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INTRODUCTION

Pre-shipment planning is a key element for efficient cargo 
management and successful transport with transportation means 
of limited capacity (ship, train, airplane etc.). This paper deals 
about maritime shipping industry but it could be easily extended 
for another transportation system. 

One of the most important problems in cargo transportation 
is to find the sequence of cargo distribution between multiple 
sources and multiple destinations which minimizes the 
transportation cost and better utilizes the ship capacity. The 
capacity management problem in shipping is extended to 
transportation problem of different cargo types transported by 
one mean on the route with multiple sources (loading ports) 
and multiple destinations (ports of discharge).

In example from Fig. 2 we have 5 ports. Loads of containers 
(contingents) are waiting to be transported as it is shown on 
Fig. 1. The loading amounts are given in percentage of total 
ship capacity. If all contingents have the same freight cost it is 
clear that the ship will avoid port 3, to reduce the transportation 
cost. The port 4 has to be on the route because the efficiency 
will be increased with load 4-5. The ship is barely full, only 
free ship capacity of 10 % is present from 1-2 and 10 % from 
4-5. But if we have higher freight cost for contingent 3-4 the 
routing sequence will include the port 3, as it is shown with 
dotted line on Fig. 2. In that case the profit is more important 
that the idle (unused) capacity on the board. Details are shown 
in Fig. 6 – Fig. 8.

Fig. 1. Potential transfer of container contingents between ports given in 
percentage of the total ship capacity

Such a problem appears in route management for multi-
purpose ships, tramper ships, container ships, where different 
contingents of cargo are transported by the ship with limited 
capacity; see [14]. Also, such an optimization tool can help to 
freight forwarder companies to select and manage the right 
mix of suppliers and to identify warehousing and distribution 
facilities best suited to customer needs. Very famous freight 
forwarders have extensive road and rail feeder network with 
links to their hubs, sub-hubs and gateways distributed all over 
the world; see [10, 11, 12].

Efficient heuristic for non-linear transportation 
problem on the route with multiple ports

Srećko Krile, Assoc. Prof.,
University of Dubrovnik, Croatia

ABSTRACT

We need a better transport planning tool for loading maximization and transport cost 
minimization on the voyage route with multiple loading/unloading (discharging) ports. The 
implemented heuristic algorithm is able to find out an appropriate routing sequence with 
maximal earnings and profit. In the same time it looks for minimal loading/discharging 
and transshipment costs, but with fulfillment of cargo demands in a number of ports on 
the route. The efficient algorithm for optimal transport of N cargo loads (e.g. contingent 
of containers) for ships with limited capacity is being developed. This efficient tool may 
significantly reduce transport costs and ensure maximal profit to freight forwarders. Also, 

it can be applied for supply chain management of different goods from numerous vendors. The proposed 
algorithm shows acceptable complexity that means that such optimization tool can be used in shipping 

supported with limited computing power. 

Key words: Non-linear Transportation Problem; Multi-destination Routing Problem; 
Minimum Cost Multi-Commodity Flow Problem; Capacity Management of Container Ships

POLISH MARITIME RESEARCH 4(80) 2013 Vol 20; pp. 80-86
10.2478/pomr-2013-0044



81POLISH MARITIME RESEARCH, No 4/2013

Fig. 2. Port distances. Trivial routing solution is represented with full line if 
all freight costs are equal for all contingents. Dotted line marks the routing 

solution if contingent from port 3 to port 4 is more valuable than others

Fig. 3. Trivial routing sequence 1-2-4-5 and the load amounts on board the 
ship during voyage

The amount of different cargo loads (e.g. container) is in 
firm correlation because the total capacity of the ship is limited, 
e.g. in GT (Gross Tonnage) or in TEU (Twenty-foot Equivalent 
Unit). Taking into account cargo demands (unloading) for each 
cargo, and various loading ports with sufficient amount of cargo 
(number of containers) waiting to be loaded, we need an optimal 
transportation plan to minimize shipping and loading/unloading 
expenses, transshipment cost and cost of ship’s stay in port 
(connected with duration of loading process). It can help in 
definition of ship capacity arrangement or for comparison of 
ships with different cargo capacity. 

The non-linear transportation problem (NTP) with multiple 
(several) ports of loading (sources) and multiple destinations 
(sinks) is a very hard (NP-hard) problem so it is still the subject 
of many scientific papers. The problem can be solved using 
different techniques, see [5] and [16] In special circumstances 
the NTP can be seen as Minimum Cost Multiple Commodities 
Flow Problem (MCMCF); see [1] and [2]. In this paper we 
applied such network optimization approach. The mathematical 
model is formulated in section 2. The algorithm implementation 
is explained in section 3. Testing results and explanation of 
basic heuristic approach can be seen in section 4. Due to 
the presence of certain limitations the improvement of the 
algorithm is made in section 5. This approach, consisting of 
successive iterations, decreases the calculation complexity to 
an acceptable level.

MATHEMATICAL MODEL

Different kinds of good (e.g. container contingents) are 
differentiated with i for i = 1, 2,..., N. The ship with defined 
cargo capacity is shipping from the first to the last port marked 
with K M, with a possible set of intermediate (transshipment) 
ports. The objective is to find a loading and transshipment 
strategy that minimizes the total cost incurred over the whole 
voyage route consisting of M ports on the path (M ≤ K). We 
need the loading plan for various cargo/container contingents 
in each port to serve N cargo loads from the loading port to 
destinations (ports of discharge). The loading strategy consists 
of the load/discharge plan for each port and for each cargo 
contingent. The starting port on the route can be only for loading 
and the last port on the route can be only for discharging; other 
ports on the route may be for both. 

The transportation problem can be represented by a flow 
diagram of non-oriented acyclic network. The problem can 
be solved using the network optimization technique as the 
shortest path problem; The problem can be solved using 
different techniques, see [13]. Figure 4 gives a network flow 
representation of MCMCF for N different cargo loads and 
M ports along the path. The common node “O” is the source 
of cargo for each cargo load with possible limitations. Some 
source ports can have limitation on charging capacity, but most 
of them are hub ports with capacity exceeding ship’s earning 
capacity. Each load has the strictly defined discharging port. 
In Figure 4 the i-th row of nodes represents the capacity state 
of i-th type of cargo/container after loading in port m. Links 
between the nodes represent the amount of cargo transported 
between the ports (in TEU). 

Such a transportation problem can be seen as the capacity 
expansion problem (CEP). For each cargo load we need 
appropriate ship space so it looks like expansion (load) or 
reduction (unload) of ship capacity in given bounds. Expansion 
and reduction can be done for each contingent separately but 
the free space can be reused for another contingent if previous 
load was discharged. 

In the mathematical model of CEP the following notation 
is used:
- i, j and k = indices for cargo load. The N facilities are 

not ranked, just present different types of cargo/container 
contingents from 1, 2,..., N.

- m = indices the port of loading (charging) or discharging. 
The number of port of calls on the voyage including the 
departure port is M (m = 1,.., M).

- u, v = indices for ports in sub-problem, 1 ≤ u,..., v ≤ M. All 
ports on the route are transshipment ports except 1 and M.

- xi,m = quantity of i-th load of cargo amounts (e.g. containers 
contingent) being loaded on board in port m (TEU). Total 
loading amount in port m:

(1)

- Lxi,m = limitations for each port and each cargo load. For 
convenience, the xi,m is assumed to be integer.

- ri,m = unloading of i-th cargo contingent in port m. For 
convenience, the ri,m is assumed to be integer. All unloading 
demands must be satisfied after discharging in last port 
on the route. Total discharging amount (unloading) in the 
port m.

(2)

- Ii,m = the amount of cargo load i at arrival in port m (or, 
equivalently, at departure from port m-1). Before the first 
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port of loading, Ii,m = 0. After the last port Ii,M+1 = 0 for 
i = 1,…, N. Capacity values cannot be negative.

- step Ii = the lowest step of possible capacity charging and 
discharging for capacity type i. In numerical examples it 
can be set, e.g. step Ii = 10 % of total capacity of the ship.

- zm   = the total loading/unloading amount for all types of 
cargo (containers) in port m, i.e.,

(3)

- Q = ship’s deadweights in tons:

(4)

- Qi,m = element of ship deadweight used for i-th cargo 
contingent

- ai = weight per unit of the i-th type of cargo unit 
(container)

- ship’s transport capacity (GT or TEU) used for i-th cargo 
load:

(5)

- ship’s transport capacity (GT or TEU):

(6)

- used ship capacity between ports m and m + 1; for any m, 
m = 1, …, M:

(7)

- shipping efficiency between ports m and m + 1:

(8)

- unused ship capacity in port m:

(9)

- lgi,m = average number of cargo units (TEU) of i-th type of 
cargo (container) that can be loaded on board or discharged 
from board on daily basis in port m.

The total cost over time includes:
a) Transshipment cost on distance between ports m and 

m+1:

cm = Cm · dm/s                              (10)

where:
Cm = transportation cost of the ship during voyage (per 

day);
dm = distance (in nautical miles or km);
s = speed of ship (in knots). Here it is not correlated with 

the number of cargo units (containers) on board, the 
influence on speed, oil consumption, agent taxes and 
freight expenses, but these effects could be easily 
incorporated. In our examples the constant speed of the 
ship is incorporated in the value Cm. 

b) Loading and discharging cost in port m:

(11)

where:
Hm = cost of ship stay in port m (per day).

The expenses for total duration of voyage and ship’s stay in 
port during loading can be expressed as:

(12)

Fig. 4. A network flow presentation of the trasnportation problem
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c) Freight cost for transshipment of cargo type i is making 
profit fi,m to forwarder company. We want to incorporate 
minimization of expenses with maximal profit in the same 
optimization process, so we have to introduce the freight 
cost. We can do that by the exponential cost function 
showing the economy of scale:

(13)

 where ai,m represents the factor of concavity for an 
appropriate cargo type i and for appropriate transshipment 
conditions on the route (m = 1, …, u, v, …, M). In some 
cases the constant value Ai could be used as the freight 
cost fi without the influence of cargo amount on board. The 
optimization process will find out the most attractive cargo 
loads for shipping revenue.

The optimization problem can be formulated as minimization 
of the objective cost function - as follows:

(14)

so that we have:

(15)

(16)

for m = 1, 2,.., M; i = 1, 2,..., N
Generally, we try to find out the optimal loading/unloading 

sequence with maximal freight costs and minimal expenses; see 
[4] and [5]. It is a very demanding dual max/min transportation 
problem but it can be solved in a very simple way. The 
minimization of the expenses should have a strong influence 
on maximal profit.

ALGORITHM DEVELOPMENT

Instead of a nonlinear convex optimization that can be very 
complicated and time-consuming, the network optimization 
methodology has been efficiently applied. The main reason 
for such an approach is the possibility of use of discrete 
capacity values for a limited number of contingent loads, 
which improves significantly the optimization process. The 
multi-constrained problem (MCP) can be formulated as the 
Minimum Cost Multi-Commodity Flow Problem (MCMCF). 
Such a problem (NP-complete) can be easily represented by the 
multi-commodity single (common) source/multiple destination 
network; see [2] and [3]. 

The definition of the single-constrained problem for CEP is 
to find a path P from starting to end port such that: 

(17)

where:

Ii,m ≤ Lxi,m                             (18)

satisfying the additional condition: 
max. distance of:

(19)

for i = 1, …, N; m = 1,…, M

where LON is the maximal length of the voyage in miles.

A path obeying the above conditions is said to be feasible. 
Note that there may be multiple feasible paths between the 
starting port and the ending port (node). 

Generalizing the concept of the capacity states after loading/
unloading of each contingent (load) m between ports on the 
route we define as a capacity point - αm. 

αm = (I1,m, I2,m,..., IN,m)                    (20)

α1 = αM+1 = (0, 0,..., 0)                   (21)

Let Cm be the number of capacity point values at port m 
(load value for each contingent after departure from the port); 
see Fig. 4. Only one capacity point is for the starting port and 
one for the ending port on the route: C1 = CM+1 = 1. The total 
number of capacity points is: 

(22)

Horizontal links (branches) represent capacity flows 
between two neighbor ports. 

Formulation (21) implies that zero values are before loading 
at the starting point and after unloading at the ending point. 

The network optimization can be divided into two steps. 
At first step the minimal transportation weights du,v between 
all pairs of capacity points (neighbor ports on the route) are 
calculated. It is obvious that in CEP we have to find many 
cost values du,v(αu, αv+1) that emanate two capacity points of 
neighbor links (common router), from each node (u, αu) to node 
(v + 1, αv+1) for v ≥ u. Calculation of this value is the capacity 
expansion sub-problem (CES). 

The most of the computational effort is spent on computing 
the sub-problem values. That number depends on the total 
number of capacity points, see (22). The total number of all 
possible du,v(αu, αv+1) values representing CES between two 
capacity points is: 

(23)

At second step we are looking for the shortest path in the 
network with the former calculated weights. 

As the number of all possible du,v(αu, αv+1) values depends 
on the total number of capacity points it is very important to 
reduce that number (Cp). This can be done through imposing 
of appropriate capacity bounds or by introduction of additional 
constraints (e.g. max. shipment delay). Through numerical 
test-examples we’ll see that many loading / unloading solutions 
cannot be a part of the optimal expansion sequence. It is the way 
how the algorithm can be significantly improved. So we can 
obtain the near-optimal result with significant computational 
savings. The objective function for CES can be formulated as 
follows:

(24)

where: 
(25)

Di,m = ; k ≠ l             (26) 

for m = 1, 2,..., M+1; k, l = 1, 2,..., N.
For every CES many different solutions can be derived 

depending on Di value. Each of them represents the capacity 
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state of each contingent onboard the ship with loading and 
unloading values (amounts) in appropriate port. 

In the objective function the total cost includes some 
different costs (weights). We want to incorporate minimization 
of expenses with maximization of the profit in the same 
optimization process. All expenses have to have negative 
polarity; see (24). The freight cost is denoted with fi,m(Ii,m). 
We can differentiate the freight cost for each container load 
(contingent).

The transportation cost is denoted with cm (dm), while the 
loading and discharging cost is denoted with hm(zm). The idle 
capacity cost gm (Imax-Im) could be taken in account, but only 
as a penalty cost to force the usage of the maximum capacity 
(prevention of unused/idle capacity). The port taxes can be 
incorporated with hm. Costs are often represented by the fix-
charge cost or by a constant value. It should be assumed that all 
function costs are concave and non-decreasing (some of them 
reflecting economies of scale) and they differ from one port to 
another. The objective function is necessarily the non-linear cost. 
With variation of cost parameters the optimization process could 
be easily managed, looking for benefits of the most appropriate 
transportation solution; see [6]. Instead of maximization of 
the profit we can use minimization of the reciprocal value or 
minimization of negative value of the objective function (24). 
In both cases it leads to maximization of the profit. 

Suppose that all links (sub-problems) in diagram from 
Fig. 5. are calculated, the optimal solution for CEP can be found 
by searching for the optimal sequence of capacity points and 
their associated link state values; see Fig. 2. Then the Dijkstra’s 
or Floyd’s algorithm, or any similar algorithm, can be applied; 
see [7] and [13]. 

Fig. 5. The CEP problem can be seen as the shortest path problem for an 
acyclic network in which the nodes represent all possible values of capacity 
points. Links connecting neighbor ports on the route represent CES values

The complexity of the proposed algorithm is O(Cp
2). As we 

said before Cp is in a strong correlation with the number of ports 
M and the number of contingents N but also with the capacity 
increment step Ii that can vary from contingent to contingent. 

If the contingent capacity is given in TEU we have the 
problem with large number of capacity states. Instead, we use 
contingent amounts given in the percentage of the total ship 
capacity; see Fig. 1.

In this research the load amount on board does not influence 
on voyage speed neither to oil consumption but it could be 
easily incorporated. The loading strategy consists of loading/
unloading plans for each port and for each contingent. The 
starting port on the route can be only for loading purpose and 
the last port is only for unloading; other transshipment ports 
may be for both. 

Some limitations on the ship capacity can exist, but today 
most ports have loads not exceeding the ship capacity.

RESULTS OF BASIC HEURISTIC

In the route definition shown, for example in Fig. 2 we 
have the starting port 1 and the ending port 5, but any of three 
middle ports can also be included in the route.

All distances between ports are defined in miles. From 
Fig. 1 we can see traffic demands (possible transfer of 
contingents) given in the percentage of the total ship capacity. 
That information is gathered through market research or from 
statistics. From input data we can see seven contingents waiting 
for transport. It is obvious that the loads have to be transported 
on relation: 1-2 (40 %); 2-5 (50 %); 1-4 (50 %); 2-4 (20 %) 1-5 
(20 %), 3-4 (30 %) and 4-5 (40 %), but we have no demands 
from port 2 to port 3. For simplicity all costs elements are equal 
(Ai,m = 0, Bi,m = 15.0/ % of capacity; Ci,m = 3.0/km; H i,m = 1.0/ % 
of capacity; G i,m = 0; and concavity for all costs ai,m = 0.85.

Fig. 6. Optimal solution given by loading 
and unloading amounts in each port on the route

Fig. 7. Ship’s occupancy on the route with particular contingents onboard

Only the freight cost for contingent 6 (3-4) is Bi,m = 30,0 that 
is significantly higher. In this example we force travelling across 
the port 3 as we have contingent from 3-4 with valuable load. 
According to all transport costs and the price determination 
(freight cost, oil consumption, transshipment cost, port taxes 
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etc.) we can design the route which will be the most profitable. 
Figures 6 and 7 present the resulting (best) route. Fig. 6. shows 
the loading and unloading amounts in appropriate port and 
Fig.7 shows the load amounts of every contingent on board the 
ship during the voyage. For the basic option we used the same 
capacity increment step Ii for all contingents and it is 10 %. 
We are aware that such capacity resolution is not satisfactory 
and, in general, we should be far away from the optimal result. 
In that case we have 1438 capacity states and 1438 x 1438 
CES values.

Fig. 8. Efficiency of the ship on the route

For our test-example the best routing option is from port 1 
to port 2, to port 3, to port 4, and, finally, to port 5. The solution 
does not extract port 3 because it is more profitable to go this 
way (in spite of longer distance). 

Figure 8 presents the efficiency of the ship, so idle capacity 
during the voyage is obvious. Only from port 3 to port 4 we 
have no idle capacity (100 %) on board. For this example the 
cost elements are similar but they can be differentiated from 
port to port and from contingent to contingent.

ALGORITHM LIMITATIONS AND 
POSSIBLE IMPROVEMENT

As we said before, the crucial element is the number of 
capacity points Cp. In our numerical example the starting 
capacity increment is 10 % and the number of capacity point 
is 1438. Calculation of so many CES values could be very 
demanding but it is still acceptable. If we decide to have 
smaller capacity increment step Ii the number of capacity points 
drastically increases. 

For example, the capacity of a large container ship can be 
5.000 - 10.000 TEU. The VLCS class (Very Large Container 
Ships) has more than 10.000 TEU. If we use the capacity 
increment of 10 % it means 500 - 1000 TEU. Normally we 
need better resolution e.g. 50 - 100 TEU or less. In that case 
we have to use step Ii = 1 % or 0,1 % of ship capacity. If we 
decide to apply for step Ii the value of 1 % instead, the number 
of capacity states rises up to approx. 15 000, which means that 
we have to calculate approx. 15 000 x 15 000 CES values. Such 
approach has no perspective in case of shipping supported with 
average computation power.

As we usually have limitation in reliable computation 
up power (average PC) we have to decrease that number 
somehow. It is clear that we need another approach to increase 
the resolution, but the corresponding computing complexity 
has to be acceptable.

So we decided to calculate it in a number of steps (with 
successive iterations). The first step is shown in Fig. 6 and Fig. 
7. The numerical values are shown in table 1. After that we can 
shorten the range of capacity points using some of artificial 
intelligence techniques. For example, the calculated routing 
sequence shows that the second contingent is in amount of 20 % 
so we can use the range from 15 – 25 only. For some contingents 
we use step Ii = 5 % and for some 1 %. Capacity limitations for 
each contingent are given in table 1. In that case we have the 
number of capacity points Cp = 3483 (instead of millions). It 
is obvious that the problem complexity is still acceptable; see 
table 1. Also, we got significantly better result. 

Tab. 1. Results for the routing sequence in three successive iterations

1. iteration Cost elements 2. iteration 3. iteration

Load
i

Max. 
capacity

Bi,m
fi,m = 

Bi,mIi
ai,m

Ci
ci = 

Cidm
ai,m

Hi
hi = 

HiZi
ai,m Cp

Load/Max. 
capacity
Delta = 5 Cp

Load/Max. 
capacity
Delta = 2 Cp Load

1 40 (0-40)
Istep = 10 % 15. 3. 2.

C1 = 89
C2 = 291
C3 = 968
C4 = 89
C5 = 1

40 (35-40)
Istep = 5 %

C1 = 132
C2 = 1188
C3 = 2126
C4 = 36
C5 = 1

40 (38 – 40)
Istep = 1 %

C1 = 75
C2 = 625
C3 = 1293
C4 = 75
C5 = 1

40

2 50 (0-50)
Istep = 10 % 15. 3. 2. 20 (15-25)

Istep = 5 %
20 (18-22)
Istep = 1 % 18

3 50 (0-50)
Istep = 10 % 15. 3. 2. 20 (15-25)

Istep = 1 %
17 (15-19)
Istep = 1 % 17

4 20 (0-20)
Istep = 10 % 15. 3. 2. 20 (15-20)

Istep = 1 %
18 (16-20)
Istep = 1 % 18

5 20 (0-20)
Istep = 10 % 15. 3. 2. 10 (5-15)

Istep = 1 %
15 (13-17)
Istep = 1 % 17

6 30 (0-30)
Istep = 10 % 30. (15.) 3. 2. 30 (25-30)

Istep = 5 %
30 (28-30)
Istep = 1 % 30

7 40 (0-40)
Istep = 10 % 15. 3. 2. 40 (35-40)

Istep = 5 %
40 (38-40)
Istep = 1 % 40

Total 
CES 1438 3483 2069

Profit 1926,33 1931,53 1932,39
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complexity to an acceptable level. In the same time it ensures to 
forwarder managers very fine modulation of many input values, 
leading the optimization process in wanted direction. 

With such optimization tool the shipping companies (freight 
forwarder) can ensure significant savings on multiport routes 
and be more profitable by following the demands and easily 
adapt to their changes. Also, such innovative solutions can 
optimize the supply chains and reduce the logistic costs.
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In the next step (third iteration) we applied the smaller range 
of capacity e.g. 18 - 22. Also, we can use smaller increment step 
Ii = 1 % for all contingents. In that case we have 2069 capacity 
states that is still an acceptable number. It means that number 
of possible sub-problems Nd is about 4 million (instead of 
hundreds of millions). From Fig. 9 we can see that the routing 
sequence slightly differs from the previous result and the profit 
is increasing again. From Fig. 10 it is clear that the idle capacity 
of the ship on the route is lower. With this step by step method 
we can increase the resolution of the capacity states significantly 
and because of that we can reach much closer to the optimum. 

Fig. 9. After third iteration the profit is increased

Fig. 10. Efficiency of the ship is better than before

Through many test examples it is clear that the presented 
approach functions very well and the complexity of the 
calculation process is under control. Without such step by step 
calculation method the complexity may be too big. 

CONCLUSIONS
The proposed algorithm shows ability to solve very complex 

transportation problems with many loading/unloading ports 
and with many contingents of the load. The most important 
benefit is that the algorithm can solve nonlinear problems which 
normally occur in practice. Also, the existing limited calculation 
power in shipping surrounding makes the algorithms with 
huge complexity useless. The present approach consisting of 
a number of successive iterations decreases the calculation 


