
 

A discrete-time queueing model with periodically scheduled
arrival and departure slots
Citation for published version (APA):
Leeuwaarden, van, J. S. H., Denteneer, T. J. J., & Resing, J. A. C. (2003). A discrete-time queueing model with
periodically scheduled arrival and departure slots. (Report Eurandom; Vol. 2003026). Eurandom.

Document status and date:
Published: 01/01/2003

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2020

https://research.tue.nl/en/publications/a-discretetime-queueing-model-with-periodically-scheduled-arrival-and-departure-slots(4c597726-cbcb-4c34-93e6-e10a1b0a007a).html


A discrete-time queueing model with periodically
scheduled arrival and departure slots

Johan van Leeuwaarden1, Dee Denteneer2, and Jacques Resing3

1 EURANDOM
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

2 Digital Signal Processing Group
Philips Research

5656 AA Eindhoven, The Netherlands

3 Department of Mathematics and Computer Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract

We consider a time-slotted queueing model where each time slot can either be an arrival
slot, in which new packets arrive, or a departure slot, in which packets are transmitted
and hence depart from the queue. The slot scheduling strategy we consider describes
periodically, and for a fixed number of time slots, which slots are arrival and departure
slots. We consider a static and a dynamic strategy. For both strategies, we obtain
expressions for the probability generating function of the steady-state queue length and
the packet delay. The model is motivated by cable-access networks, which are often
regulated by a request-grant procedure in which actual data transmission is preceded by
a reservation procedure. Time slots can then either be used for reservation or for data
transmission.

1 Introduction

We consider a time-slotted queueing model where each time slot can either be an arrival slot,
in which new packets can arrive, or a departure slot, in which packets can be transmitted and
hence depart from the queue. The decision whether a time slot is an arrival or a departure
slot is periodically made for a fixed number of time slots. Observe that the arrival process
in this model depends on the service process, which differs from conventional assumptions on
periodically structured queueing models (e.g. Van Eenige [13], Norimatsu et al. [9], Kang &
Steyaert [12]).

The model is motivated by data transmission procedures in cable networks. These networks
are often regulated by a request-grant mechanism in which actual data transmission is pre-
ceded by a contention-based reservation procedure to prevent collisions of data packets. Both
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the reservation procedure and the actual data transmission take place on the same commu-
nication channel. Hence, each time slot (corresponding to the time needed to send a 64 byte
data packet on the channel) can either be used for the reservation procedure or for the data
transmission. Our discrete-time queue models the size of the data queue, i.e. the number
of data packets for which transmission has already been requested, but that are still waiting
to be transmitted. Clearly, if a time slot is used for reservation, new packets can enter this
queue (arrival slot), and if a time slot is used for data transmission, a packet can leave this
queue (departure slot).

Cable networks are characterised by a substantial data transmission delay, due to which
scheduling decisions must be taken in advance, so that they can be communicated to the
stations. Similarly, reservations must travel from the station to the scheduler, again causing
delay. Consequently, there is a time lag between a reservation and the corresponding data
transmission and this time lag must consist of a number of time slots that is greater than or
equal to the round-trip time in the network. Thus one is naturally led to consider periodical
scheduling, for which time slots are grouped together into frames composed of both reservation
and transmission slots. The nature of each slot in the frame is periodically determined and
broadcast to all the stations. The timing is such that each station is aware of the layout of a
frame before it actually starts.

In this paper we consider two possible scheduling strategies. The first strategy uses no
information about the system’s state and leads to a fixed boundary model. Within a frame, a
fixed number of arrival slots are scheduled first, and the remaining slots are departure slots.
Clearly, if there is no data to transmit during a departure slot, this capacity is lost. Therefore,
the second strategy considered, is one that uses the unused departure slots as arrival slots.
This flexible strategy leads to a flexible boundary model, which emphasizes the fact that the
division of a frame into arrival and departure slots can vary from one frame to another.

Intuitively, a system implementing the flexible strategy is more efficient than a system
implementing the fixed strategy. Yet, a system designer will want to have a clear quantitative
understanding of the benefits of the flexible strategy, in order to offset it against the costs. It
is the purpose of this paper to provide such understanding by analysing the delay in either
model. For this, we will first consider the backlog: the size of the data queue at the frame
boundaries. The probability generating function of the stationary distribution of the backlog
in either model can be determined following a classical procedure from Bailey [2]. Due to
the inclusion of the periodically scheduled reservation slots however, it is more complicated
to analyse the stationary distribution of the delay in such networks. Here, we will use the
techniques developed in Bruneel & Kim [4] and Kang & Steyaert [12].

In Denteneer et al. [5] bounds on the mean queue length and mean packet delay have been
derived for the fixed boundary model. In Sala et al. [11] the flexible boundary model has
been investigated through simulation, which shows that inducing arrival slots at the beginning
of each frame might positively influence the system’s performance. It is therefore that we
investigate the same kind of strategy. The fixed and flexible boundary model are examples of
queueing models with periodic service. In Van Eenige [13] these have been applied to traffic
lights and logistic systems, and in Norimatsu et al. [9] to an IEEE 1394 serial bus, where in
both publications it is assumed that the arrival process is continuous. In Kang & Steyaert
[12] a queue with both periodic service and a correlated arrival process is investigated. As
mentioned, in the present paper the arrival process stops during departure slots, a feature
that is also captured by Resing & Örmeci [10] when considering a tandem queue with coupled
processors.
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The remainder of this paper is structured as follows. In Section 2, we describe and motivate
the models in more detail. In Section 3, we analyse the stationary distribution of the backlog;
the fixed and flexible boundary model are analysed in Section 3.1 and 3.2, respectively. A
closed form expression for the probability generating function of the packet delay for both
models is derived in Section 4. A numerical comparison of the two strategies is given in
Section 5, followed by some suggestions for future research in Section 6.

2 Models

In this section we first introduce both the fixed and flexible boundary model. Next, we discuss
the model assumptions in view of the cable network application.

Time is assumed to be slotted, with a given slot duration. In case of the fixed boundary
model the schedule of each frame is fixed. That is, a frame defined as f consecutive slots
consists of c arrival slots followed by s := f − c departure slots. Let the random variable
Yti denote the number of arriving packets during the ith arrival slot of frame t, and assume
that the sequence Yti, t = 1, 2, . . . is i.i.d.. We further assume that packets that arrive during
frame t cannot depart from the queue until the beginning of frame t + 1. This leads one to
consider the following recursion

Xt+1 = (Xt − s)+ +
c∑

i=1

Yti, (1)

where Xt denotes the backlog at the beginning of frame t and x+ := max(0, x).
The fixed boundary model seems wasteful, in the sense that if the backlog is smaller than

s, it leaves time slots unused which could alternatively be scheduled as arrival slots. This
motivates the flexible boundary model in which these unused time slots are designated as
arrival slots, yielding the following recursion

X̃t+1 = (X̃t − s)+ +
c+(s−X̃t)+∑

i=1

Yti, (2)

where, for notational purposes, we add a wiggle to the random variables related to the flexible
boundary model. We refer to the c arrival slots that are scheduled at the beginning of every
frame as forced arrival slots.

We now comment on the model assumptions for both (1) and (2) in view of the cable
network application. As mentioned, the round-trip delay inherent to such cable networks
causes one to consider frame based scheduling, see e.g. Golmie et al. [6, 7]. Usually, the
frame length, f , and the number of forced arrival slots, c, are chosen so that s is greater than
or equal to the round-trip time, d say. Thus, one ensures that a schedule for frame t + 1 can
include all successful requests from these forced arrival slots and can still be communicated
to the stations on time, i.e. before frame t + 1 actually starts. Specifically, this ensures that
arrivals during these forced arrival slots of frame t can potentially depart in frame t + 1.

This implies though that, in case of the flexible boundary model, we must be careful about
the exact location of the additional arrival slots. If they are located early within a frame,
they may still be included in a schedule for the next frame. If however, such an additional
arrival slot is located at the end of frame t, the corresponding request cannot be included
in a schedule for frame t + 1 and must await the schedule for frame t + 2. In this paper,
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we have taken an optimistic viewpoint and have assumed that all successful reservations in
the additional arrival slots of frame t can already be scheduled in frame t + 1. More realistic
models which account for the exact location of these additional arrival slots are more involved
and are part of further research, as discussed in Section 6.

It remains to comment on the independence of the Yti, as assumed in both models. Clearly,
the correlation between the Yti depends on the exact way in which the request procedure is
organised. For cable networks, the requests are usually transmitted in contention with other
stations and based on ALOHA or contention trees. These procedures have a considerable
randomness in the order in which stations are actually successful: the time that a station has
already been active in the contention procedure is not very significant as to its chances of
being the next station to successfully transmit its request. This implies that the independence
assumption made should be a good approximation to reality, see e.g. Boxma et al. [3].

In Section 4 we will give an exact analysis of the delay properties of both the fixed and
flexible boundary model. In order to do so, we must first characterise the backlog in either
model, which is the topic of the next section.

3 Backlog

3.1 Backlog in fixed boundary model

Let us denote by Y a random variable having the same distribution as the number of arriving
packets during one arrival slot (i.e. Yti

d= Y for all t and i where d= denotes equality in
distribution), and we denote by Y (z) the corresponding probability generating function (pgf)

Y (z) =
∞∑

k=0

Pr[Y = k]zk, |z| ≤ 1.

Clearly, to have stability, it is required that the number of arriving packets is less than the
maximum number of packets that can be transmitted, and hence Y should satisfy

cEY < s. (3)

We have denoted the backlog at the beginning of frame t by Xt. Then {Xt, t ∈ Z
+} constitutes

a discrete-time Markov chain, with transitions governed by (1). As is easily verified, the
following conditional expectation holds

E(zXt+1 |Xt = k) =

{
Y (z)c, k < s,

zk−sY (z)c, k ≥ s.
(4)

For reasons of brevity, we introduce the random variable A denoting the c-fold convolution
of Y, that is, the pgf of A is given by A(z) = Y (z)c.

Let X denote the steady-state distribution of the backlog, with

xk = Pr[X = k] = lim
t→∞Pr[Xt = k], k = 0, 1, 2, . . .

From (4) it follows that the pgf of X is given by (see e.g. [4])

X(z) =
A(z)

∑s−1
k=0[z

s − zk]xk

zs − A(z)
, |z| ≤ 1. (5)
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In this expression there are still s unknowns x0, . . . , xs−1, which can be found using the
following classical approach (see e.g. Bailey [2]). With Rouché’s theorem, it can be shown
that the denominator of (5) has s zeros on or within the unit circle |z| ≤ 1. Since a pgf is
analytic and well-defined in |z| ≤ 1, the numerator of X(z) should vanish at each of the zeros.
This gives s equations. One of the zeros equals 1, and leads to a trivial equation. However,
the normalization condition X(1) = 1 provides an additional equation. Using l’Hôpital’s rule,
this condition is found to be

s − EA =
s−1∑
k=0

xk(s − k), (6)

which equates two expressions for the mean number of unused departure slots per frame.
Explicit expressions for the moments of the backlog can be obtained by taking derivatives

of X(z). For example, evaluating the first derivative of X(z) at z = 1 yields

EX =
VarA

2(s − EA)
+

s + EA

2
−

s−1∑
k=0

xk(s − k)2

2(s − EA)
. (7)

So far we looked at the backlog at the beginning of a frame. We can also model the behavior
of the backlog throughout a frame. Denote by X[n], n = 1, 2, . . . , f , the steady-state backlog
at the end of the n-th slot of a frame. The first c slots of a frame are arrival slots. This
implies that the pgf of X[n] is given by

X[n](z) = X(z)Y (z)n, n = 1, . . . , c. (8)

The remaining s slots are departure slots, yielding

E[zX[c+n] |X = k] =

{
A(z), k < n,

A(z)zk−n, k ≥ n.
(9)

Summing over all possible values of X then gives

X[c+n](z) = A(z)
[ n−1∑

k=0

xk +
1
zn

[X(z) −
n−1∑
k=0

xkz
k]
]
, n = 1, . . . , s. (10)

The expectation of the steady-state backlog throughout a frame then follows from evaluating
the first derivative of (8) and (10) at z = 1. That is

EX[n] =

{
EX + nEY, n = 1, . . . , c,

EX + EA − n + c +
∑n−c−1

k=0 xk(n − c − k), n = c + 1, . . . , f .
(11)

3.2 Backlog in flexible boundary model

As for the fixed boundary model, the first c slots of a frame are arrival slots. However, the
unused departure slots can be turned into arrival slots as well. We have referred to this
procedure as the flexible boundary model. The extra arrival slots are scheduled at the end of
a frame. So, within a frame, the c forced arrival slots are scheduled first, then the departure
slots (if any), and finally the additional arrival slots (if any). Stability condition (3) still holds
and is equivalent to requiring c to be smaller than f/(EY + 1). Although from a practical
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perspective it is more natural to schedule the additional arrival slots at the beginning of a
frame, we choose this type of scheduling to simplify the analysis of the packet delay later on.

With X̃t representing the backlog at the beginning of frame t, {X̃t, t ∈ Z
+} constitutes

a discrete-time Markov chain, with transitions governed by (2). Note that the following
conditional expectation holds

E(zX̃t+1 |X̃t = k) =

{
Y (z)f−k, k < s,

zk−sA(z), k ≥ s.
(12)

Because in the flexible boundary model all slots are used, the mean number of arrival slots
per frame, denoted by c∗, is fixed and independent of c, i.e.

c∗ =
f

EY + 1
, (13)

as each arrival slot requires 1 + EY slots in total: the arrival slot itself and EY slots for
transmitting the packets.

Let X̃ denote the steady-state distribution of the backlog, with

x̃k = Pr[X̃ = k] = lim
t→∞Pr[X̃t = k], k = 0, 1, 2, . . . .

From (12), it follows that the pgf of X̃ is given by

X̃(z) =
A(z)

∑s−1
k=0[z

sY (z)s−k − zk]x̃k

zs − A(z)
, |z| ≤ 1. (14)

As in Section 3.1, the s zeros of zs − A(z) on or within the unit circle |z| ≤ 1 can be used to
determine x̃0, . . . , x̃s−1. Using l’Hôpital’s rule, the normalization condition X̃(1) = 1 reads

s − EA =
s−1∑
k=0

x̃k(s − k)(EY + 1), (15)

which equates two expressions for the number of slots per frame that are used for arrivals and
departures of packets that arrived in other than the c forced arrival slots.

The mean backlog in case of the flexible boundary model is given by

EX̃ =
VarA

2(s − EA)
+

s + EA

2
−

s−1∑
k=0

x̃k(s − k)2(1 + EY )
2(s − EA)

+
VarY

2(EY + 1)
+ EY

[ s−1∑
k=0

x̃k(s − k)2(1 + EY )
2(s − EA)

]
. (16)

Expression (16) consists of the mean backlog corresponding to the fixed boundary model (7)
and non-negative terms that solely depend on the mean and variance of Y . This follows from
the observation that

s−1∑
k=0

xk(s − k)2

2(s − EA)
=

s−1∑
k=0

x̃k(s − k)2(1 + EY )
2(s − EA)

, (17)

as shown in Denteneer et al. [5].
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Figure 1: EX̃ for f = 18, EY = 1 for Poisson
and geometric distribution.
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Figure 2: VarX̃ for f = 18, EY = 1 for
Poisson and geometric distribution.

Using the same notation as for the fixed boundary model, the behavior of the backlog
throughout a frame follows from

X̃[n](z) = X̃(z)Y (z)n, n = 1, . . . , c, (18)

and

E[zX̃[c+n] |X̃ = k] =

{
Y (z)c+n−k, k < n,

A(z)zk−n, k ≥ n,
(19)

and consequently,

X̃[c+n](z) = A(z)
[ n−1∑

k=0

x̃kY (z)n−k +
1
zn

[X̃(z) −
n−1∑
k=0

x̃kz
k]
]
, n = 1, . . . , s. (20)

Hence,

EX̃[n] =


EX̃ + nEY, n = 1, . . . , c,

EY [c +
∑n−c−1

k=0 x̃k(n − c − k)]
+EX̃ − n + c +

∑n−c−1
k=0 x̃k(n − c − k), n = c + 1, . . . , f .

(21)

Example 3.1. Consider a frame length of 18 slots, and Y distributed according to a Poisson
and geometric distribution

Pr[Y = k] = e−λ λk

k!
; Pr[Y = k] = (1 − p)pk, k = 0, 1, . . . ,

respectively, both with mean 1 (λ = 1, p = 1/2). The mean and variance of X̃ that correspond
to these distributions are shown by Figure 1 and Figure 2 for various values of c. In terms of
the mean backlog, having forced arrival slots at the beginning of the frame is disadvantageous.
However, the variance of the backlog is reduced by increasing c. This stabilizing effect could
be very welcome when the arrival process of packets is volatile.
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Remark 3.2. In Jacquet et al. [8] a scheduling strategy called implicit framing is studied.
For this strategy, no frame structure is used and priority is given to departure slots. Periods
of consecutive arrival slots are implicitly closed by the first data packet to be transmitted.
When all data packets have been transmitted, a new period of consecutive arrival slots, in
which reservation takes place, is restarted. Note that such an implicit framing strategy is in
fact the flexible boundary model with f = 1 and c = 0. Jacquet et al. [8] demonstrate that in
terms of the average delay implicit framing is the best strategy within the class of the flexible
boundary model. In the case of implicit framing, the pgf of X̃ reduces to

X̃(z) =
x̃0(zY (z) − 1)

z − 1
=

1 − zY (z)
(1 − z)(EY + 1)

, |z| ≤ 1, (22)

where x̃0 equals 1/(EY + 1) according to the normalization condition (15). Note that X̃ can
be interpreted as the residual lifetime of the random variable Y + 1. To see this, divide the
time axis in cycles of one arrival slot plus the number of transmission slots Y granted during
that arrival slot. The residual lifetime is an arbitrary point in a cycle, and since in every
time slot during this cycle exactly one packet is transmitted, the residual lifetime equals the
backlog. We stress though that implicit framing is less useful to model the data queue in
cable networks, because the delay prevents that a request made by a station in time slot s is
granted in time slot s + 1.

4 Packet delay

In deriving the packet delay distribution, the periodically scheduled departures cause some
difficulties, as shown next. We first present some analysis that holds for both the fixed and
flexible boundary model, after which we complete the analysis for both models separately.

Assume that the packets are transmitted in order of arrival. Tag an arbitrary packet, and
let the random variable T denote the slot within the frame in which this packet arrives,
T ∈ {1, 2, . . . , f}. Assume that the packet arrives during slot T = m. Introduce U[m] as the
number of packets present at the end of the frame that contribute to the tagged packet’s
delay. Then U[m] consists of the backlog at the end of the frame that was already present at
the end of the previous frame, the packets that arrive in the same frame in arrival slots before
T , and the packets that arrive within the same arrival slot but before the tagged packet. We
then express U[m] in terms of two integer random variables F[m] and R[m]

U[m] = sF[m] + R[m], F[m] ≥ 0, 0 ≤ R[m] ≤ s − 1, (23)

where F[m] denotes the number of complete frames enclosed in the tagged packet’s delay, and
R[m] the number of packets that will be transmitted during the same frame as the tagged
packet, but before it. Introduce D[m] as the random variable representing the delay of a
packet that arrives during arrival slot m, defined as

D[m] = f − m + fF[m] + c + R[m] + 1. (24)

That is, f − m slots till the beginning of the next frame, F[m] frames, c forced arrival slots,
R[m] slots within the frame of transmission, and the actual transmission slot of the tagged

8



packet. The pgf of D[m] then reads

D[m](z) =
∞∑
i=0

Pr[D[m] = i]zi

= zf−m+c+1
∞∑

j=0

s−1∑
k=0

Pr[F[m] = j, R[m] = k]zfj+k

= zf−m+c+1
∞∑

j=0

s−1∑
k=0

Pr[U[m] = sj + k]zfj+k, |z| ≤ 1. (25)

From (25) it follows that

D[m](z
s) = zs(f−m+c+1)

s−1∑
k=0

zskϑmk(z), |z| ≤ 1, (26)

where the functions ϑmk(z) are defined as

ϑmk(z) =
∞∑

j=0

zsfjPr(U[m] = sj + k). (27)

The problem now is that (27) does not allow a direct substitution of the pgf of U[m]. To
circumvent this, we use a basic approach that can be found in e.g. Bruneel & Kim [4] or
Kang & Steyaert [12].

4.1 Basic approach

Substituting l = sj + k in (27) yields

ϑmk(z) =
∞∑
l=0

z(l−k)fPr(U[m] = l)
∞∑

j=−∞
δ(l − sj − k), (28)

with δ(n) the Kronecker delta function, which equals 1 for n = 0 and 0 for all other n. Now
invoke the following property

Property 4.1.
1
s

s−1∑
t=0

atk =
∞∑

j=−∞
δ(k − js),

where a = exp(2πi/s), i the imaginary unit, and k and s integer values. The sum on the
left-hand side is zero unless k is a multiple of s. �

Using Property 4.1 we obtain

ϑmk(z) =
∞∑
l=0

z(l−k)fPr(U[m] = l)
1
s

s−1∑
t=0

at(l−k)

=
z−kf

s

s−1∑
t=0

a−tk
∞∑
l=0

Pr(U[m] = l)zflatl

=
z−kf

s

s−1∑
t=0

a−tkU[m](a
tzf ). (29)
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Substituting (29) into (26) yields

D[m](z
s) = zs(f−m+c+1)

s−1∑
k=0

zsk z−kf

s

s−1∑
t=0

a−tkU[m](a
tzf )

=
zs(f−m+c+1)

s

s−1∑
t=0

U[m](a
tzf )

s−1∑
k=0

(z−ca−t)k

=
zs(f−m+c+1)

s

s−1∑
t=0

U[m](a
tzf )

1 − (z−ca−t)s

1 − z−ca−t
, |z| ≤ 1. (30)

Expression (30) gives an explicit formula for the pgf of the packet delay once the pgf of U[m]

is known. This leaves us to specify the latter, for which we give separate derivations for the
fixed and flexible boundary model.

4.2 Packet delay in fixed boundary model

Let D denote the packet delay for an arbitrary packet. Let Z0 denote the backlog at the end
of a frame that was already present the frame before, and Z1 the number of packets within
the tagged packet’s arrival slot arriving before it. The pgf of Z0 and Z1 are given by

Z0(z) =
1
zs

(X(z) +
s−1∑
k=0

xk[zs − zk]), (31)

and
Z1(z) =

1 − Y (z)
(1 − z)EY

. (32)

The pgf of U[m] is then simply given by

U[m](z) = Z0(z)Y (z)m−1Z1(z), m = 1, . . . , c. (33)

Combining (30), (33) and Pr[T = m] = 1/c for m = 1, . . . , c, yields the following explicit
expression for the pgf of the packet delay

D(zs) =
1
c

c∑
m=1

D[m](z
s),

=
1
sc

s−1∑
t=0

1 − (atzc)−s

1 − (atzc)−1

{
zs(f+1)Z0(atzf )Z1(atzf )

zsc − A(atzf )
zs − Y (atzf )

}
, |z| ≤ 1. (34)

The mean packet delay follows from

ED =
1
s

d

dz
D(zs)

∣∣∣∣
z=1

, (35)

which yields after tedious but straightforward calculations

ED = f +
fVarA

2EA(s − EA)
+

1 + EY

EY

[
s

2
−

s−1∑
k=0

xk(s − k)2

2(s − EA)

]
. (36)
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Remark 4.2. The mean delay can be alternatively derived using Little’s law. The backlog
at the beginning of an arbitrary slot is given by

1
f

f∑
n=1

EX[n], (37)

where EX[n] as given by (11). The average arrival rate of packets per slot equals cEY/f .
Dividing (37) through this rate then yields (36).

4.3 Packet delay in flexible boundary model

For the flexible boundary model, the derivation of Ũ[m](z) is somewhat more involved, since
all slots within a frame are potential arrival slots. We first consider the case that c ≥ 1,
while c = 0 is covered at the end of this section. Distinguish two events: (a) the tagged
packet arrives in one of the forced arrival slots, and (b) the tagged packet arrives in one of
the additional arrival slots. Event (a) provides us no extra information about the backlog at
the beginning of a frame, since the c forced arrival slots are scheduled every frame. Thus

Ũ[m](z) = Z̃0(z)Y (z)m−1Z1(z), m = 1, . . . , c, (38)

where

Z̃0(z) =
1
zs

(X̃(z) +
s−1∑
k=0

x̃k[zs − zk]). (39)

Event (b) does provide extra information about the backlog at the beginning of the frame. We
know that Z0 equals zero, otherwise there would be no extra arrival slots. Further, consider
the case that the tagged packet arrives in slot c + 1. This implies that X̃ equals zero. Hence,
Ũ[c+1] consists of A and Z1. Now consider the packet arriving in slot c + 2. This implies that
X̃ equals either zero or one. In the first case it holds that Ũ[c+2] = A + Y + Z1, and in the
latter case Ũ[c+2] = A + Z1. Similar reasoning leads to the following expression

Ũ[m](z) = A(z)Z1(z)
∑m−c−1

k=0 x̃kY (z)m−c−1−k∑m−c−1
k=0 x̃k

, m = c + 1, . . . , f. (40)

Finally, the distribution of T can be determined as follows. Remember that the extra arrival
slots are scheduled at the end of a frame. If a packet arrives in slot m, m ∈ {c + 1, . . . , f}
of a frame, this particular frame has at least f − m + c + 1 arrival slots, and thus at most a
backlog of m − c − 1 packets at the beginning of the frame. This gives

Pr[T = m] =

{
1
c∗ , m = 1, . . . , c,
1
c∗
∑m−c−1

k=0 x̃k, m = c + 1, . . . , f .
(41)

Combining (30), (38) and (40), and conditioning on the arrival slot distribution given by (41)
yields an explicit expression for the pgf of the packet delay
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D̃(zs) =
f∑

m=1

Pr[T = m]D̃[m](z
s),

=
c∑

m=1

1
c∗

D̃[m](z
s) +

f∑
m=c+1

1
c∗

m−c−1∑
k=0

x̃kD̃[m](z
s)

=
1

sc∗

s−1∑
t=0

1 − (atzc)−s

1 − (atzc)−1

{
zs(f+1)Z̃0(atzf )Z1(atzf )

zsc − A(atzf )
zs − Y (atzf )

+ zs(c+1)A(atzf )Z1(atzf )
∑s−1

k=0 x̃k[zs(s−k) − Y (atzf )k]
zs − Y (atzf )

}
, |z| ≤ 1. (42)

From (35), it follows that

ED̃ =
EY + 1

EY

{
EX̃ +

(s + 1)EA − s2

2f
+

s−1∑
k=0

x̃k(s − k)2(1 + EY )
2f

}
. (43)

Again note that (43) can be alternatively determined by applying Little’s law.
In case c = 0, the basic approach as described in Section 4.1 is not needed. It is then

straightforward to derive that

Ũ[m](z) = Z1(z)
∑m−1

k=0 xkY (z)m−1−k∑m−1
k=0 xk

; Pr[T̃ = m] =
1
c∗

m−1∑
k=0

xk,

and

D̃(z) =
Z1(z)
fc∗

f∑
m=1

zf−m+1
m−1∑
k=0

xkY (z)m−1−k. (44)

Remark 4.3. We have derived the pgf of the packet delay for the fixed and flexible boundary
model in (34) and (42), respectively. To find the underlying packet delay distribution we use
a technique of Abate and Whitt [1]. A distribution {pk} can be retrieved from its pgf P (z)
via

pk =
1

2πi

∮
Cr

P (z)
zk+1

dz, (45)

where Cr is a circle about the origin of radius r, 0 < r < 1. Abate and Whitt [1] approximate
(45) using the trapezoidal rule with a step size of π/k as

p̂k =
1

2πrk

2k∑
j=1

(−1)jRe(P (reijπ/k)), (46)

and derive for 0 < r < 1, k ≥ 1 the following error bound

|pk − p̂k| ≤ r2k

1 − r2k
. (47)

For practical purposes one can think of the error bound as r2k, because r2k/(1 − r2k) ≈ r2k

for r2k small. To have accuracy up to the γth decimal, we let r = 10−γ/2k. In the upcoming
numerical examples, we set γ equal to 7.
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Figure 3: Distribution Pr[D̃ = k], f = 9, c = 0, 2, 4, Y geometrically distributed with mean 1.

Example 4.4. The distribution of the packet delay has a characteristic form. For f = 9,
Y geometrically distributed with mean one, Figure 3 displays the packet delay distribution
for c = 0, 2, 4, where we have used the method described in Remark 4.3. First note that
the minimum delay corresponds to a packet that arrives in the last slot of a frame and is
immediately transmitted in the slot c + 1 of the next frame. The oscillating effect is due to
the frame structure, and becomes stronger for higher values of c.

5 Numerical results

In this section we first present a numerical comparison between the fixed and flexible boundary
model. Next, we investigate the impact of different values of c for the flexible boundary model
on various backlog and delay characteristics.

5.1 Fixed versus flexible boundary model

We assume that the load, defined as the mean number of packets arriving per frame, is the
same for the fixed and flexible boundary model, being cEY and c∗EY = fEY/((1 + EY )),
respectively. Thus, for a fair comparison, we choose the appropriate values of EY for which
the load is the same for both models. For convenience, we further assume that Y is Poisson
distributed.

Figure 4 and Figure 5 display the mean and variance of the packet delay for f = 9, c = 2
and various load values. For a load of 2, EY = 1 for the fixed boundary model and EY = 2/7
(c∗ = 7, c∗EY = 2) for the flexible boundary model. In terms of the mean packet delay, the
flexible boundary model clearly outperforms its fixed counterpart.

For the flexible boundary model, a low load yields relatively many unused departure slots
that are used as additional arrival slots. The variation in arrival slots per frame inherent to
such type of scheduling then causes a higher packet delay variance than in case of the fixed
boundary model. When the load gets higher, this variation in arrival slots can give relief to
the system, leading to a smaller overall variance.
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5.2 Influence of c in flexible boundary model

We now investigate the impact of different values of c for the flexible boundary model on
various backlog and delay characteristics. Table 1 contains backlog characteristics for f = 9,
c = 0, 2, 4, and Y is Poisson and geometrically distributed with mean 1. Table 2 contains
delay characteristics for the same settings.

EX̃ VarX̃ Pr[X̃ > 10] Pr[X̃ > 20] Pr[X̃ > 50]
Poisson c = 0 4.75 11.75 .0639 .0003 .0000

c = 2 4.95 7.97 .0408 .0001 .0000
c = 4 6.75 10.93 .1245 .0019 .0002

geometric c = 0 5.00 16.67 .1042 .0026 .0001
c = 2 5.40 14.07 .0995 .0020 .0000
c = 4 9.00 34.63 .3197 .0471 .0064

Table 1: Characteristics of the backlog for f = 9 and EY = 1.

ED̃ VarD̃ Pr[D̃ > 10] Pr[D̃ > 20] Pr[D̃ > 30]
Poisson c = 0 6.92 7.60 .0926 .0020 .0000

c = 2 8.57 8.82 .5437 .0039 .0001
c = 4 13.66 32.03 .9550 .2800 .0327

geometric c = 0 7.63 11.84 .1767 .0028 .0003
c = 2 11.46 17.10 .6075 .0353 .0014
c = 4 21.40 96.86 .9568 .4855 .1812

Table 2: Characteristics of the packet delay for f = 9 and EY = 1.

As we have seen in Example 3.1, increasing c is disadvantageous in terms of the mean
backlog, while the variance of the backlog is oftentimes reduced due to the stabilizing effect
on the arrival process. The same can be seen from the results in Table 1. Increasing c reduces
the flexibility of the system, which is the reason for both the mean and variance of the backlog
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to increase when c gets large, c = 4 in this example.
The mean and variance give only partial information on the underlying distribution func-

tion. We therefore consider some excess probabilities. Note that in Table 1, the probability
that X̃ gets larger than 10 is the smallest for c = 2, for both the Poisson and geometric
distribution. Depending on which performance characteristic one is interested in, one can
determine the optimal value of c.

For the delay characteristics in Table 2 we do not see a stabilizing effect. This is mainly
due to our definition of delay that includes the delay of the arrival slot till the beginning of
the next frame. In this way small values of c are favored, since small values of c imply many
additional arrival slots that bring along a smaller delay till the beginning of the next frame.

6 Further research

We have mentioned earlier that, in case of the flexible boundary model, one must be careful
about the exact location of the additional arrival slots. The approach in this paper sketches
an optimistic scenario, since the packets that arrive in the additional arrival slots can all be
transmitted at the beginning of the next frame. A pessimistic scenario would be to assume
that the packets arriving during the additional arrival slots can only be transmitted from the
beginning of the second next frame. The recursion describing the backlog then becomes

(
Xt+1

Rt+1

)
=

(
(Xt − s)+ +

∑c
i=1 Y

(1)
ti + Rt∑(s−Xt)+

i=1 Y
(2)
ti

)
, (48)

where again

Y
(j)
ti i.i.d., Y

(j)
ti

d= Y, j = 1, 2, (49)

Xt the part of the backlog at the beginning of frame t that can be transmitted in frame t, and
Rt the part of the backlog at the beginning of frame t that cannot be transmitted in frame t.

It is possible though that a scheduler could locate these extra request slots somewhat more
efficiently. This depends on the exact location of the last slot within a frame that can carry
a request that can be scheduled in the next frame, slot k say. Assuming that all arrival slots
are scheduled at the beginning of a frame, the backlog can be described via the recursion

(
Xt+1

Rt+1

)
=

(
(Xt − s)+ +

∑c
i=1 Y

(1)
ti +

∑min{k,(s−Xt)+}
i=1 Y

(2)
ti + Rt∑max{0,(s−Xt)+−k}

i=1 Y
(3)
ti

)
, (50)

where again

Y
(j)
ti i.i.d., Y

(j)
ti

d= Y, j = 1, 2, 3. (51)

The analysis of equations (48) and (50) is an interesting subject for further research.
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