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Abstract

In ungauged supergravity theories, the no-force condition for BPS states implies the ex-

istence of stable static multi-centered solutions. The first solutions to Einstein-Maxwell

theory with a positive cosmological constant describing an arbitrary number of charged

black holes were found by Kastor and Traschen. Generalisations to five and higher dimen-

sional theories were obtained by London. Multi-centered solutions in gauged supergravity,

even with time-dependence allowed, have yet to be constructed. In this letter we construct

supersymmetry-preserving multi-centered solutions for the case of D = 5, N = 2 Euclidean

gauged supergravity coupled to an arbitrary number of vector multiplets. Higher dimensional

Einstein-Maxwell multi-centered solutions are also presented.

http://arxiv.org/abs/1701.00114v1


1 Introduction

In Newtonian gravity, one can obtain a system of point particles, each having a charge

equal to its mass, in static equilibrium by balancing the mutual attractive gravitational and

repulsive electrostatic forces. In Einstein theory of general relativity and quite surprisingly

the analogue situation first appeared in the early work of Weyl, Majumdar and Papapetrou

[1]. The Majumdar-Papapetrou (MP) solutions were found to describe a system of multi-

centered extremal Reissner-Nordström black holes in thermal and mechanical equilibrium

[2]. The MP metrics are the static limits of the Israel-Wilson-Perjés (IWP) solutions [3].

If one considers Einstein-Maxwell theory as the bosonic sector of the theory of N = 2,

D = 4 supergravity, then the MP metrics turn out to be solutions admitting half of the

supersymmetry [4]. A systematic classification by Tod [5] also demonstrated that the IWP

metrics are the unique solutions with time-like Killing vector admitting supercovariantly

constant spinors. Analogues of the MP solutions were also found for black holes with a

dilaton field in [6]. In [7] general half-supersymmetric solutions, which can be considered as

generalisation of the MP and IWP metrics, to the theories N = 2, D = 4 supergravity with

vector multiplets were found. BPS solutions in five-dimensional Einstein-Maxwell theory

were considered in [8]. The metric in this case is of the Tanghelini form [9]. Moreover,

electric and magnetic BPS solutions breaking half of the supersymmetry in ungauged five-

dimensional supergravity coupled to vector multiplets were constructed in [10].

The first multi-centered solutions asymptotic to de Sitter space were obtained in four

dimensions in [11]. These are non-static solutions to the Einstein-Maxwell equations in

the presence of a positive cosmological constant. They describe an arbitrary number of

charged black holes in motion due to the positive cosmological constant. As should be

expected, these solutions reduce to MP solutions in the limit of vanishing cosmological

constant. Multi-centered solutions to d-dimensional Einstein-Maxwell theory with a positive

cosmological constant were given in [12]. In the five-dimensional case and with an imaginary

coupling g (with the cosmological constant being proportional to −g2), this theory may be

viewed as the bosonic sector of pure de Sitter D = 5, N = 2 supergravity. Within this

fake supergravity framework, it was shown in [12] that the multi-centered solutions preserve
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some supersymmetry through the explicit construction of the corresponding Killing spinors.

Multi-centered solutions to D = 5, N = 2 gauged supergravity coupled to an arbitrary

number of vector multiplets were considered in [13, 14]. In the fake de Sitter supergravity

case, one obtains rotating multi-centered solutions. However, in the standard Anti-de Sitter

cases, the multi-centered solutions have a complex space-time metric.

In this letter, we will be mainly concerned with the gauged version of the five-dimensional

Euclidean supergravity theory which was recently constructed in [15]. It will be demonstrated

through the analysis of the Killing spinor equations that this theory admits multi-centered

solutions with real space-time metric and real fields unlike in the Lorentzian theory where

the solution is complex. The results obtained may be useful as many investigations of the

AdS/CFT conjecture [16] have in fact been performed in Euclidean space.

We organise our work as follows. In section two we briefly present the Euclidean five-

dimensional theory and its special geometry structure relevant for our subsequent analysis.

Section three contains the analysis and construction of the multi-centered solution for these

theories. In the last section we present multi-centered solutions to d-dimensional Einstein-

Maxwell theories and end with a summary.

2 Euclidean D = 5, N = 2 Gauged Supergravity

The theory of D = 5, N = 2 Euclidean supergravity coupled to vector multiplets was

recently constructed in [15]. The new Euclidean theory has the same bosonic fields content

of the Lorentzian theory with scalar fields parametrizing a projective special real target

manifold [17]. The Lagrangian of the Euclidean theory differs from the Lorentzian one in

that the terms of the Euclidean gauge fields appear with the opposite sign. Upon dimensional

reduction on a circle, the Euclidean D = 5, N = 2 bosonic Lagrangian produces the bosonic

Lagrangian of D = 4, N = 2 Euclidean supergravity with the ‘wrong’ sign in front of the

gauge terms. However, in four dimensions with Euclidean signature, theories with different

signs in front of their gauge kinetic terms can be mapped to one another by a duality

transformation [15, 18].

In the five-dimensional Euclidean supergravity cases, unlike in four dimensions, only one

sign is allowed in front of the gauge field terms in the Lagrangian.

As the scalar fields structure in the Euclidean theory is unaltered, a scalar potential V
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can be added to the theory resulting in the gauged Euclidean N = 2, D = 5 supergravity

coupled to an arbitrary number n of abelian vector supermultiplets. The action is given by

S =
1

16

∫

(

R− 2g2V
)

∗ 1−GIJ

(

dXI ∧ ∗dXJ − F I ∧ ∗F J
)

−
CIJK

6
F I ∧ F J ∧ AK , (2.1)

where I, J take values 1, ..., n, R is the scalar curvature, F I = dAI denote the abelian

field-strengths two-forms. The constants CIJK are symmetric in all indices and the coupling

matrix GIJ is invertible and remains the same as in the Lorentzian case. The fields XI are

functions of (n− 1) unconstrained scalars φi. Some useful relations which from very special

geometry which will be used in our analysis are

GIJ =
1

2

(

9XIXJ − CIJKX
K
)

,

1

6
CIJKX

IXJXK = XIXI = 1,

dXI = −
2

3
GIJdX

J , XI =
2

3
GIJX

J ,

XIdX
I = XIdXI = 0. (2.2)

The scalar potential of the theory is given by

V = 9VIVJ

(

XIXJ −
1

2
GIJ

)

, (2.3)

where the VI are constants. The Killing spinor equations are given by 1 [15]
[

∇µ +
3

2
gVIA

I
µ −

1

8
XI(γµ

νρ − 4δνµγ
ρ)F I

νρ +
1

2
gXIVIγµ

]

ǫ = 0, (2.4)

(

3∂µXIγ
µ −GIJF

J
µνγ

µν + 6gVI

)

∂iX
Iǫ = 0, (2.5)

where ∂i denotes differentiation with respect to the scalars φi.

3 Supersymmetric Multi-centered Solutions

In this section we construct multi-centered solutions to Euclidean theory described by (2.1).

Before proceeding to construct the solutions of the gauged theory, we start with the analysis

1Our conventions are as follows: We use the metric ηab = (+,+,+,+,+) and Clifford algebra {γa, γb} =

2ηab. The covariant derivative on spinors is ∇µ = ∂µ +
1
4ωµabγ

ab where ωµab is the spin connection. Finally,

antisymmetrization is with weight one, so γa1a2···an = 1
n!γ

[a1γa2 · · · γan].
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of the solutions of the ungauged theory, i. e, for the cases when g = 0. As in [10], we start

with the following metric ansatz

ds2 = e−4U(dτ + w)2 + e2Uds24, (3.1)

with U and w = wmdx
m independent of the τ coordinate. The four-dimensional base space

described by ds24 is flat Euclidean with coordinates xm. The spin-connections components

can be extracted from the vanishing of torsion conditions

de0 + ω0a ∧ ea = 0, dea + ωab ∧ eb − ω0a ∧ e0 = 0, (3.2)

where

e0 = e−2U (dτ + w) , ea = eUδamdx
m, (3.3)

and are given by

ω0a
τ = −2e−3Uδam∂mU,

ω0a
n = −e−3Uδam

(

1

2
wnm + 2wn∂mU

)

,

ωab
τ =

1

2
e−6Uδnbδmawnm,

ωab
n = (δmbδan − δmaδbn)∂mU +

1

2
e−6Uwnδ

pbδmawpm, (3.4)

where wnm = (∂nwm − ∂mwn). Plugging into the Killing spinor equation (2.4) for g = 0,

requiring that the Killing spinor satisfies the projection condition γ0ǫ = ǫ, and making use

of the identity γabc = −εabcdγ
dγ0 and special geometry relations we obtain the conditions

∂τ ǫ = 0,

F I
τm = ∂m

(

XIe−2U
)

,

F I
mn = ∂n

(

e−2UXIwm

)

− ∂m
(

e−2UXIwn

)

, (3.5)

and

(∂n + ∂nU) ǫ = 0, (3.6)

γb

(

wab +
1

2
εabcdw

cd

)

ǫ = 0. (3.7)
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Therefore we get

dw = − ∗ dw, (3.8)

thus implying that the two-form φ = dw satisfies

dφ = d ∗ φ = 0, (3.9)

and therefore is a harmonic two-form. Equation (3.6) implies that the Killing spinor is given

by

ǫ = e−Uǫ0, γ0ǫ0 = ǫ0, (3.10)

where ǫ0 is a constant spinor. It can then be shown that the equation (2.5) for g = 0 is

satisfied for scalars independent of τ . The Bianchi identities for our solution are identically

satisfied. Using (3.5) and (3.8) we find that the Maxwell equations

d
(

GIJ ∗ F J
)

=
1

4
CIJKF

J ∧ FK (3.11)

are satisfied provided

XI =
1

3
e−2UHI , (3.12)

where HI are a set of harmonic functions,

HI = hI +
N
∑

j=1

qIj

|~x− ~xj |2
. (3.13)

Here hI are related to scalar values at infinity and qIj are electric charges. As in [10], we

define the rescaled coordinates

YI = e2UXI , Y I = eUXI , (3.14)

then the solution for U is given by

e3U =
1

6
CIJKY

IY JY K ,
1

2
CIJKY

JY K = HI . (3.15)

To get explicit solutions for a given model one needs to solve for the equations (3.15) which

depend on the intersection numbers CIJK . However one can get a closed general solution
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when the scalar fields take values in a symmetric space where one have the useful condition

[17]

CIJKCJ ′(LMCPQ)K ′δJJ
′

δKK ′

=
4

3
δI(LCMPQ). (3.16)

In this case we have the identity

XI =
9

2
CIJKXJXK , (3.17)

where CIJK = δII
′

δJJ
′

δKK ′

CI′J ′K ′, then the solution (3.15) implies

e6U =
1

6
CIJKHIHJHK . (3.18)

We now move on to construct multi-centered solutions for Euclidean five-dimensional su-

pergravity theories with non-trivial gauge and scalar fields. It will be shown that in the

Euclidean case multi-centred solutions with real space-time metric do exist. Motivated by

the results of [13], we take as an ansatz for our solution the metric

ds2 = e−4U(dτ + e2gτw)2 + e−2gτe2Uds24, (3.19)

where U = U(x, τ), w = wm(x)dx
m depends on the base coordinates only. The spin-

connections components can be extracted from the vanishing of torsion conditions and are

given by

ω0a
τ = egτ−Uδam

(

∂m
(

e−2U
)

− ∂τQm

)

,

ω0a
n = −e3U−gτ (U̇ − g)δan −

1

2
e3(gτ−U)δamwnm

+ egτ+UδamQn

(

∂m
(

e−2U
)

− ∂τQm

)

,

ωab
τ =

1

2
e4gτ−6Uδnbδmawnm,

ωab
n = (δmbδan − δmaδbn)

(

∂mU +
1

2
e2U∂τQm

)

+
1

2
e4(gτ−U)Qnδ

pbδmawpm, (3.20)

where Qm = e2(gτ−U)wm. Plugging this into the Killing spinor equation (2.4) and as in the

ungauged case we require that the Killing spinor satisfies γ0ǫ = ǫ, we then get from the

τ -component the conditions

(

∂τ − gVIe
−2UXI

)

ǫ = 0, (3.21)
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and

XIF
I
τm = ∂m

(

e−2U
)

− ∂τQm,

XIF
I
mn = ∂nQm − ∂mQn. (3.22)

Using the special geometry relations XIdX
I = 0 and XIXI = 1, we can write

F I
τm = ∂m

(

XIe−2U
)

− ∂τ
(

XIQm

)

,

F I
mn = ∂n

(

XIQm

)

− ∂m
(

XIQn

)

, (3.23)

and therefore the gauge field can be given by

AI
m = −XIQm, AI

τ = −e−2UXI . (3.24)

The rest of the components of (2.4) give, in addition to the conditions obtained in the

ungauged case (3.6) and (3.8), the following condition

gXIVI + e2U (−g + U̇) = 0. (3.25)

The equations (3.21) and (3.25) then imply

(

∂τ − g + U̇
)

ǫ = 0, (3.26)

which together with (3.6) imply that the Killing spinor equations are solved by

ǫ = egτ−Uǫ0, γ0ǫ0 = ǫ0. (3.27)

Turning to the second equation (2.5) and substituting the equations obtained so far, we

obtain the condition

(

3e2U∂τXI + 6gVI

)

∂iX
I = 0. (3.28)

Using special geometry relations, the γa and the γab terms vanish identically. Note that

F I = dAI , where the gauge fields one-forms are given by

AJ = −XJe0, (3.29)
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then the Bianchi identities hold automatically.

After some analysis it can be shown that the condition (3.28) and the Maxwell’s equations

are satisfied for our solution provided that the scalars satisfy

e2UXI =
1

3
HI ,

HI(t, ~x) = 3VI + e2gτ
N
∑

j=1

qI j

|~x− ~xj |2
(3.30)

together with the condition

d ∗4 w = 0. (3.31)

This completes the construction of the multi-centered solutions to D = 5, N = 2 gauged

Euclidean supergravity theories.

4 d-dimensional Solutions

In this section we present general multi-centered solutions to d-dimensional Einstein-Maxwell

theory with a cosmological constant. We start first by writing the d-dimensional de Sitter

space-time metric in terms of the so-called cosmological coordinates, this is given by

ds2 = −dτ 2 + e−2lτds2(d−1), (4.1)

where ds2(d−1) is the metric of (d − 1)-dimensional flat Euclidean space. The metric (4.1) is

a solution of d-dimensional Einstein gravity with a positive cosmological constant with

Rµν = (d− 1)l2gµν . (4.2)

Moreover, the metric

ds2 = dτ 2 + e−2lτds2(d−1), (4.3)

is a solution of d-dimensional Euclidean Einstein gravity with a negative cosmological con-

stant with

Rµν = −(d− 1)l2gµν . (4.4)

We now consider a general d-dimensional Einstein-Maxwell with a cosmological constant,

with Lagrangian density
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e−1Ld =R + ηFµνF
µν − Λ. (4.5)

Here η can be either +1 or −1. The Einstein gravitational equations of motion are given by

Rµν = −2η

(

FµλFν
λ −

1

2(d− 2)
gµνFρσF

ρσ

)

+
gµν

d− 2
Λ. (4.6)

If one considers the solution

ds2 =
η

H2
dτ 2 +H2/(d−3)e−2lτds2d−1 (4.7)

then it can be shown that this is a solution of (4.6) provided that

Λ = −η(d− 1)(d− 2)l2,

Fτi =

√

(d− 2)

2 (d− 3)

∂iH

H2
,

H = 1 +

d−1
∑

j=1

q j

|~x− ~xj |d−3
e(d−3)lτ . (4.8)

Here ∂i represents differentiation with respect to the coordinates of the base space de-

scribed by ds2d−1. For η = −1, we reproduce the solutions of [11, 12], i. e., multi-centrered

solutions with a positive cosmological constant. For η = 1, we obtain new multi-centered

solutions for the Euclidean theory with a negative cosmological constant at the expense of

introducing a Lagrangian with the opposite sign of the gauge terms. The systematic analysis

of the Euclidean four-dimensional cases was treated in [18] 2 .

To summarise, we have constructed multi-centered solutions for the gauged Euclidean

supergravity with vector multiplets as well as for d-dimensional Einstein-Maxwell theories.

It must be noted that the cosmological Kastor-Traschen solution was obtained as a class

of pseudo-supersymmetric solutions in the systematic analysis of minimal N = 2, D = 4

2Note that if we consider the metrics

ds2 =
1

H2
dτ2 +H2/(d−3)e−2lτds2d−1, (4.9)

and take ds2d−1 to be a flat metric with a Lorentzian signature, then these are solutions with H satisfying

the wave-equation in (d − 1)-dimensional Minkowski space. Four-dimensional solutions of this type in the

framework of ungauged N = 2, D = 4 supergravity coupled to vector multiplets were considered in [19].

These solutions deserve further analysis.
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de Sitter supergravity [20]. In five dimensions, the systematic analysis of [21] revealed that

solutions admitting Killing spinors in five-dimensional ungauged and de Sitter supergrav-

ity have respectively a hyper-Kähler and hyper-Kähler torsion (HKT) manifold as a four

dimensional space. The multi-centered solutions of [12–14] are special cases. A systematic

classification for the solutions of the gauged Euclidean theories should be carried out and

we hope to report on this in the future. Finally, it remains an open question to construct

true multi-centered solutions of the standard Lorentzian gauged Anti-de Sitter supergravity

theories.
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Phys. B510 (1998) 247; K. Behrndt, D. Lüst and W. A. Sabra, Stationary solutions of

N = 2 supergravity, Nucl. Phys. B510 (1998) 264.

[8] G. W. Gibbons, D. Kastor, L. A. J. London, P. K. Townsend and J. Traschen, Super-

symmetric selfgravitating solitons, Nucl. Phys. B416 (1994) 850.

[9] F. R. Tanghelini, Schwarzschild field in n dimensions and the dimensionality of space

problem, Nuovo Cimento 27 (1963) 636; R. C. Myers and M. J. Perry, Black holes in

higher dimensional space-times, Ann. Phys. 172 (1986) 304.

[10] W. A. Sabra, General BPS black holes in five dimensions, Mod. Phys. Lett. A13 (1998)

239; A. H. Chamseddine and W. A. Sabra, Metrics admitting Killing spinors in five di-

mensions, Phys. Lett.B426 (1998) 36; A. H. Chamseddine and W. A. Sabra, Calabi-Yau

black holes and enhancement of supersymmetry in five dimensions, Phys. Lett. B460

(1999) 63.

[11] D. Kastor and J. Traschen, Cosmological multi-black hole solutions, Phys. Rev. D47

(1993) 5370.

[12] L. A. J. London, Arbitrary dimensional cosmological multi-black holes, Nucl. Phys. B434

(1995) 709.

[13] J. T. Liu and W. A. Sabra, Multi-centered black holes in gauged D = 5 supergravity,

Phys. Lett. B498 (2001) 123; D. Klemm and W. A. Sabra, General (anti-)de Sitter

black holes in five-dimensions, JHEP 02 (2001) 031.

[14] K. Behrndt and M. Cvetic, Time-dependent backgrounds from supergravity with gauged

non-compact R-symmetry, Class. Quant. Grav. 20 (2003) 4177.

[15] W. A. Sabra and O. Vaughan, Euclidean supergravity in five dimensions, Phys. Lett.

B760 (2016) 14.

[16] J. M. Maldacena, The large N limit of super conformal field theories and

supergravity, Adv. Theor. Math. Phys. 2 (1998) 231; Int. J. Theor. Phys. 38 (1999)

1113; E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998)

11



253; S. S. Gubser, I. R. Klebanov and A. M. Polyakov, Gauge theory correlators from

non-critical string theory, Phys. Lett. B428 (1998) 105; O. Aharony, S. S. Gubser, J.

M. Maldacena, H. Ooguri and Y. Oz, Large N field theories, string theory and gravity,

Phys. Rept. 323 (2000) 183.

[17] M. Günaydin, G. Sierra and P. K. Townsend, The geometry of N = 2 Maxwell-Einstein

supergravity and Jordan algebras, Nucl. Phys. B242 (1985) 244; M. Günaydin, G. Sierra

and P. K. Townsend, Gauging the D = 5 Maxwell-Einstein supergravity theories: more

on Jordan algebras, Nucl. Phys. B253 (1985) 573.

[18] J. B. Gutowski and W. A. Sabra, Gravitational Instantons and Euclidean supersymme-

try, Phys. Lett. B693 (2010) 498; M. Dunajski, J. Gutowski, W. A. Sabra and P. Tod,

Cosmological Einstein-Maxwell instantons and Euclidean supersymmetry: anti-self-dual

solutions, Class. Quant. Grav. 28 (2011) 025007; M. Dunajski, J. B. Gutowski, W. A.

Sabra and P. Tod, Cosmological Einstein-Maxwell instantons and Euclidean supersym-

metry: beyond self-duality, JHEP 03 (2011) 131.

[19] W. A. Sabra, Phantom metrics with Killing spinors, Phys. Lett. B750 (2015) 237; M.

Bu Taam and W. A. Sabra, Phantom space–times in fake supergravity, Phys. Lett. B751

(2015) 297.

[20] J. B. Gutowski and W. A. Sabra, Solutions of minimal four dimensional de Sitter

supergravity, Class. Quant. Grav. 27 (2010) 235017.

[21] J. B. Gutowski, Uniqueness of five-dimensional supersymmetric black holes, JHEP 08

(2004) 049; J. Grover, J. B. Gutowski, C. A. R. Herdeiro and W. A. Sabra, HKT Geome-

try and de Sitter Supergravity, Nucl. Phys. B809 (2009) 406; J. Grover, J. B. Gutowski,

C. A. R. Herdeiro and W. A. Sabra, Five dimensional minimal supergravities and four

dimensional complex geometries, Contribution to the Proceedings of the Spanish Rel-

ativity Meeting 2008 in Salamanca, Spain, [arXiv:0901.4066 (hep-th)]; J. B. Gutowski

and W. A. Sabra, HKT geometry and fake five dimensional supergravity, Class. Quant.

Grav. 28 (2011) 175023.

12

http://arxiv.org/abs/0901.4066

	1 Introduction
	2 Euclidean D=5, N=2 Gauged Supergravity
	3 Supersymmetric Multi-centered Solutions
	4 d-dimensional Solutions

