matlab. The first scenario de-
scribes the case of how a person normally would recognize emotions
shown by others. In this case, it is expected that when person B shows
an emotion, the person will correctly communicate this emotion at the
communication states escomm,B,h or escomm,B,s. Also, the own feeling of
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that specific observed emotion will be activated through mirror neu-
rons. The second scenario describes the specific case in which a person
has difficulties recognizing the right emotions due to bvFTD. It is ex-
pected that when person B shows the emotion sad, this emotion will be
wrongly interpreted by the patient with bvFTD as happy as explained
by the case in Box 1. Therefore, the communication states will yield
activations that differ from the ones in the first scenario, although
through the mirroring system contagion still takes place through which
the sadness is felt.

The weights for the connection strengths ωk are for most connections
set to 1; the exceptions are shown in the lower part of Table 2. For ω7,h,s

and ω7,s,h a value of −0.2 has been chosen, since the preparation states for
communication that either it is a sad emotion that person B is showing or a
happy emotion normally will not have a high activation level at the same
time. In this way, negative weights will cause suppression between the
states if one of them is activated. Similarly, for weights ω3,h,s and ω3,s,h a
value of −0.05 has been chosen, to express that the belief states for either
believing person B shows a happy emotion or a sad emotion will usually

not have high activations at the same time. Note that the values 0.7 and
0.05 for ω2,h and ω2,s, respectively, indicate that when no specific emotion
is recognized, usually an emotional face is more believed to indicate
happiness than sadness.

The simulations have been performed with speed factor η =0.5 for
all states, Δt=0.5, and the scaling factors as displayed in the upper
part of Table 2. Since LP10 and LP15 make use of a logistic function,
they have a threshold and steepness. Both states use a logistic function
with steepness 200 and threshold 0.5. In the figures that show the re-
sults of the simulations, time can be seen on the horizontal axis of the
figures and the activation levels of the states are on the vertical axis.

The graphs in Figs. 2–4 display the results of the simulations that
have been performed for both scenarios. The graphs show a part of the
results, to highlight the important states. A few of the states have the
same color, as they are overlapping and follow the exact same devel-
opment over time. Scenario 1 is divided into two different simulations.
Difference between both simulations is the input and expected out-
come. The first simulation describes a situation in which the input

Fig. 1. Overview of the conceptual representation of the model.
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labeled as a sad emotion shown by some person B, and the second si-
mulation has an input labeled as a happy emotion shown by some
person B. The simulations are chosen to prove that the model works
with different kinds of inputs.

Fig. 2 shows the first simulation of Scenario 1. It can be seen that the
states for a person showing emotional (wsB,e) and for a person showing
a sad face (wsB,s) are highly activated at the start (orange lines).
Naturally, the sensor states and sensory representation states are

Table 1
Overview of the connections, their weights, and their explanations; see also Fig. 1.

from state to state weight connection LP explanation

wsB,e ssB,e ω17,e sensing e of B LP1 Sensing body state e (emotional) of person B
ssB,e srsB,e ω19,e representing e of B LP2 Representing the stimulus: B showing emotional
srsB,e csselfother,B,e ω10,e monitoring e of B LP3 Control state for self-other distinction from represented emotion of person B
wsB,h ssB,h ω17,h sensing h of B LP6 Sensing body state h (happy) of person B
ssB,h srsB,h ω19,h representing h of B LP7 Representing the stimulus of B showing happy
srsB,e
srsB,h
srsh
bsB,s

bsB,h ω2,h

ω1,h,h

ω4,h

ω2,s,h

interpreting e of B
interpreting h of B
interpreting own h
suppressing belief of s

LP8 Believing that B is feeling happy (h)
- from showing emotional by B
- from emotion h showed by B
- from own emotional feeling h
- decreases by belief state for emotion

s
csselfother,B,e

bsB,h
pscomm,B,s

pscomm,B,h ω6,h

ω5,h

ω7,s,h

controlling communication
believing h of B
suppressing preparation state s of B

LP9 Preparing for body state h: communicating that B feels happy:
- controlled by self-other distinction
- from believing B has emotion h
- suppressed by preparation state that B has emotion s

csselfother,B,e

pscomm,B,h

escomm,B,h ω9,h

ω8,h

controlling communication
executing response

LP10 Expressing communication of body state h of B (communicating that B feels happy)
- controlled by self-other distinction
- from preparation state for h

wsB,s ssB,s ω17,s sensing s of B LP11 Sensing body state s (sad) of person B
ssB,s srsB,s ω19,s representing s of B LP12 Representing the stimulus of B showing sad
srsB,e
srsB,n
srsB,s
srss
bsB,h

bsB,s ω2,s

ω1,s,s

ω4,s

ω2,h,s

interpreting e of B
interpreting s of B
interpreting own s
suppressing belief of h

LP13 Believing that B is feeling sad (s)
- from showing emotional by B
- from emotion s showed by B
- from own emotional feeling s
- decreases by belief state for emotion h

csselfother,B,e

bsB,s
pscomm,B,h

pscomm,B,s ω6,s

ω5,s,h

ω7,h,s

controlling communication
believing s of B
suppressing preparation state h of B

LP14 Preparing for body state s: communicating that B feels sad
- controlled by self-other distinction
- from believing B has emotion s
- suppressed by preparation state that B has emotion h

csselfother,B,e

pscomm,B,s

escomm,B,s ω9,s

ω8,s

controlling communication
executing response

LP15 Expressing communication of body state s of B (communicating that B feels sad)
- controlled by self-other distinction
- from preparation state for s

wsh ssh ω18,h sensing own h LP16 Sensing body state h (happy) for feeling happy
ssh
psh

srsh ω13,h

ω14,h

representing h of B
predicting h

LP17 Representing a body map for h: emotion h felt (own feeling of happy)
- from sensing own body state h
- via as-if body loop for body state h

srsh

srsB,h

psh ω12,h

ω11,h

amplifying

mirroring h of B to own emotional feeling

LP18 Preparing for body state h: emotional response h (own feeling h)
- via emotion integration from own emotion
- via mirroring of emotion that B shows

psh esh ω15,h Executing emotional response LP19 Expressing emotional response of h
wss sss ω18,s sensing own s LP20 Sensing body state s (sad), own feeling of sad
sss
pss

srss ω13,s

ω14,s

representing s of B
predicting s

LP21 Representing a body map for s: emotion s felt (own feeling of sad)
- from sensing own body state s
- via as-if body loop for body state s

srss

srsB,s

pss ω12,s

ω11,s

amplifying

mirroring s of B to own emotional feeling

LP22 Preparing for body state s: emotional response s (own feeling s)
- via emotion integration from own emotion
- via mirroring of emotion that B shows

pss ess ω15,s Executing emotional response LP23 Expressing emotional response of s
esh wsh ω16,h Effectuating h LP24 Effectuating actual body state
ess wss ω16,s Effectuating s LP25 Effectuating actual body state

Table 2
Settings for the scaling factors used and connection weights deviating from 1.

LP8 LP9 LP13 LP14 LP17 LP18 LP21 LP22
λ 2.2 1.3 1.55 1.3 2 2 2 2

ω2,h ω2,s ω4,h ω4,s ω3,s,h ω3,h,s ω7,h,s ω7,s,h ω6,s ω6,h ω9,s ω9,h

0.7 0.05 0.5 0.5 −0.05 −0.05 −0.2 −0.2 0.3 0.3 0.25 0.25
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becoming active as well (srsB,e and srsB,s) which can be seen by the
yellow and black striped lines. The state for the representation of a
happy face (srsB,h) stays low, visible by the pink striped line. Further-
more, it can be seen that the belief state for recognizing a happy face
(bsB,h) shows some activation (purple line). This is caused by the fact
that the state for recognizing an emotional face is high, but when it
becomes clear to the person that the emotion is about a sad emotion,
the feeling that it might be a happy emotion is quickly reduced and it
can be seen that the communication state for a happy emotion
(escomm,B,s) stays low (dark blue line). In the end, the person commu-
nicates that a sad face has been observed (escomm,B,s, red line). Also, the
mirror neuron system for the own sad feeling becomes active, showing
that emotion contagion takes place for the observed sadness. This can
be seen by the activation of ess which is in the emotion contagion cycle
(light blue line). When performing the simulation with the activation of
a happy face instead of a sad face at the start, similar results are ex-
pected (with the activation of communication a happy face instead of a
sad face) as this is how people would normally react. This will be ex-
plored in the second simulation.

Fig. 3 shows the second simulation of Scenario 1. It can be seen that
the states for a person showing emotional (wsB,e) and for a person

showing a happy face (wsB,h) are highly activated at the start (orange
lines) while the state for a person showing a sad (wsB,s) face stays in-
active (pink line). The process nearly follows the same development
over time as the simulation shown in Fig. 2. It can be seen that as a
response to the input, the sensory response states become high as well
(srsB,e and srsB,h). As a response, the belief state that person B shows a
happy emotion (bsB,h) gets highly activated as well. In the end, the
communication state for communicating that a happy emotion of
person B has been experienced (escomm,B,h). This simulation also con-
firms correct behaviour of the model, as it is expected that with an input
of emotional and happy, the output of communicating that a happy
emotion has been experienced will be activated for normal persons.
Therefore, this model shows what is expected of how someone without
any impairment, affected by these processes, would interpret an emo-
tion.

For the second scenario, the settings of four weights have been
changed. The weights for ω1,h,h, ω1,s,s, ω4,h, and ω4,s have been set to a
connection weight of 0.05. These settings are chosen because the
second scenario illustrates the case of a person with bvFTD, which
means that those links are damaged and therefore have a low connec-
tion strength. Fig. 4 displays the result of the second scenario. In the
graph, it can be seen that the external states for showing an emotional
face (wsB,e) and showing a sad face (wsB,s) are high from the start, and
are kept high, to simulate their presence (orange lines). However, due
to the damaged links, the communication state for saying that a person
shows a sad face (escomm,B,s, red line) is not activated in the end.
However, emotion contagion still causes the own sad feeling (ess) to
develop (activation of light blue line). This can be seen by the red line
at the bottom of the graph that stays low throughout the entire simu-
lation, this implies that there is no communication of an observed sad
feeling while the light blue line indicates the own sad feeling to be
active. In contrast, the communication state for saying that a person
shows a happy face (escomm,B,h, dark blue) does get activated while the
person never received an input of someone showing a happy face
(wsB,h), and no contagion of happiness took place (esh). This can be
explained by the fact that the person does recognize that there is an
emotion visible (activation of srsB,e, yellow line). However, the inter-
pretation of the specific kind of emotion is disrupted. Therefore, the
simulation shows the specific case that has been observed in patients:
how damaged links can cause someone with bvFTD to misinterpret
emotions (Box 1).

An adaptive network model incorporating a therapy

This section describes the adaptive temporal-causal network model
for therapy on people with bvFTD. The model is an extension to the
computational model proposed in the first part of the report which
describes how interpretation of emotions takes place, with a focus on
recognizing emotions showed by others. This model also showed how
the recognition of emotions can be disturbed in people with bvFTD.
Damaged links can cause a patient to incorrectly classify emotions. The
extension to the model proposed in this section focuses on the possi-
bility that people with bvFTD receive the rTMS therapy that recovers
the damaged links in the network. This could potentially lead to the
effect that the links are getting strong enough again to correctly classify
emotions.

Fig. 5 gives an overview of the conceptual representation of the
model. The links that are marked in red play an important role in the
interpretation of emotions by a person, and are damaged (weakened) in
persons with bvFTD. When these links are not damaged the model
behaves as someone without bvFTD. When these links are damaged the
model displays behaviour that has been seen by people with bvFTD as
was shown in Part 1.

To introduce the longer term effect of the therapy a Hebbian
Learning Rule is applied to all damaged links. With this rule, the
weights become adaptive and can become stronger by the effect of

Fig. 2. Simulation results for Scenario 1(1): normal functioning.

Fig. 3. Simulation results for Scenario 1(2): normal functioning.

Fig. 4. Simulation results for Scenario 2: the case with bvFTD.
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Fig. 5. Overview of the conceptual representation of the model.

Fig. 6. Hebbian Learning incorporated in the model.
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learning. The Hebbian Learning Rule used is numerically described as
follows (Treur, 2016b; Gerstner & Kistler, 2002):

+ = +t t t X t X t t t t( ) ( ) [c ( ( ), ( ), ( )) ( )]1 2

with

= +V V W V V W Wc ( , , ) (1 ) µ1 2 1 2

where V1 stands for X1(t), V2 for X2(t), and W for ω(t). Here η is a
learning rate and μ a persistence factor, and X1, X2 are the states con-
nected by connection weight ω.

This is incorporated in the model by using the conceptual structure
in Fig. 6. The figure shows one of the four places where the Hebbian
Learning effect is applied to. An extra state has been added to the
model, namely X30 which represents the therapy. The therapy can have
a state value of either zero or one. Zero when the there is no therapy,
one when there is therapy. When the therapy is on it will stimulate the
states in the brain area where the damaged parts are. When those get
simultaneously activated the connection will become stronger by the
Hebbian learning. This will be paired with the input to activate and
stimulate the correct connections and areas during the same time. The
therapy state X30 and its connections is an addition to all the states and
connections explained in Table 1.

This Hebbian learning principle is applied to all the areas in the
brain where the damaged “red” connections are, visible in Fig. 5.
Therefore, the model consists of four of these Hebbian learning con-
nections. By introducing a learning effect for these four connections, the
network model becomes an adaptive network model.

The choice for persistence factor μ and learning rate η for the
Hebbian learning principle can have big consequences for the simula-
tions of the model and therefore must be chosen carefully and ideally in
relation to empirical observations. As such empirical information is not
available yet, here it is analysed how variation of these parameter va-
lues affects the outcomes of the therapy. The effects of different values
for these parameters can be seen in the three examples below. For all
simulations, ω1 is a weight of which the connection is learned by the
principle. Weight ω4 is a connection to which the Hebbian learning
principle is applied, but no input is given for connections to which the
learning principle never takes place. The first example shows a simu-
lation of one (very long) therapy session with persistence μ=1 and
learning rate η =0.01. The result can be seen in Fig. 7. For connection
ω1, the learning effect takes place and reaches a value of about 1 in the
end. For the other weight, ω4, nothing happens and the value stays the
same throughout the simulation.

Next, simulation example 2 in Fig. 8 shows a simulation with per-
sistence μ=0.95 and learning rate η =0.01. The only difference to
simulation 1 is the persistence factor which has decreased in this si-
mulation. As can be seen, this results in ω1 increasing slightly less than
the simulation in example 1. Next to that, ω4 shows slight decrease in
value as can be explained by the persistence factor being 0.95 resulting

in a decay of the connection weight when there is no input to increase
by the Hebbian learning effect.

Finally, simulation example 3 shows in Fig. 9 shows a simulation
with persistence μ= 0.95 and learning rate η =0.005. This example
shows the influence of the learning rate η since this is the only differ-
ence compared to simulation example 2. As can be seen, in the end the
value for ω1 turns out to be about the same as for ω1 in example 2.
However, due to the lower learning rate, the increase of ω1 is slower
than seen in example 1 and 2.

These examples show how different persistence factors and learning
rates can affect the model. Therefore, it shows how these parameters
values affect the therapy and how they can and should be chosen in
such a manner that the therapy outcomes correspond to what is ex-
pected from empirical literature.

Simulation experiments for the adaptive model with therapy

To explore the effects of the incorporated therapy by the adaptive
temporal-causal network model described above, again, simulations
were performed in Matlab. The simulations show different states of
social functioning. First, it shows how damaged connections in the
brain as a result of bvFTD cause a dissociation between emotion con-
tagion and facial emotion recognition. Specifically, this is shown by a
case in which a patient with bvFTD is confronted by an input that can
be labeled as an emotionally sad face. When the patient is asked to
communicate the emotion that is experienced, the patient commu-
nicates that these must be tears of joy. The incorrect labeling of emo-
tions is an effect of bvFTD. Second, the therapy will be applied to the
patient in two different scenarios. The therapy consists of a few sessions
to the patient to enhance the damaged links and it is expected that by
this therapy the damaged links will become stronger. By the strength-
ening of these links the patient could be able to correctly classify
emotions shown by other persons again.

In this model, the strengths of ω1,s,s, ω1,h,h, ω4,s, and ω4,h are
adapted using the Hebbian Learning rule. The settings for the Hebbian
learning rule are different for both scenarios to consider different cases.
As before, the simulations have been performed with speed factor
η =0.5 for all states, Δt=1, and the scaling factors as displayed in the
upper part of Table 2. One change has been made to the model con-
sidering the values displayed in Table 2. In this model, the scaling factor
of LP13 has been increased to a value of 2.05. This change has been
made because connection ω4,s can become 1 due to the Hebbian
learning effect, while this was 0.5 in the model proposed in Part 1.
Therefore, an increase of the scaling factor is necessary. Again, LP10
and LP15 make use of a logistic function with steepness 200 and
threshold 0.5. The therapy is applied in sessions of 50 time units al-
ternated by 500 time units rest period in which no inputs are given and
no therapy is applied. This process is repeated a number of times until

Fig. 7. Example simulation 1 with persistence μ= 1 and learning rate η =0.01.

C. Commu et al. Biologically Inspired Cognitive Architectures 26 (2018) 145–158

152



considered effective.
The graph in Fig. 10 displays the result of a simulation that has been

performed before any therapy has been applied. The figure is identical
to Fig. 4. However, the graph is reproduced with a different script that
has the Hebbian Learning Principle implemented. Therefore, the results
are evaluated once again. In Fig. 10, it can be seen that the states wsB,e
for a person showing emotional and wsB,s for a person showing a sad
face are highly activated at the start and during the whole simulation
(dark green lines). This simulates a person B showing emotionally sad
behaviour. After this, the sensory representation states srsB,e and srsB,s
for both observing an emotional face and a sad face become active as
well (black and yellow striped lines). The state srsB,h for observing a
happy face stays inactive (red line). Although there is no input for a
happy face, the sensory representation state for happy and the belief
state for a happy face do not become highly active, the communication

state escomm,B,h for saying that a happy face is experienced becomes
highly active (blue line) and the one escomm,B,s for a sad face does not
(red line). This simulation shows how damaged links can cause
someone with bvFTD to misinterpret emotions and shows the same
behaviour as the simulation represented in Fig. 4. Therefore, the result
of this simulation confirms that the adapted script also works as it
should.

The next step is to perform simulations where the therapy is applied
to the patient. In this first scenario the settings for the Hebbian learning
rule are for all weights the same: a maximal connection strength of 1, a
learning rate η of 0.01 and a persistence factor µ of 1. Fig. 11 shows the
whole process. The graph shows how there are three sessions of therapy
(grey line) over a period of 1600 time units. It can be seen that during
each session the weights of damaged links with weights ω1,h,h and ω4,s

become stronger (orange and blue line). Damaged links with weights
ω1,s,s and ω4,h are not included since they will not become active during
any of the simulation scenarios addressed here. However, the same

Fig. 8. Example simulation 2 with persistence μ= 0.95 and learning rate η =0.01.

Fig. 9. Example simulation 3 with persistence μ=0.95 and learning rate η =0.005.

Fig. 10. Simulation results for persons with bvFTD when no therapy is applied. Fig. 11. Simulation results of the applied therapy (1).
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effect can be reached with these weights as well. After three sessions the
weights ω1,h,h and ω4,s both reach a value of about 0.8. More sessions to
obtain a higher value are possible, but after testing, it is found that
these values already show the effect that is expected.

These effects can be seen in the graph in Fig. 12. The same input is
given as the first simulation that has been performed in Fig. 10. Thus,
the states wsB,e for a person showing emotional and wsB,s for a person
showing a sad face are highly activated at the start and during the
whole simulation (dark green lines). When comparing this graph to the
graph in Fig. 10 the effects can be seen clearly. The most important
difference is that now, after therapy, the communication state escomm,B,s

for saying that a person has been showing a sad emotion becomes active
instead of the communication state escomm,B,h for saying that a person
has been showing a happy face as was the case before. This is the effect
that is expected of how persons normally would react to these stimuli.
Therefore, the simulations show how damaged links can be recovered
by therapy. However, this case shows how the therapy could work in
theory but might not be realistic. The effect of the therapy might not be
persistent, and the learning rate might not be as high as is displayed
here. Scenario 2 shows another simulation of how the therapy might
work, considering a decay and a lower learning rate.

In the second scenario, the settings for the Hebbian learning rule are
for all weights the same: a maximal connection strength of 1, a learning
rate η of 0.003 and a persistence factor µ of 0.95. These values have
been chosen after testing the model multiple times with different con-
figurations and by discussing this with the medical experts who have
experience with the patients and the techniques used with this therapy.
The graph in Fig. 13 shows the whole process. The graph shows how
there are sixteen sessions of therapy over a period of about 8400 time
units. When the therapy sessions are applied can be seen by the orange
line. It can be seen that during each session the weights of damaged
links with weights ω1,h,h and ω4,s become stronger (black and blue

lines). As the black line shows almost the same development over time
as the blue line, it might be not always clearly visible. Each therapy
session causes the weights to strongly increase in value. After that, there
are 500 time units of no therapy which causes the weights to slowly
decrease again due to the fact that the persistence of the learned con-
nections is not equal to 1. As can be seen, over time the effect of the
therapy is decreasing in performance. In the end, the gain of the
therapy is almost equal to the loss in the period that follows of no
therapy. This suggests that after a certain amount of therapy sessions
the therapy might become less efficient. If the effect of the therapy is
not sufficient yet at that point in time, this will require the sessions to
be adapted. This could possibly be accomplished by making the therapy
sessions longer, to increase their effect, make the periods between
therapy sessions smaller, and if possible to make the decay smaller, or
make the sessions stronger, to create a higher learning rate in one
session. Damaged links with weights ω1,s,s and ω4,h are not included
since they will not become active during any of the simulation scenarios
addressed here. However, the same effect can be reached with these
connections as well. After sixteen sessions of therapy the weights ω1,h,h

and ω4,s both reach a value of about 0.65.
These effects can be seen in the graph in Fig. 14. The same input is

given as the first simulation that has been performed in Fig. 7. Thus, the
states wsB,e for a person showing emotional and wsB,s for a person
showing a sad face are highly activated at the start and during the
whole simulation (dark green lines). When comparing this graph to the
graph in Fig. 10 the effects can be seen clearly. The most important
difference is that now, after therapy, the communication state escomm,B,s

for saying that a person has been showing a sad emotion (pink line)
becomes active instead of the communication state escomm,B,h for saying
that a person has been showing a happy face (blue line) as was the case
before. However, it can be noted that both communication states be-
come highly active. This can be explained by the fact that the con-
nections have reached a weight of about 0.65, which in an ideal si-
tuation can be restored to 1 again. As a result, the person has some
doubts about which emotion is shown in the beginning, causing both
communication states (escomm,B,s and escomm,B,h) to be high. However, in
the end the person decides this must be a sad emotion expressed by
person B and this communication state stays high until the end of the
simulation (escomm,B,s). This is the effect that is expected of how persons
normally would react to these stimuli. Therefore, the simulations show
how damaged links can be recovered by therapy.

As an addition, a simulation has been performed where the con-
nection weights of the damaged links reach a value of 0.85. This effect
could not be reached with the settings of the simulation performed in
Figs. 13 and 14. Therefore, the adaptations to the therapy in terms of
therapy strength or interval discussed earlier should be explored. This
simulation is performed to show the effects when a higher connection

Fig. 12. Simulation results for persons with bvFTD after therapy is applied.

Fig. 13. Simulation results of the applied therapy (2).
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strength can be obtained with the therapy. The result can be seen in the
graph displayed in Fig. 15. The graph shows that when a higher con-
nection strength is obtained by the therapy, the belief state that person
B shows a sad emotion bsB,s becomes higher than shown in Fig. 14,
resulting in a stronger connection of recognizing sad emotions and
therefore also a better distinction of recognizing happy and sad emo-
tions. Therefore, a lower activation of the communication state for
saying that it is a happy emotion escomm,B,h is seen in comparison to the
results shown in Fig. 14. This concludes that a connection strength of
0.65 can cause the patient to correctly identify emotions shown by
others again (as shown in Fig. 14). However, it is more beneficial if a
higher connection strength can be obtained as this will significantly
improve the patients’ abilities (as has been shown in Fig. 15).

Verification of the network model by mathematical analysis*

Dedicated methods have been developed for temporal-causal net-
work models to verify whether an implemented model shows behaviour
as expected; see (Treur, 2016a; Treur, 2016b, Ch 12). In this section
equilibria of the designed model are addressed. By Mathematical Ana-
lysis their values are found and by comparing them to simulated values
the model is verified. Stationary points and equilibria are defined as
follows.

A state Y in a temporal-causal network model has a stationary point
at t if dY(t)/dt=0. A temporal-causal network model is in an equili-
brium state at t if all states have a stationary point at t. In that case the
above equations dY(t)/dt=0 for all states Y are called the equilibrium
equations. These are general notions, for temporal network models the
following simple criterion was obtained in terms of the basic elements
defining the network, in particular, the states Y, connection weights
ωX,Y and the combination functions cY(..); see (Treur, 2016a; 2016b, Ch
12).

Criterion for stationary points and equilibria in a temporal-causal network
model

A state Y in an adaptive temporal-causal network model with non-
zero speed factor has a stationary point at t if and only if

=X t X t Y tc ( ( ), , ( )) ( )Y X Y X Y k, 1 ,k1

where X1, …, Xk are the states with outgoing connections to Y.
A temporal-causal network model is in an equilibrium state at t if

and only if for all states with nonzero speed factor the above criterion
holds at t.

Equilibrium equations for an identity function id(.) or scaled sum
combination function ssumλ(..) are

= =X t X t Y tid( ( )) ( ) ( )X Y X Y, ,

=
+ +
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So, they are linear equations in the state values involved with
connection weights and scaling factors as coefficients:

=X t Y t( ) ( )X Y,

+ + =X t X t Y t( ) ( ) ( )X Y X Y k Y, 1 ,k1

In the presented model the scaling factors have been set as the sum
of the positive weights of the incoming connections; therefore all
coefficients are built from connection weights. Using this, the following
equilibrium equations for the states were obtained for the presented
network model here; to simplify the notation the reference to t has been
left out; note that this concerns equilibrium state values here, not state
names. Here the connection weights are named as shown in Table 1,
and A1 to A3 are constants.

= = =A A Asrs srs srsB h B s B e, 1 , 2 , 3

+ + + = +
+ + +

( )bs srs srs
srs srs bs

X X Y X X X B X X X B X Y X B Y

X B e X X Y X B Y

1, , 1, , 2, 4, , 1, , , 1, , ,

2, , 4, 3, , ,

+ = + +( )ps bs cs psX X comm B X X B X X selfother B e Y X comm B Y5, 6, , , 5, , 6, , , 7, , , ,

+ = +( )es ps csX X comm B X X comm B X X selfother B e8, 9, , , 8, , , 9, , ,

=cs srsselfother B e e B e, , 10, ,

+ = +( )ps srs srsX X X X B X X X11, 12, 11, , 12,

+ = +( )srs ss psX X X X X X X13, 14, 13, 14,

=es psX X X15,

=ss esX X X16,

Note that in the above equations in the equilibrium state values,
variable names X and Y are used that have multiple instances for h
(happy) and s (sad). If these equilibrium state values are instantiated
and renamed as shown in Table 3, 19 linear equations in X1 to X19 are
obtained with coefficients based on the connection weights and the
constants A1 to A3.

These 19 linear equations can be solved symbolically, for example
using the WIMS Linear Solver (see [WIMS, 2018]), thereby obtaining
complex algebraic expressions for the equilibrium values, linear in the
constants A1 to A3 with as coefficients rational (broken) functions in
terms of the connection weights. For verification all connection weights
have been set as the simulation shown and Table 2. For these connec-
tion weight values, the following solution was found in terms of A1 to
A3:

= AX1 1

Fig. 14. Simulation results for persons with bvFTD after therapy is applied (1).
Fig. 15. Simulation results for persons with bvFTD after therapy is applied (2).

* Most parts of this section were adopted from (Commu, Treur, Dols, &
Pijnenburg, 2018)
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= AX2 2

= AX3 3

= AX4 1

= AX5 2

=
+

A A
A

X 0.3176815847395451 0.02201027146001467
0.682318415260455

6 3 2

1

= +A A
A

X 0.02201027146001311 0.9684519442406457
0.02201027146001467

7 3 2

1

=
+

A A
A

X 0.4476266702238825 0.134729540452211
0.5402521176549057

8 3 2

1

= +A A
A

X 0.1788345672424897 0.7656906556392985
0.1000466884546121

9 3 2

1

=
+

A A
A

X 0.558101336179106 0.1077836323617688
0.4322016941239245

10 3 2

1

= +A A
A

X 0.3430676537939918 0.6125525245114387
0.08003735076368973

11 3 2

1

= AX12 3

= AX13 1

= AX14 2

= AX15 1

= AX16 2

= AX17 1

= AX18 2

For the above connection weight values and values A1= 1, A2= 0,
and A3= 1, the solution was found shown in the third and sixth row of
Table 4.

A logistic function with steepness 200 and threshold 0.625 applied
to the communication execution states X10 and X11 (multiplied by the
scaling factor 1.25 to undo the scaling) provides X10= 1, and
X11= 2.613 10−21. Similarly, for other values of A1 to A3, the equili-
brium values have been found.

For example, for A1= 0, A2= 0, A3= 1, it was found

=X 0.31768158473954516

=X 0.022010271460014677

=X 0.44762667022388268

=X 0.17883456724249089

=X 0.558101336179106210

=X 0.343067653793992811

Here a logistic function with steepness 200 and threshold 0.625 was
applied to the communication execution states X10 and X11 multiplied
by the scaling factor 1.25 to undo the scaling which provides X10= 1,
and X11= 0.

For A1= 0, A2= 1, A3= 1, it was found

=X 0.29567131327953056

=X 0.99046221570066037

=X 0.31289712977167128

=X 0.94452522288178939

=X 0.450317703817336910

=X 0.955620178305431311

Again here a logistic function with steepness 200 and threshold
0.625 was applied to the communication execution states X10 and X11

multiplied by the scaling factor 1.25 to undo the scaling which provides
X10= 1, and X11= 0. All these values have been checked with the
values of the simulation scenarios and were found very accurate (de-
viations less than 0.001). This provides evidence that the implemented
model does what is expected.

Also the equilibria for the adaptive model have been analysed.
Application of the stationary point criterion on the Hebbian learning
parts of the model is as follows. Recall that for that case the combi-
nation function is

= +V V W V V W Whebb ( , , ) (1 ) µµ 1 2 1 2

where V1 refers to X1(t), V2 refers to X2(t), and W refers to ωX1
,X2

(t).
Based on this, according to the stationary point criterion in an equili-
brium it holds
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This provides the following relation for ωX1
,X2

(t):

=
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This is monotonically increasing in X1(t)X2(t); the maximal value
occurs when X1(t)= 1 and X2(t)= 1, and is

=t( ) 1
2 µX X,1 2

Therefore, for example, in the simulations with μ=0.95, it should

Table 3
State names used in the equilibrium equations.

X1 X2 X3 X4 X5 X6 X7 X8 X9

srsB,h srsB,s srsB,e srsh srss bsB,h bsB,s pscomm,B,h pscomm,B,s

X10 X11 X12 X13 X14 X15 X16 X17 X18

escomm,B,h es comm,B,s csselfother,B,e psh pss esh ess ssh sss

Table 4
Results of the mathematical analysis.

X1 X2 X3 X4 X5 X6 X7 X8 X9

srsB,h srsB,s srsB,e srsh srss bsB,h bsB,s pscomm,B,h ps comm,B,s

1 0 1 1 0 1 0 0.987879 0.078788

X10 X11 X12 X13 X14 X15 X16 X17 X18

escomm,B,h es comm,B,s csselfother,B,e psh pss esh ess ssh sss
0.990303 0.263030 1 1 0 1 0 1 0
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be expected that the values of the adaptive connections will never ex-
ceed 1/[2–0.95]=0.95238. This can indeed be observed in the si-
mulations.

Discussion

In this paper, first a temporal-causal network model was introduced
that describes the interpretation of emotions shown by others. The
model can also show cases in which the interpretation of emotions is
incorrect, as can be the case of persons with bvFTD; this is based on the
assumption that it is at least observed that there is an emotional face,
although the specific type of emotion is not recognized correctly.
Several simulations have been performed to test the model in both these
behaviours. In the presented scenario for a person with bvFTD it was
shown how an observed sad face led to contagion of sadness by the
mirror system in a correct way, but at the same time the emotional face
was nevertheless not recognized as sad, but instead as happy. A
mathematical analysis was done confirming the simulation outcomes;
this gave evidence that the model as implemented does what it is meant
to do.

By comparing the results of the model to the case it can be con-
cluded that the model can correctly simulate behaviour shown by the
patient with bvFTD as described in the case in Box 1. Next to that, it can
also show how people without any damaged connections would re-
spond to the input.

Next, the paper addresses an extension to the temporal-causal model
by obtaining an adaptive network model for the effects of a therapy. It
addresses a therapy that might improve the damaged connections in the
brain that come with bvFTD. The extended model shows how Repetitive
Transcranial Magnetic Therapy (rTMS) can improve the network con-
nections and, in the end, cause a patient to (partly) retain the damaged
connections. The two different scenarios show how after several
therapy sessions, the connections have improved in such a way that the
patient will be able to correctly classify experienced emotions by others
again. The first scenario showed how the therapy could work best case
scenario. However, this scenario might be too optimistic and therefore a
second scenario has been performed. The second scenario also showed
how the therapy can improve the connections but due to a decay and a
lower learning rate this would cost a lot more time. In the end, for all
scenarios, differences between before and after the therapy are clear:
certain functions work again after therapy.

However, no real data is available yet to support the model. It could
be that the rate of the learning effect is not the exact same number as
was used in the simulation scenario. This number can be higher, when
the learning effect is stronger, or lower, when the learning effect is
slower. This also changes the outcomes in terms of how many sessions
are needed to get the desired effect, which means that a different
number of sessions are needed to get to the same effect. Also, this model
assumes a persistence of 1; meaning that when the improvement of the
connection is obtained, it will be persistent, while it might be the case
that there is a small decay on the effect. When real data is obtained, all
such changes can be easily incorporated in the model as the model
stands on its own and the parameters are easily adjusted.

Conclusion

Both models have proven to do what they were designed for. The
model first introduced shows a temporal-causal network model that
describes how emotions shown by others are interpreted. On top of that,
it is shown that in persons with bvFTD certain links within this process
are damaged, causing the patient to incorrectly interpret emotions; an
example case of this is explained in Box 1. A paper on this model is
(Commu et al., 2018). The adaptive extension to the model introduced
shows how rTMS therapy can be used to restore the damaged connec-
tions and causing the patient to interpret emotions correctly again.

Both models can be applied as a basis for human-like virtual agents,

for example, to obtain a virtual patient model to study the way in which
recognition of emotions can deviate for certain types of persons. In
addition they can be applied to study how to potentially enhance the
recognition of emotions when damaged, as was shown in particular by
the second model. However, more therapies or techniques can be im-
plemented in the model to explore more possibilities. In further re-
search real data can be used to test the model in more detail. Brain
activity could be measured to get real data to use as input for the model
and get patterns of how states are activated over time. This could help
by tuning the parameters of the model to be even more human-like.
Furthermore, more scenarios or cases could be simulated to analyse
more and different outcomes of the model. In future extensions of the
model, more emotions than sad and happy can also be addressed. The
presented models focus specifically on the social cognition disturbances
in people with bvFTD. Other symptoms mentioned in Section 1 can also
be potential subjects to extend the model or even create new models
within the subject of bvFTD. As a conclusion, the created models show
the process of emotion recognition and a therapy. For future work, the
next step is to obtain real data that can be used to finetune the models
and eventually insert patient data into the model.
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