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We present an extensive study focused on partial network partitioning. Partial network partitions disrupt the communication

between some but not all nodes in a cluster. First, we conduct a comprehensive study of system failures caused by this fault

in 13 popular systems. Our study reveals that the studied failures are catastrophic (e.g., lead to data loss), easily manifest,

and are mainly due to design laws. Our analysis identiies vulnerabilities in core systems mechanisms including scheduling,

membership management, and ZooKeeper-based coniguration management.

Second, we dissect the design of nine popular systems and identify four principled approaches for tolerating partial

partitions. Unfortunately, our analysis shows that implemented fault tolerance techniques are inadequate for modern systems;

they either patch a particular mechanism or lead to a complete cluster shutdown, even when alternative network paths exist.

Finally, our indings motivate us to build Nifty, a transparent communication layer that masks partial network partitions.

Nifty builds an overlay between nodes to detour packets around partial partitions. Nifty provides an approach for applications

to optimize their operation during a partial partition. We demonstrate the beneit of this approach through integrating Nifty

with VoltDB, HDFS, and Kafka.

CCS Concepts: · Computer systems organization → Cloud computing; Reliability; Availability; · Networks →

Network reliability.

Additional Key Words and Phrases: network failures, fault tolerance, partial network partitions, distributed systems, reliability.

1 INTRODUCTION

Modern networks are complex. They use heterogeneous hardware and software [1], deploy diverse middleboxes
(e.g., NAT, load balancers, and irewalls) [2ś4], and span multiple data centers [2, 4]. Despite the high redundancy
built into modern networks, catastrophic failures are common [1, 3, 5, 6]. Nevertheless, modern cloud systems
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are expected to be highly available [7, 8] and to preserve stored data despite failures of nodes, networks, or even
entire data centers [9ś11].
We focus our investigation on a peculiar type of network fault: partial network partitions, which disrupts the

communication between some, but not all, nodes in a cluster. Figure 1 illustrates how a partial network partition
divides a cluster into three groups of nodes, such that two groups (Group 1 and Group 2) are disconnected, but
Group 3 can communicate with Groups 1 and 2.
In our previous work [12] we identiied this fault and presented examples of how it leads to system failures.

Other than our previous efort, we did not ind any in-depth analysis of partial network partition failures and
of their fault tolerance techniques. Nevertheless, we found 54 reports of failures caused by partial network
partitioning faults1 in the publicly accessible issue tracking systems of 13 production-quality systems (Section 4),
numerous blog posts and discussions of this fault on developers’ forums (Section 3), and eight popular systems
with fault tolerance techniques speciically designed to tolerate this type of fault (Section 5).

Our goal in this work is threefold. First, we aim to study failures caused by partial network partitioning to
understand their impact and failure characteristics and, foremost, to identify opportunities to improve systems’
resiliency to this type of fault. Second, we aim to dissect the fault tolerance techniques implemented in popular
production systems and identify their shortcomings. Third, we aim to design a generic fault tolerance technique
for partial network partitioning.

It is important to understand that partial partitions are fundamentally diferent from complete partitions [12].
Complete partitions split a cluster into two completely disconnected sides and are well studied with known
theoretical bounds (CAP theorem [13]) and numerous practical solutions [14ś17]. On the contrary, a cluster
experiencing a partial partition is still connected but not all-to-all connected. Consequently, the theoretical
bounds of complete partitions do not apply to partial partitions, and fault tolerance techniques for complete
partitions are not efective in handling partial partitions (Section 10).
An analysis of partial network partitioning failures. We conduct an in-depth study of 54 partial network
partitioning failures from 13 cloud systems (Section 4). We select a diverse set of systems, including database
systems (MongoDB and HBase), ile systems (HDFS and MooseFS), an object storage system (Ceph), messaging
systems (RabbitMQ, Kafka, and ActiveMQ), a data-processing system (MapReduce), a search engine (Elasticsearch),
an in-memory data grid (Hazelcast), and resource managers (Mesos and DKron). For each considered failure, we
carefully study the failure report, logs, discussions between users and developers, source code, and code patches.
Failure Impact. Overall, we ind that partial network partitioning faults often cause silent failures with cat-

astrophic efects (e.g., data loss and corruption) that afect core system mechanisms (e.g., leader election and
replication).

Ease of manifestation. Unfortunately, these failures can easily occur. Themajority of the failures are deterministic
and require less than four events (e.g., read or write request) for the failure to occur. Even worse, all the studied

Group 1 Group 2

Group 3

Partial

Partition

Fig. 1. Partial partition. Groups 1 and 2 are disconnected, while Group 3 can reach both sides of the partition.

1A fault is the initial root cause. If not properly handled, it may lead to a user-visible system failure.
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failures can be triggered by partially partitioning a single node. The majority of failures do not require client
access or can be triggered by clients only accessing one side of the partition.
Flaws in core system mechanisms. We ind that the majority of failures are due to design laws. We dissect

the design of the studied systems and study the code patches. We identify laws in ive common distributed
system mechanisms including leader election, scheduling, membership management, discovery service, and
cluster management using a coordination service.
Finally, we identify that a common deployment approach of Zookeeper introduces a failure vulnerability

(Section 5). Our analysis shows that system designers need to design additional mechanisms to handle partial
partitions when using Zookeeper or other external coordination services.
Insights. We identify three approaches to improve system resilience: better testing, focused design reviews,

and building a generic fault tolerance communication layer. Firstly, our analysis of each failure’s manifestation
sequence, access patterns, and timing constraints shows that almost all the failures could have been revealed
through simple tests using only ive nodes. Second, the majority of failures are due to design laws. We posit
that design reviews focused on network partitioning could identify these vulnerabilities. Third, building a
generic communication layer to mask partial partitions is feasible, simpliies system design, and improves system
resiliency.
Dissecting modern fault tolerance techniques. We dissect the implementation of nine popular systems
(VoltDB, MapReduce, HBase, MongoDB, Elasticsearch, Mesos, LogCabin, RabbitMQ, and HazelCast) and study the
fault tolerance techniques they employ speciically to tolerate partial partitions (Section 5). For each system, we
study the source code, analyze the fault tolerance technique’s design, extract the design principles, and identify
the technique’s shortcomings. We identify and study four commonly used approaches for tolerating partial
partitions: identifying the surviving clique, checking neighbors’ views, verifying failures announced by other
nodes, and neutralizing partially partitioned nodes.
Our analysis reveals that the studied fault tolerance techniques are inadequate. They either patch a speciic

system mechanism, which leaves the rest of the system vulnerable to failures, or unnecessarily shut down the
entire cluster or pause up to half of the cluster nodes (Section 5).
Designing a generic fault tolerance technique. Our indings motivate us to build the network partitioning
fault-tolerance layer (Nifty), a simple, generic, and transparent communication layer that can mask partial
network partitions (Section 6). Nifty’s approach is simple; it monitors the connectivity in a cluster through
all-to-all heart beating, and when it detects a partial partition, it detours the traic around the partition through
intermediate nodes. Nifty overcomes all the shortcomings present in the studied fault tolerance techniques.
Nifty demonstrates two main insights. First, Nifty shows that tolerating partial partitioning does not require

elaborate techniques such as the ones adopted by current systems (Section 5). It shows that it is possible to
build a transparent fault tolerance technique by extending the current membership and connectivity monitoring
mechanisms [18ś20] with a simple rerouting capability. Second, unlike complete partitions that can not be masked
from the client and impact the system semantics, Nifty shows that partial partitions can be masked transparently
in an application agnostic way.
Nifty reroutes packet between end hosts to mask partial partitions. This approach increases the load on the

intermediate nodes and can create a performance bottleneck. To reduce the load on intermediate nodes, system
designers may optimize the data or process placement or employ a low-control mechanism. Nifty provides
an API that exposes the network state to the system running atop of it and facilitates building system-speciic
optimizations.
To demonstrate Nifty’s efectiveness, we deploy it with seven systems: HDFS, Kafka, RabbitMQ, ActiveMQ,

MongoDB, VoltDB and Redis Pubsub. We choose these systems because they are data intensive and popular
systems. Furthermore, RabbitMQ and VoltDB implement generic techniques to tolerate partial partitions. Our
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prototype evaluation with synthetic and real-world benchmarks shows that Nifty efectively masks partial
partitions while adding negligible overhead.
To demonstrate the utility of the Nifty API, we integrate Nifty with HDFS, VoltDB, and Kafka and explore a

number of optimizations. Our evaluation shows that system-speciic optimizations can signiicantly reduce the
traic rerouting overhead during partial partitions.
This paper extends our previous work [21] on three fronts. First, our analysis revealed that the majority of

studied failures are due to design laws. In this paper, we study the implementation of nine popular systems to
extract the design of their fault tolerance technique and identify the shortcomings of those techniques. Second, we
demonstrate the utility of the Nifty API by extending HDFS and Kafka. We optimize the replication protocol and
discovery service within these systems using the Nifty API. Our evaluation shows that the proposed optimizations
can signiicantly improve system performance under partial network partitions. Finally, we extended our study
by discussing recent service outages caused by partial partitions at Google, Amazon, CloudFlare, and Lyft; and
studying failure reports in an one additional system (HazelCast).

2 DEFINITIONS

A partial network partition is a network fault that prevents at least one node (e.g., a node in Group 1 in Figure 1)
from communicating with another node (Group 2) in the cluster, while a third node (Group 3) can communicate
with both afected nodes. Nodes in a partially partitioned cluster are still connected but are not all-to-all connected
(i.e., they do not form a complete graph [22]).

While multiple concurrent partial partitions are theoretically possible and may lead to complex failures, all the
failures we study are caused by a single partial partition. Consequently, we focus the rest of our discussion on a
single partial partition. A single partial partition divides a cluster into three groups: two sides and one bridge
group. We identify a node as an bridge node if it can reach at least one node on each side of a partition. A single
partial partition has two sides, all the nodes on one side of the partition cannot reach all the nodes on the other
side of the partition.
We deine a single-node partial partition (Figure 2) as a partial partition that has a single node on one side of

the partition, while the rest of the cluster nodes are bridge nodes or are on the other side of the partition. For
instance, a single-node partial partition can be caused by a irewall misconiguration that prevents a node from
communicating with some other nodes.

3 CAUSES OF PARTIAL NETWORK PARTITIONING FAULT

Recent reports indicate that network partitioning faults are common and happen at various scales. Connectivity
loss between data centers [1] leads to network partitions in geo-replicated systems. Wide area network partitions
happen as frequently as once every four days [6]. Switch failures can cause a network partition in a data center [5].
Switch failures caused 40 network partitions in two years at Google [3] and 70% of the downtime at Microsoft [5].
On a single node, NIC [23] or software failures can partition a node that may host multiple VMs. Finally, network

Group 2
Partial

Partition

Single Node

Group 1

Fig. 2. Single-node partial partition. A partial partition with a single node on one side while the rest of the nodes are bridge

nodes (Group 1) or are on the other side (Group 2).
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partitions caused by correlated failures are common [4ś6] and are often caused by system-wide maintenance
tasks [3, 5].
While we did not ind failure reports that detail partial partitioning faults, we found numerous discussions

of their impact on production systems. Partial partitions were the cause of service outages at Cloudlare [24],
Google [25], Lyft [26], and Amazon AWS [27]. A misbehaving switch caused the failure at Cloudlare. The switch
data plane did not processes all packets, while the control plane protocols remained operational. This disrupted
the communication between some nodes in the cluster and eventually caused a 6-hour outage of Cloudlare.
AWS [27] also blames a misbehaving switch for a partial partitioning failure that afected applications that span
multiple availability zones. A partial partition also afected Google Compute Engine (GCE) services. When a new
VM is added, GCE uses two mechanisms to inform the other VMs: one to inform VMs in the same zone as the
new VM, and another to inform VMs in other zones. When the processes responsible for informing the VMs
in other zones failed [25], the newly added VM became unreachable from VMs outside its zone. This created
a partial partition since some VMs (in the same zone as the new VM) could reach all VMs as they are updated
through a separate mechanism. However, other VMs (from outside the zone) could not reach the new VM. Lyft
reported cases of partial network partitions while running Kafka at scale on AWS [26]. Finally, an early version
of Google’s B4 control plane uses a primary master with a standby backup. A partial partition disconnected the
primary master from the standby backup while both can reach the switches. When the standby backup could not
reach the master it assumed that the master failed and started working as a master. This led to having two active
masters in the infrastructure [4].
Furthermore, we found 54 failure reports detailing system failures due to partial network partitions, and

numerous articles and online discussions discussing the fault [28ś31]. Some of these reports and discussions
mention the root cause of the partial partition. Partial partitions are caused by a connectivity loss between two
data centers while both are reachable by a third center [1], the failure of additional links between racks [32, 33],
network misconiguration [34], irewall misconiguration [34], network upgrades [35], and laky links between
switches [36].

4 ANALYSIS OF PARTIAL NETWORK-PARTITIONING FAILURES

We conduct an in-depth study of partial network partitioning failures reported in 13 popular systems (Table 1).
We aim to understand the impact and characteristics of these failures and to identify opportunities for improving
system resilience.

4.1 Methodology

We choose 13 diverse and widely used systems (Table 1), including two databases, a data analysis framework,
two ile systems, three messaging systems, a storage system, a search engine, an in-memory data grid, and two
resource managers.

We selected the 54 failures in our study from publicly accessible issue-tracking systems. First, we used the search
tools in the issue-tracking systems to ind tickets related to partial network partitioning. Users did not classify
network partitioning failures based on the partition type, so we had to search for all network partitioning failures
and manually identiied partial partitioning failures. We used the following keywords: łnetwork partition,ž łpartial
network partition,ž łpartial partition,ž łnetwork failure,ž łswitch failure,ž łisolation,ž łsplit-brain,ž and łasymmetric
partition.ž Second, we considered tickets that were dated 2011 or later. Third, we excluded tickets marked as
łMinor.ž For each ticket, we studied the failure description, system logs, developers’ and users’ comments, and
code patches. For tickets that lacked enough details (e.g., missing output logs or did not have details about the
afected mechanism), we manually reproduced them using NEAT [12]. Finally, during our evaluation, we found
and reported bugs in Kafka and Elasticsearch. We included these failures in our study. Among the selected tickets
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Table 1. List of studied systems and the number of studied failures. The shaded rows are systems that implemented a fault

tolerance technique specifically for partial network partitioning.

System Category
Failures

Total Catastrophic

Elasticsearch [37] Search engine 17 17

MongoDB [38] Database 9 5

RabbitMQ [18] Messaging 5 3

MapReduce [39] Data processing 4 2

HBase [40] Database 3 2

Mesos [41] Resource manager 2 1

Hazelcast [42] In-memory data structures 2 2

Kafka [43] Messaging 3 3

HDFS [39] File system 3 1

Ceph [20] Storage system 2 2

MooseFS [44] File system 2 2

ActiveMQ [45] Messaging 1 1

DKron [46] Resource manager 1 1

Total - 54 42

50 are classiied as bugs and four as high priority improvements. Up to the date of the publication, forty two have
been resolved. Figure 3 shows the distribution of the selected tickets over the years.
We diferentiate failures by their manifestation sequences. In a few cases, the same faulty mechanism leads

to two diferent failure paths. We count these as separate failures, even if they are reported in a single ticket.
Similarly, although the exact failure is sometimes reported in multiple tickets, we count it once in our study.

4.2 Limitations

As with any characterization study, our indings may not be generalizable. Here, we list four potential sources of
bias and describe our best eforts to address them.

(1) Representativeness of the studied systems. Although we study 13 diverse systems (Table 1), our results may
not be generalizable to systems we did not study. The selected systems follow diverse designs from strongly
consistent (MongoDB, HBase, and Ceph) to eventually consistent (Elasticsearch) designs and from systems

4

6

8

Fig. 3. Histogram of the tickets creation date.
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persisting data on disks and replicating data in-memory across nodes (Hazelcast) to caching systems. They
follow a primary-backup or peer-to-peer architecture and use synchronous or asynchronous replication.
The selected systems are widely used: Kafka, ActiveMQ, and RabbitMQ are the most popular open-source
messaging systems; MapReduce, HDFS, and HBase are the core of the Hadoop platform; Elasticsearch is a
popular search system; and MongoDB is a popular database.

(2) Priority bias. We avoid tickets marked by the developers as low-priority. This sampling methodology may
bias the results.

(3) Limited number of tickets. We study all 54 tickets that we found following our methodology. To increase
conidence in our indings, we only report indings that apply to at least two-thirds of the studied failures.
A third of our indings apply to all failures.

(4) Observer error. To reduce the chance for observer errors, two team members study every failure report
using the same classiication methodology. Then, we discuss the failure in a group meeting before reaching
a verdict.

4.3 Findings

This section presents a summary of our indings [21]. Our study indicates that partial network partitioning leads
to catastrophic failures that are easy to manifest. Luckily, our study identiies that code reviews and targeted
testing can improve systems fault tolerance. We refer the reader to our previous paper for a detailed discussion of
our indings [21].
Failure Impact. Overall, we ind that 76.4% of the studied failures lead to catastrophic efects. A failure is said
to be catastrophic if it leads to a system crash or violates the system’s guarantees such as permanent data loss
or corruption, system unavailability, and stale or dirty reads. The majority of non-catastrophic failures lead to
reducing a system availability such as intermittent disruption of system operation [47].

Data loss and system unavailability are the two most common efects of partial partitions and are the result of
42.5% of failures. For instance, in HBase, region servers store their logs on HDFS. When a log reaches a certain
size, the region server creates a new log and informs the master of the new log location. If a partial partition
isolates a region server from the master while both can reach HDFS, the master assumes that the region server
has failed and assigns its logs to a new region server. If at this time the old region server creates a new log, the
master will not know about it, and the entries in the new log will be lost [48].
The majority of failures (81.5%) are silent, meaning the user is not informed about their occurrence. Some

systems return a warning to the user when an operation fails due to partial network partitioning, but these
warnings are ambiguous with no clear mechanisms for resolution. For example, in Elasticsearch, if a client sends
a request to a replica that is partially isolated from the other replicas, the replica will return ła rejected executionž
exception [49]. This confusing warning does not inform the user of the problem’s actual cause nor the steps
needed to resolve it. This is unsettling because a lack of error or warning notiication delays failure detection.
Ease of manifestation. Unfortunately, the studied failures can easily occur:

• All the studied failures, except one, are deterministic or have known time constraints, such as the period before
considering a node to have failed.

• The majority of failures (66.6%) require three or fewer events (other than the partial partition) to manifest.

An event is a user request, a hardware or software fault, or a start of a background operation (e.g., leader
election and data rebalancing). This is alarming because in real deployments, many users interact with the
system, increasing the probability of failure.

• Most failures (59.3%) do not require client access or require only that clients access one side of the partition. To
reduce the network partition’s impact, some systems limit client access to one side of the partition [50ś52].
This inding shows that this fault tolerance technique is not suicient.

ACM Trans. Comput. Syst.
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• All the studied failures can be triggered by a single-node partial partition. Arguably, single-node partial
partitions (Section 2) are more likely than partitioning more than one node. These partitions could happen
due to a malfunction of a single top-of-rack switch or a misconiguration of a single irewall.

We further study which nodes need to be isolated for a failure to manifest. Of the failures, 33.3% manifest by
partitioning any node in the systemÐregardless of its role. Among the failures that require partitioning a speciic
node, partitioning the leader replica is most common (44.4%). In real deployments, partitioning a leader is likely
because almost every node in the cluster is a leader for some shard.
Failure Characteristics. Our study revealed two surprisings characteristics of these failures. First, the majority of

the ixed bugs (59.3%) are due to design laws. We consider a code patch to be ixing a design law if it signiicantly
changes the implemented protocol or logic, such as changing the mechanism to select a master in Elasticsearch.
Second, partial partition faults afect a wide range of system mechanisms including leader election, coniguration
change, replication protocol, request routing, scheduling, and data migration. Leader election, coniguration
change, and replication protocols are the most afected mechanisms (afected by 72.6% of failures).
Finally, these failures can be easily reproduced with small clusters of ive or fewer nodes, and 75.9% require

only three nodes. Furthermore, all the failures except one can be reproduced using a fault-injection framework
that can inject partial partitioning faults such as NEAT [12].

4.4 Design Pitfalls

Our study reveals that the majority of failures are due to design laws. For each design failure we study the code
patches and the system design to understand the design law. We identify laws in the following ive common
designs of core distributed system techniques. Revisiting the design of these techniques to tolerate partial network
partitioning is a high impact research frontier that requires further investigation.
Leader election is the most vulnerable mechanism to partial partitions. The following are the most frequent
laws we found in the studied tickets.

• Two leaders. Partial network partitioning fault leads to having two active leaders in MongoDB [53] and
RabbitMQ [54]. Having more than one leader results in data loss, dirty read, and stale read. This failure
typically manifests when two nodes on diferent sides of the partition start the leader election process. If
the bridge node votes for the two candidates, each candidate will get enough votes to become a leader. A
common solution to avoid this double voting problem is to divide time into terms or epochs and each node
has a single vote in a term [14, 55].

• No leader in the system. Some leader election policies may leave a cluster without a leader under partial
network partitions. For instance, in an earlier version of ElasticSearch, a live node with the smallest id is
the cluster leader. If a node can not reach the leader, it will ask the node with the second smallest id to
become a leader. The node with the second smallest id will refuse to become a leader if it can reach the
current leader. If a partial partition puts the current leader on one side of the partition and the node with
the second smallest id is a bridge node, no node will be elected as a leader and the cluster pauses until the
partition heals [56]. We discuss this failure in Section 5.2.

• Leader election thrashing. Partial partition faults may lead to continuous leader election thrashing if the two
sides of the partition keep launching the leader election process. For instance, leader election in MongoDB
is based on a majority vote, with an arbiter node included to break ties. Consider a shard that has two
replicas (A and B), with A being the leader. If a partial partition disrupts the communication between A and
B while both can reach an arbiter, B will detect that A is unreachable and calls for a leader election. Because
there is only one candidate in the system, the arbiter votes for it, and B becomes the leader. The arbiter will
inform A of the new leader, and A steps down. A will detect that the leader (B) is unreachable, call for a
leader election, become a leader, and then B steps down. This leader-election thrashing continues until the
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network partition heals [47]. The system is unavailable during leader election, so this failure signiicantly
reduces system availability. CloudFlare reported a service outage due to a similar law in the leader election
mechanism in etcd [24]. To ix this problem, MongoDB developers changed the leader election protocol to
closely resemble the leader election protocol of Raft.

Leader election using a coordination service. A common approach for electing a leader in modern systems
(e.g., Mesos, Kafka, ActiveMQ, HBase, and Neo4j) is to use a coordination service such ZooKeeper [57] to monitor
the nodes and choose a new leader when a leader fails. As this is a common usage pattern for ZooKeeper, the
ZooKeeper user guide has a "recipe" [58] for how to use ZooKeeper for leader election that is broadly followed.
Unfortunately, this recipe is vulnerable to partial network partitions.

To elect a leader using ZooKeeper, each node creates a "sequence ephemeral" ile in a speciic shared directory
at ZooKeeper. The ile has a unique sequence number that is generated by ZooKeeper. The node with the smallest
sequence number is the leader. If ZooKeeper misses heartbeats from a node, it deletes all the ephemeral iles that
are created by the unreachable node, and notiies the other nodes in the clusters. If the unreachable node was the
leader, each node in the cluster will check the shared directory to see if its ile has the smallest sequence number.
The node with the smallest sequence number becomes the new leader.

If a partial partition isolates the leader from the rest of the cluster while all nodes are reachable from ZooKeeper,
the nodes will typically pause their operations because they cannot reach the leader. Because ZooKeeper can
reach the current leader, it will not delete its ephemeral ile and no new leader will be elected. The cluster remains
unavailable until the partial partition heals.

This failure manifested in ActiveMQ Classic [59] and Kafka [60]. Up to the date of this publication, these failures
are not ixed. Interestingly, Kafka developers stopped using Zookeeper in Kafka v. 2.8 [61]. One of the main
reasons stated for removing this dependency is the possibility of a divergent view of the cluster liveness between
the cluster and ZooKeeper [62]. In the latest version, Kafka built its own metadata management mechanism using
Raft.
Scheduling. Resource management and scheduling systems use heartbeating to monitor a cluster’s health. If
a scheduler misses heartbeats from a worker node, it will suspect that the node has failed and will typically
reschedule all the tasks that were running on the failed node on other nodes in the cluster.
This fault tolerance technique is vulnerable to partial partitions. If a partial partition isolates the scheduler

from one of the nodes, while the afected node can reach the rest of the cluster, the scheduler will reschedule the
tasks running on the afected node on other cluster nodes. This leads to double, potentially concurrent, execution
of those tasks. Double execution can corrupt shared state (e.g., data on HDFS) or confuse clients. For instance, in
MapReduce, a partial partition leads to a double execution and data corruption of shared data [63]. Mesos [64],
and ElasticSearch [65] sufered from a similar failure.
Membership management. Modern systems use membership lists (a.k.a. allow/block lists) to keep track of live
nodes in the cluster, and avoid slow or unresponsive nodes. If a node detects that another node has failed or is
slow, it notiies the metadata service. The metadata service updates the membership list or the block-list to avoid
using that node in future operations. Our study shows that under partial partitions, these techniques could lead
to a performance and availability degradation.
MapReduce uses block-listing to identify slow or unresponsive nodes. If a reducer cannot reach a mapper

node, it will report it to the master node. The master will not assign new tasks to the node running that mapper.
If a partial partition isolates a reducer from many nodes, while all nodes are still reachable by the master, the
afected reducer will report and unnecessarily block-list many mappers, which leads to a signiicant drop in
cluster performance [36].
RabbitMQ supports message replication for higher availability. RabbitMQ maintains a membership log that

lists the current nodes in the cluster. If nodes have conlicting views on which nodes are part of the cluster, the
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RabbitMQ cluster crashes. For instance, in a cluster with three nodes (A, B, and C), when a partial partition
disconnects B and C, B assumes that C crashed and removes it from the membership log, and C assumes that
B crashed and removes it from the membership log. This inconsistency in the cluster membership leads to a
complete cluster crash [66].
Discovery service. Modern systems often use a metadata or discovery service to direct clients to a node hosting
a queue in a messaging system, or to a leader replica in a storage system. If a partial partition isolates a client
from some nodes in the cluster while the discovery service can reach all nodes, the discovery service may point a
client to a node that the client can not reach. This problem often leads to system unavailability for some clients.
For instance, in Kafka, a client asks the bootstrap service for a list of cluster nodes. If the client cannot reach a
topic leader, while the bootstrap service indicates that the leader is alive, messages to that leader will be lost [67].
ElasticSearch had a similar failure [68].
In HDFS, consider a case when a partial network partition separates a client from, say, rack 0, while the

NameNode can reach that rack. If the NameNode allocates replicas for a new data chunk on rack 0, then a client
write operation will fail, and the client will ask for a diferent DataNode to place its replica. The NameNode,
following its rack-aware data placement, will likely suggest another node from the same rack. The process repeats
ive times before the client gives up [69].

4.5 Insights

Surprisingly, partial network partitioning faults trigger silent failures that have catastrophic efects in production-
quality systems. It is unsettling to realise how easy it is for these failures to manifest once a partial partitioning
fault happens. Isolating a single node, with three or less events, with client access to one side of the partition,
deterministically causes over two thirds of the failures.

Fortunately, we identify three approaches for improving system resilience to partial partitions. First, because
these faults are deterministic and can be reproduced on a ive-node cluster, improved testing can reveal themajority
of the studied failures. Our analysis inds timing, client access, and partition characteristics that signiicantly
reduce the number of suicient test cases. Second, the fact that the majority of failures are due to design laws,
indicates that system designers overlook partial network partitioning failures in the design phase. We posit that
design reviews focused on network partitioning could identify these vulnerabilities. Since a large number of
failures are triggered without client access, our analysis highlights that system designers should consider the
impacts of partial partitioning faults on all operations, including background operations.

Third, partial network partitions have two characteristics that imply that a generic fault tolerance technique is
possible. These faults can be detected by exchanging information between the nodes, and by deinition, there are
alternative paths in the network to reconnect the system. We leverage these two characteristics in building Nifty
(Section 6).

Finally, we point out design laws in core system mechanisms including leader election, scheduling, discovery
service, and membership management (Section 4.4). Most of the studied failures are caused by the underlying

assumption that, if a node can reach a service, all nodes can reach that service, and if a node cannot reach a service

then the service is down. Our analysis shows the danger of such assumptions; this leads to a confusing state, wherein

some of the system’s parts start executing a fault tolerance mechanism, while others presume the whole system is

healthy and carry on with normal operations. The mix of these two operation modes is poorly understood and tested.

5 DISSECTING MODERN FAULT TOLERANCE TECHNIQUES

We study the code patches related to the tickets included in our study. Seven of the systems in Table 1 (MongoDB,
Elasticsearch, RabbitMQ, HBase, MapReduce, Hazelcast, and Mesos) changed the system design to incorporate a
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fault tolerance technique speciic to partial network partitioning faults. The rest of the systems either patched
the code with an implementation-speciic workaround or did not ix the reported bugs yet.
Furthermore, we ind that two additional systems, VoltDB [19, 70] and LogCabin [71] (the original imple-

mentation of the Raft [14] consensus protocol), implement fault tolerance techniques for partial partitions. For
these two systems, we do not ind failure reports related to partial partitioning faults in their issue tracking
systems, but VoltDB announced that their recent versions tolerates partial partitions [72]. We experimented
with LogCabin to understand the impact partial partitions have on strongly consistent systems and found that
LogCabin incorporates a technique to tolerate partial partitions. We include VoltDB and LogCabin in our study.

For each of the nine systems, we study the source code, and extract and analyze the design principles of their
fault tolerance technique. We identify four approaches for tolerating partial partitions: detecting a surviving
clique of nodes, checking neighbors’ views, verifying failure reports received from other nodes, and neutralizing
one side of the partial partition. Unfortunately, these techniques have severe shortcomings that may lead to a
complete system shutdown or to the unavailability of a major part of the system. In this section, we detail these
techniques and discuss their shortcomings.

5.1 Identifying the Surviving Clique

Main idea. Upon a partial network partition, the system identiies the maximum clique of nodes [73], which is
the largest subset of nodes that are completely connected. All nodes that are not part of the maximum clique are
shut down. VoltDB and Hazelcast follow this approach.
VoltDB Implementation. VoltDB [19, 70] is a popular ACID, sharded, and replicated relational database. VoltDB
follows a peer-to-peer approach to implement this technique. Every node in the system periodically sends a
heartbeat to all nodes. If a node loses connectivity to any node, it suspects that a partial network partition
occurred and starts the recovery procedure. The recovery procedure has two phases. In the irst phase, the node
that detects the failure broadcasts a list of nodes it can reach. When a node in the cluster receives this message, it
broadcasts its list of reachable nodes to all nodes in the cluster. In phase two, every node independently combines
the information from the other nodes into a graph representing the cluster connectivity. Each node analyzes this
graph to detect the maximum completely connected clique of nodes. Every node that inds that it is not part of
this łsurvivingž clique shuts itself down. Figure 4 shows an example in which a partial partition disrupts the
communication between nodes 2, 3, and 4 on one side and nodes 5 and 6 on another. Nodes 5 and 6 are not part
of the clique and will shut down.
After identifying the surviving clique, the system veriies that it did not lose any data by verifying that the

surviving clique has at least one replica of every data shard. If the clique is missing one shard, such as when all
the replicas of a shard are shut down, the entire system shuts down.
Shortcomings. This fault tolerance approach has two severe shortcomings. First, it unnecessarily shuts down up
to half of the cluster nodes, reducing the system’s performance and fault tolerance. Second, this approach causes
a complete cluster shutdown if the surviving clique is missing a single data shard. To understand how likely a
cluster is to shut down, we conduct a probabilistic analysis (Appendix A). Figure 5 shows the probability of a
complete cluster shutdown while varying the cluster size and the number of nodes that shut down (i.e., nodes
that are not part of the surviving clique ś the x-axis in Figure 5). Each shard has three replicas. Our analysis
shows that isolating only 10% of the nodes leads to more than a 50% probability of shutting down the entire
cluster, and isolating only 20% of the nodes leads to a staggering 90% chance of a complete cluster shutdown.
Hazelcast Implementation. Hazelcast [42] ofers in-memory sharded and replicated data structures. Every
node in the system periodically sends a heartbeat to all nodes. Hazelcast uses a master node to track the cluster
membership, i.e., which nodes are part of the cluster. The master periodically sends a membership list to all nodes.
A node will ignore membership updates coming from nodes that are not in the membership list.
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Hazelcast escalates partial partitions to complete cluster partitions, such that the cluster is split into completely
disconnected sub-clusters. When a partial partition occurs the master node collects connectivity information
from all nodes. Nodes that are not reachable by the master are removed from the cluster membership list. The
master then constructs a graph representing the cluster connectivity, runs the BronśKerbosch algorithm [74]
to identify the largest fully connected sub-graph that includes the master node, removes all nodes that are not
part of this sub-graph from the membership list, and broadcasts an updated membership list. For nodes that are
removed from the membership list, Hazelcast supports two policies: pause or form a new cluster. Forming two
clusters can lead to data inconsistency. When a partial partition heals, Hazelcast merges conlicting versions of
the data using automated data consolidation policies (e.g., versions with latest access time win or versions on the
majority side win). Unfortunately, these policies can lose data or keep an inconsistent version of the data [12].
Shortcomings. This fault tolerance approach ofers two undesirable alternatives. The cluster may unnecessarily
pause a large number of nodes reducing the system’s performance and fault tolerance. Note that Hazelcast
selects the largest subgraph that includes the master which may not include the majority of nodes. Alternatively,
Hazelcast may form multiple clusters leading to data loss or inconsistency.

5.2 Checking Neighbors’ Views

Main idea.When one node (e.g., node S) loses its connection to another node D, it veriies whether the connection
is lost due to a partial partition. To this end, S asks all nodes in the cluster whether they can reach D. If a node
reports that it can reach D, this indicates that the cluster is sufering a partial network partition.

If S detects a partial network partition, S either disconnects from all nodes that can reach D, which efectively
makes the partition a complete partition, or pauses its operation. RabbitMQ and Elasticsearch follow this approach.
RabbitMQ Implementation. RabbitMQ [18] is a popular messaging system that replicates message queues for
reliability. In RabbitMQ, if a node detects that its communication with another node (e.g., node D) is afected by a
partial partition, it applies one of the following policies depending on its coniguration.

(1) Escalate to a complete partition. The node will drop its connection with any node that can reach node D.
The goal of this policy is to create a complete partition in which both sides work independently. This
coniguration leads to data inconsistency and requires running a data consolidation mechanism after the
partition heals.

(2) Pause: To avoid data inconsistency, once a node discovers a partial partition, it pauses its activities. It
resumes its activities only when the partition heals. The result of this policy is that a subset of nodes
will continue to operate. This subset will be completely connected and will run without sacriicing data
consistency.
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(3) Pause if anchor nodes are unreachable: RabbitMQ’s coniguration can specify a subset of nodes to act as

anchor nodes. If a node cannot reach any of the anchor nodes, it pauses. This may lead to creating multiple
complete partitions if the anchor nodes become partially partitioned. This may also lead to pausing all
nodes if all the anchor nodes are isolated.

After a partition heals, RabbitMQ employs two data consolidation techniques: administrator intervention, in
which the administrator decides which side of the partition should become the authoritative version of the data,
and auto-heal, in which the system makes this determination based on the number of clients connected to each
side. Both techniques may lead to data loss or inconsistency [12].
Shortcomings. RabbitMQ’s policies have serious shortcomings. Changing a partial partition to a complete
partition (policies 1 and 3) may lead to multiple inconsistent copies of the data, whereas the pause policy (policy
2) may pause the entire system or the majority of the nodes. For instance, in Figure 6, if every node except node 1
detects that it cannot reach a node on the other side of the partition, it pauses, leading to a complete cluster pause.

In the case of the pause policy (policy 2), to determine how many nodes pause under diferent partial partition
scenarios, we conduct an experiment in which we deploy a 15-node RabbitMQ cluster, introduce a partial
partition, and observe how many nodes pause. In all experiments, we inject a partition such that one node
remains unafected and able to reach all nodes. Figure 7 shows the median number of paused nodes under
various partition conigurations. We run each coniguration 30 times. Surprisingly, in all conigurations almost
all the cluster nodes pause because each node detects that it cannot reach at least one node on the other side
of the partition. Even isolating a single node (coniguration (1,13) in Figure 7) leads to pausing 12 nodes. We
experimented with additional conigurations with a larger number of bridge nodes and noticed a similar behaviour
(Appendix B). Our investigation reveals that nodes declare another node unreachable after missing its heartbeats
for a timeout period. In RabbitMQ, the default timeout period is 1 minute, which gives enough time for many
nodes to detect the partition and pause. Using a shorter timeout period causes some nodes to prematurely declare
that other nodes have failed, even without a partial partition.
Elasticsearch Implementation. Elasticsearch [37] is a popular search engine. Its master election protocol uses
a fault tolerance technique based on checking neighbors’ views. In Elasticsearch, the node with the lowest ID is
the master. If a node (e.g., S) cannot reach the master, it contacts all nodes to check whether they can reach the
master. If any node reports that it can reach the master, S pauses its operations. If none of the nodes can reach
the master, the node with the lowest ID becomes the new master.
Shortcomings. First, this approach can afect cluster availability quite severely, as all nodes that cannot reach the
master pause. In the worst case, it can cause complete cluster unavailability. For instance, in Figure 8, none of
the nodes can reach the master except node 2, which refuses to become the new master because it can reach a
node with a lower ID (node 1). Consequently, all the nodes in the cluster pause. Furthermore, because the master
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cannot reach a majority of nodes, it also pauses, which leads to system unavailability [56]. Second, Elasticsearch
uses this approach to fortify only the master election protocol, which leaves the rest of the system vulnerable to
partial partitions.

5.3 Failure Verification

Main idea. If a node (e.g., S) receives a notiication from another node that a third node (D) has failed, node S
irst veriies that it cannot reach D before taking any fault tolerance steps. This approach is used in the leader
election protocols of MongoDB [38], and LogCabin [71]. It was also used in an earlier version of Elasticsearch.
In MongoDB and LogCabin, if a leader is on one side of a partial partition but can still reach the majority of

nodes, the nodes on the other side of the partition unnecessarily call for leader election. Section 4.4 discusses a
scenario in which a partial partition leads to continuous leader election thrashing and to system unavailability [47].
To avoid unnecessary elections, when a node receives a call for election, it irst veriies that the current leader is
unreachable. A node participates in an election only if it cannot reach the current leader, else it will ignore the
failure report.
Shortcomings. This approach has two major shortcomings. First, it leads to the unavailability of a large number
of nodes. Second, it is mechanism speciic. Designing a system-wide fault tolerance mechanism using this
approach is tricky because one cannot ignore every failure notiication. For instance, using this approach in
an earlier version of Elasticsearch backired [75]. During data migration from a primary replica of a shard to a
secondary replica, if a partial partition isolates the primary replica from the secondary replica while both are
reachable from the master node, the primary requests a new secondary replica. Because the master can reach
the secondary replica, it ignores the failure report. This leads to the unavailability of the afected shard [75].
Broadly applying this fault tolerance technique is not feasible because designers have to revisit the design of
every system mechanism, consider the consequences of ignoring failure reports, and examine the interaction of
various mechanisms under partial partitions.

5.4 Neutralizing Partitioned Nodes

Main idea. One challenge related to handling partial network partitions is that nodes may update a shared
state that is reachable from both sides of the partition, leading to data loss and inconsistency. To avoid this
problem, this approach attempts to neutralize one side of the partition. However, the neutralization method is
implementation-speciic. HBase, MapReduce, and Mesos use this approach.
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Table 2. Summary of shortcomings. (D) indicates that the afected nodes shut down. (P) indicates that the nodes pause

until the partition heals. In the worst case, RabbitMQ pauses all nodes except one. We consider this a complete cluster

loss (1). Under diferent RabbitMQ policies, (2) and (3) can occur. (S) indicates a system-wide technique, whereas (M) is a

mechanism-specific technique.

Surviving Clique Checking w/ Neighbors Failure Veriication Neutralizing Nodes
Nifty

VoltDB Hazelcast Elasticsearch RabbitMQ MongoDB/LogCabin MapReduce/HBase Mesos

Reduced Availability ×� ×� ×� ×� ×� ×� ×�

Complete Unavailability × × ×1

Complete Partition × ×2

Double Execution ×

Data Unavailability × ×3

Scope (System/Mechanism) S S M S M M M S

HBase Implementation. In HBase, data shards are managed by an HBase node but are stored on HDFS. If the
HBase leader cannot reach one of the HBase nodes, it neutralizes that node by renaming the shard’s directory in
HDFS. Renaming a shard’s directory efectively prohibits the old HBase node from making further changes to the
shard [48]. The leader then assigns the shards of that node to a new HBase node.
MapReduce Implementation. In MapReduce, a manager node assigns tasks to AppMaster nodes. If the manager
cannot reach an AppMaster, it reschedules the tasks assigned to that AppMaster to a new AppMaster. With
partial network partitions, this approach may result in two AppMasters working on the same task, which leads
to data corruption [63]. To ix this problem, when an AppMaster completes a task, it writes a completion record
in a shared log on HDFS. Before an AppMaster executes a new task, it checks the shared log for a completion
record. If it inds one, it does not re-execute the task.
Mesos Implementation. In Mesos, a master node assigns tasks to worker nodes. A Zookeeper instance selects
the master node. The master sends periodic heartbeats to workers. If a partial partition isolates a worker node
from the master, it pauses its operations. Figure 9 shows a worst-case scenario in which the partial partition
isolates the master and its backup from all workers, which leads to a complete cluster unavailability. Finally, if a
master detects that one of the workers is unavailable, it marks the tasks that were running on the unreachable
worker as lost and reschedules them on new workers. This may lead to the double execution of a task [76].
Shortcomings. First, it is not practical to use this approach for system-wide fault tolerance, as this approach is
speciic to a certain protocol and implementation. The presented three systems use this approach for diferent
mechanisms. To use this approach broadly, designers must go through the daunting task of independently
designing a fault tolerance technique for every mechanism in the system and understanding the interaction
between these mechanisms. Second, this approach leaves the nodes on one side of the partition idle, which
reduces system performance and availability.

5.5 Summary

Table 2 summarizes the shortcomings of the current fault tolerance techniques, none of which are adequate
for modern cloud systems. All current techniques severely afect system availability, as they unnecessarily
lose a signiicant number of nodes. Failure veriication and neutralizing partitioned nodes are used to fortify
speciic mechanisms, rather than providing system-wide fault tolerance. Using mechanism-speciic fault tolerance
techniques requires the independent fortiication of all system mechanisms and the analysis of the interactions
between various mechanisms. This approach complicates system design, fault analysis, and debugging. An
example of a system that uses multiple mechanism-speciic techniques to tolerate partial partitions is Elasticsearch,
which uses checking neighbors’ view, failure veriication [75], and neutralizing partitioned nodes [77] in diferent
mechanisms. However, Elasticsearch has the highest number of reported failures due to partial partitions (Table 1).

Detecting the surviving clique and checking neighbors’ views can be used to build a system-wide fault tolerance
technique. However, as Table 2 shows, these techniques lead to a complete system shutdown or signiicant loss of
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system capacity. This realization motivated us to build Nifty (Section 6), a system-wide fault tolerance technique
that overcomes the aforementioned shortcomings.

6 NIFTY DESIGN

To overcome the limitations of current fault tolerance techniques, we design a simple, transparent network-
partitioning fault-tolerant communication layer (Nifty). Nifty follows a peer-to-peer design in which every node
in the cluster runs a Nifty process. These processes collaborate in monitoring cluster connectivity. When Nifty
detects a partial partition, it reroutes the traic around the partition through intermediate nodes. For instance, in
Figure 10, if two partial partitions isolate node 1 from node 4, Nifty reroutes packets exchanged between nodes 1
and 4 through nodes 2 and 3. While our discussion here focuses on a single partial partition, the Nifty design can
readily handle multiple concurrent partitions.
Although Nifty keeps the cluster connected, it may increase the load on the bridge nodes, leading to a lower

system performance. System designers who use Nifty may optimize the data or process placement or employ
a low-control mechanism to reduce the load on bridge nodes. To facilitate system-speciic optimization, Nifty
provides an API to identify bridge nodes and nodes on diferent sides of a partition, and to help take action when
a partial partition occurs or heals.
Connectivity monitoring. Each Nifty process uses heart beating to monitor its connectivity with all other Nifty
processes. Each Nifty process maintains a distance vector that includes the distance, in number of hops, to every
node in the cluster. If a Nifty process misses three heartbeats from another Nifty process, it assumes that the
communication with that process is broken and updates its distance vector. To detect when the communication
between nodes recovers, Nifty processes continue to send heartbeats to disconnected nodes.
Recovery. Each Nifty process sends its distance vector (piggybacked on heartbeat messages) to all other nodes.
Every Nifty process then uses these vectors to build and maintain a routing table.
When a Nifty process detects a change in the cluster (e.g., a node becomes unreachable or reachable), it

initiates the route discovery procedure to ind new routes. In our prototype, we use the classic BellmanśFord
distance-vector protocol [78, 79] because it is easy to implement. We use hop count as the link weight. By hop,
we mean a hop between end nodes. Using hop count naturally favors direct connections, when they exist, over
rerouting through intermediate nodes.

An entry in the routing table has a destination IP address, hop count, and output MAC address. If a packet is
received with a destination IP address that matches an entry in the routing table, Nifty will change the destination
MAC address of the packet to equal the output MAC address found in the routing table, then send the packet out.
Route deployment. Nifty uses OpenFlow [80] and Open vSwitch [81] to deploy the new routes. For instance,
to reroute packets sent from node 1 to node 4 through nodes 2 and 3 in Figure 10, the Nifty process on node 1
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installs rules on its local Open vSwitch to change the destination MAC address of any packet destined to node 4
to the MAC address of node 2. Whenever node 2 receives a packet with node 4 IP address as its destination, it
changes the destination MAC address to node 3 MAC address and sends the packet out. Finally, when node 3
receives a packet with node 4 IP address, it changes the MAC address to node 4 MAC and sends the packet out.
Node classiication. A system using Nifty can be optimized to reduce the amount of data forwarded through
bridge nodes. The approach to do so is system-speciic and may entail relocating processes in a cluster, dropping
client requests, or reducing query result quality [7].

To facilitate the implementation of these mechanisms, Nifty ofers an API that informs a system running atop
Nifty when a partial partition happens and identiies which nodes are on the same side of the network partition
and which nodes serve as bridge nodes. Section 9 demonstrates how this information facilitates optimizations in
HDFS, VoltDB, and Kafka.

7 IMPLEMENTATION

We implement Nifty in 575 lines of C++ code. A Nifty process runs as a background process on all cluster nodes.
A coniguration ile lists the IP addresses of all cluster nodes. Each Nifty node heartbeats all the nodes listed in
the coniguration ile. The heartbeat message is sent over UDP packets. The default heartbeat period is 200 ms.
A node assumes it cannot reach another node if it misses three heartbeats from that node. We note that this is
relatively aggressive heartbeating. The goal is for Nifty to discover the partial partition and create alternative
routes before the system atop detects the partition with its own heartbeating mechanism. Raft has the shortest
hearbeating periods of 250 ms, hence we choose to heartbeat every 200 ms. Nevertheless, the heartbeat period is
conigurable. Nifty uses the Bellman-Ford routing algorithm to ind routes between end nodes. We piggyback the
distance vector on every heartbeat message.
Rerouting using Open vSwitchs. An Open vSwitch can be controlled using the OpenFlow standard [80].
OpenFlow allows modifying (i.e., inserting or deleting) the forwarding rules of a switch. Each forwarding entry
includes a matching rule and an action list. Matching uses wildcard matching rules on any ield in the packet
standard headers, including IP and MAC addresses, and protocol and port numbers. If a packet matches a rule,
the switch performs the actions associated with that rule. The action list may contain multiple actions that are
performed in order. Among the possible actions are packet forwarding to a speciic switch port, packet dropping,
and modifying ields in a packet such as the source/destination MAC/IP addresses.

After identifying the next hop using distance vector routing, our implementation uses the ovs-ofctl tool to
manipulate Open vSwitch rules to deploy the routing paths between end nodes.
Limitations. Nifty’s approach has two main limitations. First, Nifty relies on an aggressive all-to-all heart
beating in order to detect a partial partition in a timely manner. Unfortunately, this approach does not scale to
large clusters. We note that Nifty needs to be deployed on the system nodes, not on client nodes, making it an
acceptable solution for a large number of systems. Section 8 shows that Nifty can support a cluster of 100 nodes
while degrading the system throughput by only 3.5%.

Second, Nifty uses Open vSwitch and MAC address rewriting to create alternative paths between nodes. This
limits Nifty’s deployablity to a single data center. In our current research we are exploring the design of a fault
tolerance technique that can support geographically distributed systems.
Nifty API. To facilitate building system speciic optimizations, Nifty provides an API. The API mainly notiies
the system when a partial partition happens and exposes the cluster connectivity graph to the system running
atop Nifty. The current prototype ofers a Java wrapper to simplify integrating Nifty with the systems we used in
our evaluation.
Listing 1 shows the main functions in the Nifty API. The API has two groups of functions. The call back

functions are triggered when the network state changes. Systems use the query APIs to ind the network topology.
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The usermust override the abstract methods atPartialPartition(), atHealthyNetwork() and atCompletePartition().
Nifty calls these functions when the network state changes. To identify if a partition is complete or partial, Nifty
uses depth-irst search to traverse the connectivity graph. Depth irst search fails to reach all the nodes in a
complete partition.
The getNetworkTopology() API returns the current topology of the cluster. The Topology is represented

with an adjacency matrix. The adjacency matrix can be analysed to ind the bridge node, and which nodes are on
which side of a partition. This information is suicient to build optimizations that reduce the communication
between nodes on diferent sides of the partition. We show in Section 9 that this basic topology information is
suicient to implement three optimizations in HDFS, VoltDB, and Kafka.

Listing 1. The Nity API

/ / C a l l back f u n c t i o n s

abs t rac t void a t P a r t i a l P a r t i t i o n ( ) ;
abs t rac t void atHea l thyNetwork ( ) ;
abs t rac t void a t C omp l e t e P a r t i t i o n ( ) ;

/ / Query API s

Topology getNetworkTopology ( ) ;
N e t S t a t e ge tNe tworkS t a t e ( ) ;

8 EVALUATION

Our evaluation answers three questions. How much overhead does Nifty impose when there are no network
partitions? What is a system’s performance with Nifty under a network partition? What is the utility of Nifty’s
classiication API?
Testbed. We conduct our experiments using 40 xl170 nodes at the Cloudlab Utah cluster. Each node has an Intel
Xeon E5 10-core CPU, 64 GB of RAM, and a Mellanox ConnectX-4 25 Gbps NIC. To inject a network partition
fault, we modify the Open vSwitch rules on the nodes to drop packets between the afected nodes. In all our
experiments, we report the average for 30 runs. We note that the standard deviation in all our experiments is
lower than 5%. The baseline for our experiments is the performance of the unmodiied system without Nifty and
without partial partitions.

8.1 Overhead Evaluation

To evaluate Nifty’s overhead, we measure its impact on the performance of a synthetic benchmark using iperf
[82] and seven data-centric systems (i.e., storage, database, and messaging systems). The systems we selected are:

• HDFS: We deploy HDFS (v3.3.0) on six nodes (one name node and ive data nodes) and with a replication
level of three. To avoid disk access, we conigure data nodes to use tmpfs. We use the HDFS standard
benchmark (TestDFSIO). The benchmark reads and writes 1 GB iles.

• Kafka: We deploy Kafka (v2.6.0) on ive nodes. We distribute the queues (a.k.a., topics) among nodes to
balance the load. Each message is replicated on three nodes. We use Kafka’s benchmarking tool to generate
load on the system. The experiments use a set of producers and consumers. Each producer sends messages
to a dedicated queue and each queue has one consumer.

• ActiveMQ: We deploy ActiveMQ Artemis (v2.15.0) on ive nodes with each queue being replicated on two
nodes. The experiments use a set of producers and consumers. Each producer sends messages to a dedicated
queue and each queue has one consumer.
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Fig. 11. Nity’s overhead. The average throughput for HDFS (a) and the average throughput vs. average latency for the rest

of the systems. (-P) denotes the results with a partial partition.

• MongoDB: We deploy MongoDB (v4.4.1) on six nodes (one conig server and ive mongod nodes) and with
a replication level of three. We discuss our results with the Yahoo benchmark workload B (95% reads and
5% writes) with a uniform distribution [83]. We use 10 million records. The rest of the Yahoo benchmark
workloads show similar results.

• VoltDB: We deploy VoltDB (v9.0) on nine nodes, with data sharding enabled and a replication level of three.
We use the Yahoo benchmark and the TCP-C benchmark. Figure 11.e shows the throughput-latency curve
under Yahoo benchmark workload B (95% reads and 5% writes) with a uniform distribution. The results
using the TPC-C benchmark and the Yahoo benchmark workloads A and C with uniform and skewed loads
show similar low overhead.

• RabbitMQ: We deploy RabbitMQ (v3.8.2) on three nodes. We use the mirrored mode in which each queue
has a leader replica and two backup replicas. We distribute the queue masters among brokers to distribute
the load. The experiments use a set of producers and consumers. Each producer sends messages to a
dedicated queue and each consumer reads messages from a dedicated queue.
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• Redis PubSub: We deploy Redis (v6.2) on three nodes. One publisher connects to one node (i.e., root node)
and continuously publishes 1 KB messages to one topic. With Redis PubSub, the root Redis node forwards
the published messages to the other Redis nodes. The subscribers connect to the other two Redis nodes.

Results. The baseline for our experiments is the performance of the unmodiied system without Nifty and
without partial partitions. To evaluate the overhead of Nifty, we compare it to the baseline, the throughput, and
average latency of each system with Nifty when there is no partial network partition. We evaluate Nifty with a
partial partition in Section 8.2.
Figure 11 shows the write throughput of HDFS (Figure 11.a) and the throughput-latency curve for Kafka

(Figure 11.b), ActiveMQ (Figure 11.c), MongoDB (Figure 11.d), VoltDB (Figure 11.e), RabbitMQ (Figure 11), and
Redis PubSub (Figure 11.g). The results show that Nifty does not add noticeable overhead; for all systems, the
curves almost completely overlap. This is because Nifty processes exchange a negligible number of packets. Each
Nifty process sends a single UDP heartbeat packet every 200 ms to other nodes in the system. Consequently, in
the largest deployment of nine nodes, each node sends only 40 packets every second.
Scalability evaluation. Nifty uses all-to-all heart beating to monitor a cluster’s connectivity. Consequently,
Nifty’s overhead increases with the cluster size. To measure Nifty’s scalablity, we evaluate its overhead on a 100
m510 nodes at the CloudLab Utah cluster. Each node has an ARMv8 (Atlas/A57) 8-core CPU, 64 GB of RAM, and
a Mellanox ConnectX-3 10 Gbps NIC. For this experiment, we limit the throughput of each node to 1 Gbps, as
CloudLab can not support a full 10 Gbps connectivity between the 100 nodes we managed to book. To generate
network intensive load, we use iperf [82]. Half of the nodes run an iperf server, and the other half run an iperf
client. Each client communicates with a single server. Figure 12 shows the aggregate throughput of the iperf
servers when deployed with and without Nifty. The igure shows that Nifty’s overhead is negligible. When using
100 nodes, Nifty degrades the aggregate throughput by only 3.5%. Nevertheless, this monitoring approach will
not scale to clusters with thousands of nodes. We are currently exploring the design of a fault tolerance technique
that can scale to larger clusters.

8.2 Handling Partial Partitions

To demonstrate the efectiveness of the proposed approach, we evaluate Nifty’s performance with the seven
aforementioned systems under a partial partition fault. We note that RabbitMQ and VoltDB implement two
diferent techniques for tolerating partial partitions (Section 5).
Partial partition setup. We use the same deployment of the seven aforementioned systems. Each system is
deployed on an odd number of replicas. We introduce a partial partition that leaves one node as a bridge node
and puts an equal number of nodes on each side of the partition. Client nodes are not afected by the partition.
We partition the cluster this way to create maximum pressure on the bridge node.
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Fig. 13. Tail latency evaluation. Average throughput vs. 99th percentile of latency.

Figure 11 shows the system performance when the cluster sufers from the partial partition. We notice that
all the seven systems are severely efected by the partial partition. ActiveMQ, MongoDB, and VoltDB sufer a
complete cluster pause or shutdown when deployed without Nifty. HDFS fails almost all write operations. The
VoltDB cluster shuts down because, after detecting the surviving clique, the system misses at least one shard.
This conirms our analysis in Section 5.1.

RabbitMQ uses the checking neighbor’s views fault tolerance approach. In our deployment, each queue is
mirrored on a backup replica. Due to the strong consistency requirement, we conigure RabbitMQ to pause in
case of partial partition. We deploy RabbitMQ on three nodes. Unfortunately, we could not use a larger RabbitMQ
cluster because partial partitions often lead to the pause of the entire RabbitMQ cluster when Nifty is not used
(Figure 6). Even with three nodes, partial partitions sometimes lead to pausing two out of three nodes. We
discard those results and only include results in which one node pauses. Consequently, our results show the best
possible performance of RabbitMQ under partial partitions. Pausing a broker in RabbitMQ leads to more than
50% reduction in throughput (RabbitMQ-P in (Figure 11.f)).
In Redis PubSub, if a partial partition isolates a node that receives new messages from another Redis node,

Redis will fail to deliver the message to subscribes connected to the isolated node , leading to 50% reduction in
throughput (Figure 11.g).

Kafka uses Zookeeper to monitor cluster nodes. If a partial partition isolates a queue leader from the majority
of replicas while Zookeeper runs on a bridge node, Zookeeper will not select a new leader and the entire cluster
pauses (Finding 1 in Section 4). To mitigate this, we make sure that Zookeeper falls on one side of the partition.
In this case, all the nodes on the other side of the partition that cannot reach Zookeeper are removed from the
cluster. In our experiment, the partial partition causes two nodes to pause, which leads to almost a 50% reduction
in system throughput (Figure 11.b).
Figure 11 shows that Nifty efectively masks the partial partition, so none of the nodes shut down or pause.

Figure 11.a shows the write operation throughput for HDFS. With a replication level of three, each ile has
replicas on both sides of a partial partition. Consequently, for every 1 GB of data written, up to 2 GB of data
are rerouted through the bridge node. This reduces the system throughput by up to 45%. We note that having a
partial partition result in a performance degradation is better than a complete system unavailability when HDFS
is deployed without Nifty. We present an optimization for HDFS that alleviates this problem in Section 9. For
the rest of the systems, during the partial partition, almost 50% of client requests and responses are rerouted
through the bridge node. Even so, the system throughput only decreases by 2-6.7% and latency only increases by
3-7.8%. This shows that Nifty can efectively mask partial partitions and is able to utilize remaining connections
to reduce the performance impact.
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Figure 13 shows the tail latency for VoltDB and RabbitMQ for the same experiments presented in Figure 11.
The igure shows the average throughput and the 99th percentile of latency while increasing the load on the
system. The igure shows that Nifty increases the 99th percentile latency by up to 6.8% without a partial partition
and by 15% under a partial partition failure.

9 EVALUATING THE BENEFITS OF THE NIFTY API

In this section we demonstrate the utility of Nifty’s API in improving the performance of three systems. A system
using Nifty can be optimized to reduce the amount of data forwarded through bridge nodes. To enable this
optimization, systems need to know which nodes are on the same side of the partition and which nodes are
bridge nodes. This basic topological information is provided by the Nifty API (Section 7). Systems can use this
information to optimize their operations to reduce the communication between nodes on diferent sides of the
partition. The approach to do so is system-speciic.

To demonstrate the beneit of using Nifty’s API we modify the implementation of three mechanisms. We modify
the data placement protocol in HDFS, the processing of multi-shard operations in VoltDB, and the discovery and
replication service in Kafka.

9.1 HDFS

HDFS uses chain replication to replicate write operations. Chain replication arranges replicas in a chain where
each node passes the write operations to its successor. When selecting three data nodes for a new data chunk,
the name node tries to select nodes located on more than one rack as well as balance the number of blocks across
nodes. Under partial partitions, large volumes of data can be rerouted through the bridge node. In the worst
case, with three-way replication, the same data may traverse bridge nodes twice. Figure 11.a shows that system
throughput degrades by up to 45% under partial partitions. During this experiment clients write 48 GB of data,
and the bridge node rerouted 39.2 GB of data. Our probabilistic analysis shows that with replication level of 3
the total volume of rerouted traic through the bridge nodes will be equivalent to 85% of the data writen by the
clients.
To improve the system performance under partial partitions we used the Nifty’s API to implement three

optimizations. The optimizations are implemented by changing 124 lines of code.

• Optimized chain ordering (Opt.-Chain). In the worst case, when the system is conigured with a replication
level of three, a newly written data block may be rerouted twice through the bridge nodes (Figure 14). Our
probabilistic analysis shows that in our experimental setup of seven data nodes with one node being a
bridge, there is a 17% chance to reroute a block twice through the bridge node.
We modify the HDFS data placement algorithm to avoid the situation in which data is routed twice through
bridge nodes (Figure 14). After the data placement mechanism picks three replicas, we modify the code to
query Nifty to get the network topology. We use the network topology to reorder the replicas in a chain
such that data is forwarded through bridge nodes at most once.

• Two replicas (2-Replicas). Another approach to avoid rerouting the same data twice through bridge nodes is
to temporally reduce the replication level to 2 during network partitions. Once the partial partition heals
the NameNode can create additional replicas of the afected data chunks.

• Optimized data placement (One-side). In this alternative we modiied the HDFS data placement algorithm to
query Nifty to identify the cluster topology under partial partitions then for any new data chunk allocate
three data nodes on the same side of the partition or bridge nodes. This efectively eliminates any data
rerouting through the bridge nodes.

ACM Trans. Comput. Syst.



Partial Network Partitioning • 23

1 2

3

Partial	

Partition

NameNode

D
a
ta
N
o
d
e
sD

a
ta
N
o
d
e
s

Fig. 14. HDFS worst case rerouting. NameNode choosing the replicas to be on 1,2, and 3 will case the data to move across

the partition twice.

We note that these policies afect data written during a partial partition. When the partition heals, Nifty returns
to the original replication factor or placement policy. For the 2-Replicas policy, the system will create an additional
replica after the partition heals.

Results. We deploy HDFS on eight nodes: one name node, and seven data nodes on the same cluster detailed
in Section 8. The partial partition is injected to put three data nodes on each side of the partition and keep one
bridge node. Clients run on dedicated machines and use the TestDFSIO benchmark to write to and read 1 GB
iles. We use the default replication factor of three. We show the average of 30 runs. The maximum standard
deviation of these experiments is 4.7%.

Figure 15 shows the system throughput while varying the number of clients. We use the performance of HDFS
without a partial partition as a baseline (Baseline in Figure 15). The igure shows that when the partial partition
is injected, Nifty, without using any optimization, achieves up to 41% of the baseline throughput. This is mainly
because 85% of the client data is rerouted through the bridge node which creates a bottleneck. In the worst case, a
client data will be forwarded twice through the bridge node during the replication step. This scenario accounted
for 34% of the forwarded data. The Opt.-Chain optimization guarantees that each write operation is rerouted at
most once through the bridge node. This optimization reduces the amount of data rerouted through the bridge
node to 68% of the client data and achieves up to 59% of the baseline throughput. The 2-replicas optimization
further reduces the replication overhead, but also reduces the durability grantees for data written during a
partial partition. This optimization achieves 81% of the baseline throughput. Figure 15 shows that the one-side
optimization achieves a throughput comparable to the baseline under the partial partition. This is because this
optimization avoids rerouting any client data through the bridge nodes.

9.2 VoltDB

In VoltDB, a single server (a.k.a, multi-data-partition initiator or MPI) processes all multi-shard operations. The
MPI divides a multi-shard query (e.g., a join) to sub-queries, such that each sub-query targets a single shard.
The MPI forwards each sub-query to its shard leader, gathers the intermediate results, performs inal query
processing, and sends the result to the client.
When deploying VoltDB atop Nifty, if the MPI node is on one side of the partition, a potentially signiicant

volume of intermediate data passes through the bridge node. In our setup, when the MPI is on one side of the
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Fig. 15. HDFS write throughput with diferent optimizations

partition, 50% of the intermediate results are rerouted through the bridge node. This increases operation latency
and the load on bridge nodes.

To improve the performance of multi-shard operations, the MPI process can be migrated to a bridge node. This
efectively eliminates the need to reroute any traic for multi-shard queries. We modify VoltDB to use Nifty’s
API to identify bridge nodes and migrate the MPI to a bridge node. This optimization is implemented in 57 lines
of code.

To evaluate this optimization’s efectiveness, we evaluate the efect of the MPI’s location on system performance.
We restrict clients to contacting VoltDB nodes on one side of the partition and compare the system performance
of three MPI placements: on clients side of the partition (client side in Figure 16), on the bridge node (bridge),
and on the side opposite to the clients (opposite side). Bridge placement represents our optimization.
Setup and Workload.We use the same VoltDB coniguration and partial partition setup detailed in the previous
sections. Unfortunately, VoltDB has limited support for join queries, so it cannot run standard benchmarks such as
TPC-H [84]. In our experiments, we use a simple synthetic benchmark that joins two tables. The benchmark has
two sharded tables of 20 ields each. Each ield is 50 bytes, leading to approximately 1 KB rows. To use multiple
shards, clients issue a range query that joins the two tables on the primary key. The client issues a query with a
range that includes four primary keys. Consequently, the query result size is limited to four rows, with a total
size of almost 8 KB. We populate the database with 20 GB of data before running the experiments. We report the
average and standard deviation for 30 runs. Our results do not include the time taken to migrate the MPI process.
Results. Figure 16 shows the system throughput (a) and the average latency (b) for the three possible MPI
placements. During a partial partition fault, placing the MPI on a bridge node decreases the latency by up to
11% and improves throughput by 11% compared to client and opposite side placements. Placing the MPI on a
bridge node reduces the number of hops the join query must make before the MPI accumulates all the results and
sends the query reply. Furthermore, bridge placement achieves throughput and latency within 4% of VoltDB’s
performance when there is no partition (łno partitionž in Figure 16).
We measure the amount of data forwarded through the bridge nodes for each one of those conigurations;

placing the MPI on the bridge node imposes the least overhead. When using 128 clients, 72 MB, 5 GB, and 6.5 GB
of data are forwarded through the bridge node when the MPI is placed on the bridge, client side, and opposite
side, respectively. The opposite side reroutes more data than the client side placement, as the client request and
the result are also rerouted through the bridge node.
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Fig. 16. The impact of MPI placement on VoltDB’s performance. Figure shows the average latency (a) and average throughput

(b). Standard deviation was less than 2%.

Fig. 17. The impact of the primary replica placement on Kafka’s performance. The figure shows the latency-throughput

graph. The standard deviation was 3%

9.3 Kafka

Kafka is a replicated event streaming system. Clients follow a discovery protocol to ind which replica is the
primary replica. Clients send their messages to the primary replica which replicates the message to the other
replicas. When deploying Kafka atop Nifty, replication traic can overwhelm bridge nodes. Using Nifty’s API, we
modify the discovery and replication protocols to place the primary replica on a bridge node, efectively avoiding
any rerouting during message replication. This optimization is implemented in 60 lines of code.
Setup and Workload. We deploy Kafka on ive nodes with a replication factor of two. All clients produce and
consume messages on a single topic. We create a partial partition that leaves one bridge node and two nodes on
each side of the partition.
Results. To evaluate the efectiveness of our optimization we compare the system performance when the primary
is on a bridge node to when it is on one side of the partition. We use Kafka’s performance when there is no
partitions as a base line. Figure 17 shows the throughput-latency graph of the three conigurations. The results
show that placing the primary on a bridge node decreases the latency by up to 15% and improves throughput
by 13% compared to primary being on a side of a partition. This is because placing the primary on the bridge
avoids rerouting any data. Furthermore, bridge placement achieves throughput and latency within 3% of Kafka’s
baseline performance.
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10 RELATED WORK

To the best of our knowledge, this is the irst study to focus on partial network partitioning, characterize its failures,
identify design pitfalls in common distributed systems techniques, dissect modern fault tolerance techniques, and
explore the design of a generic fault tolerance technique for this type of fault.
Failure studies. A number of previous eforts analyzed failures in distributed systems, including characterizing
speciic component failures [5, 6, 85ś88] and characterizing failures in a speciic domain such as HPC [89ś91],
IaaS clouds [92], data-mining services [93], hosting services [8, 94], data-intensive systems [95ś97], and cloud
systems [98]. Our work complements these eforts by focusing on failures triggered by partial network partitions.
Yuan et al. [98] conducted a study on 198 general user-reported failures from six distributed systems. Yuan

et al. [98] reports 24% of the their failures to be catastrophic failures, while our work shows a much higher
percentage in partial network partition failures (76%). Our work also shows that less than 2% of the failures
we found are nondeterministic, compared to 26% of general failures they found. This clearly shows that partial
network partition failures have more severe efects on the systems than general failures. This also shows that
testers should be able to catch partial network partition failures with well written tests since almost all of them
are deterministic.
Complete Network Partitions In our previous work [12], we studied 136 network partitioning failures focusing
on complete partitions. This previous work identiied partial partitions, presented examples of how they can lead
to system failures, and presented NEAT, a testing tool that can inject complete and partial network partitioning
faults. We use NEAT to reproduce some of the reported failures. This paper presents an in-depth analysis of
partial partition failures and fault tolerance techniques and proposes a novel fault-tolerant communication layer.

Comparing the characteristics of partial and complete partitions [12] shows that they have similar catastrophic
impact and manifestation and reproducibility characteristics. Partial partitions seem easier to manifest. While
all partial partition failures are triggered by a single-node partial partition and almost all of the failures are
deterministic, 88% of the complete partitions manifest by isolating a single node and 80% of them are deterministic.
Furthermore, we found twice as many failure reports reporting complete partitions than partial partitions.
Despite their similarity in causing catastrophic failures and being easy-to-manifest, partial and complete

partitions are fundamentally diferent faults. Unlike complete partitions, a cluster sufering a partial partition is
still connected but not all-to-all connected. Consequently, the CAP theorem bounds [13] do not apply to partial
partitions. Furthermore, fault tolerance techniques for complete partitions cannot handle partial partitions or
lead to pausing up to half of the cluster nodes. For instance, using majority vote to elect a leader is an efective
mechanism to tolerate complete partitions. This approach alone is not efective in handling partial partitions, as
there could be multiple completely connected subgroups with each connecting a majority of nodes. Section 5
shows how using only majority voting can lead to leader election thrashing and system unavailability.
Overlay Networks. Previous eforts explored building scalable and reliable overlay networks. The Resilient
Overlay Network (RON) [99] explored an overlay design that recover from path outages in the internet. Unlike
RON, Nifty focuses on partial partitions in data center networks, works in the MAC layer, and targets millisecond
convergence times. Peer-to-peer systems like Chord [100] and Pastry [101] use overlay networks to route
requests in peer-to-peer distributed storage systems. BDS [102] uses overlay network routing for optimizing
inter-datacenter data replication. Other works [103] investigate using overlay networks for better performance
in content delivery. Nifty difers from these systems in its purpose, which is to keep a cluster fully connected in
the case of partial partitions.
SDN for overlay networks Software-deined networking capabilities have been used to engineer traic and op-
timize system operations. Google Andromeda [104] uses SDN for Google Cloud Platform’s network virtualization
stack.
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Other eforts focused on using SDN to optimize certain systems. SDN was used for performing diferent
network measurement tasks like QoS measurements or anomaly detection [105, 106]. Some works have used SDN
to implementing an in-network stateful irewalls [107]. Other works [108, 109] show the use of SDN to create
load balancers to optimize key-value stores and distributed Memcached deployments. SDN was also used for
key-value-based routing [110, 111]. Nifty is similar in spirit to these systems, as we use Open vSwitch capabilities
to implement an overlay. Our goal however is diferent: to improve systems fault-tolerance by masking partial
network partitions.

11 CONCLUSION AND FUTURE WORK

Our work sheds light on a peculiar type of infrastructure fault and highlights the need for further research to
understand such faults and explore techniques to improve systems’ resiliency.

This is the irst work to focus on partial network partitioning faults and present an in-depth analysis of system
failures triggered by these faults. We identify characteristics that can facilitate better test design. Our indings
highlight that focused design reviews can identify vulnerabilities early in the design process. We identiied laws
in ive common designs of core system techniques. Investigating alternative designs that tolerate partial partitions
is a high impact research area that needs further exploration.
We dissect the implementation of nine popular systems and study their fault tolerance techniques. In doing

so, we identify four modern approaches for tolerating partial partitions. Unfortunately, all implemented fault
tolerance techniques have severe shortcomings.

We, therefore, build Nifty to overcome the limitations of modern fault tolerance techniques. Nifty is a simple,
transparent communication layer that reroutes packets around partial partitions. We note that modern systems
already incorporate membership and connectivity monitoring. We show that extending the current implementa-
tions with a detour mechanism is an efective and low overhead fault tolerance technique for partial partitions.
The source code for Nifty is available at https://github.com/UWASL/NIFTY

In our future work we will focus on two directions. The irst direction is to investigate the design of a scalable
fault tolerance technique. We will explore techniques to identify partial partitions and ind alternative routes
without continuously performing all-to-all heart-beating. The second direction is to reduce the reliance of Nifty on
OpenvSwitch by exploring the design of an alternate fault tolerance technique, which does not require modifying
OpenvSwitch rules. We plan to build a communication library that masks partial partitions.

ACKNOWLEDGMENT

We thank Bernard Wong, Trevor Brown, Omid Abari, Ali Mashtizadeh, and Khuzaima Daudjee for their insightful
feedback. We thank Joslin Goh for her feedback on our probabilistic analysis of VoltDB’s failure probability.
This research was supported by an NSERC Discovery grant, Canada Foundation for Innovation (CFI) grant,
NSERC Collaborative Research and Development (CRD) grant, and a Waterloo-Huawei Joint Innovation Lab
grant. Ahmed is supported by an IBM PhD fellowship.

REFERENCES

[1] Daniel Turner, Kirill Levchenko, Jefrey C Mogul, Stefan Savage, Alex C Snoeren, Daniel Turner, Kirill Levchenko, Jefrey C Mogul,

Stefan Savage, and Alex C Snoeren. 2012. On failure in managed enterprise networks. HP Labs HPL-2012-101 (2012).

[2] Data Center: Load Balancing Data Center, Solutions Reference Nework Design. Technical report, Cisco Systems, Inc., 2004. ([n. d.]).

[3] Ramesh Govindan, Ina Minei, Mahesh Kallahalla, Bikash Koley, and Amin Vahdat. 2016. Evolve or die: High-availability design principles

drawn from googles network infrastructure. In Proceedings of the 2016 ACM SIGCOMM Conference. ACM, 58ś72.

[4] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou,

Min Zhu, et al. 2013. B4: Experience with a globally-deployed software deined WAN. In ACM SIGCOMM Computer Communication

Review, Vol. 43. ACM, 3ś14.

ACM Trans. Comput. Syst.

https://github.com/UWASL/NIFTY


28 • Alkhatib, et al.

[5] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. 2011. Understanding network failures in data centers: measurement, analysis,

and implications. ACM SIGCOMM Computer Communication Review 41, 4 (2011), 350ś361.

[6] Daniel Turner, Kirill Levchenko, Alex C Snoeren, and Stefan Savage. 2011. California fault lines: understanding the causes and impact of

network failures. ACM SIGCOMM Computer Communication Review 41, 4 (2011), 315ś326.

[7] Eric A Brewer. 2001. Lessons from giant-scale services. IEEE Internet computing 5, 4 (2001), 46ś55.

[8] David Oppenheimer, Archana Ganapathi, and David A Patterson. 2003. Why do Internet services fail, and what can be done about it?. In

USENIX symposium on internet technologies and systems, Vol. 67. Seattle, WA.

[9] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni,

Harry Li, et al. 2013. TAO: Facebook’s Distributed Data Store for the Social Graph. In Presented as part of the 2013 USENIX Annual

Technical Conference (USENIX ATC 13). 49ś60.

[10] Zhe Wu, Michael Butkiewicz, Dorian Perkins, Ethan Katz-Bassett, and Harsha V Madhyastha. 2013. Spanstore: Cost-efective geo-

replicated storage spanning multiple cloud services. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles.

ACM, 292ś308.

[11] James C Corbett, Jefrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, Jefrey John Furman, Sanjay Ghemawat, Andrey

Gubarev, Christopher Heiser, Peter Hochschild, et al. 2013. Spanner: Google’s globally distributed database. ACM Transactions on

Computer Systems (TOCS) 31, 3 (2013), 8.

[12] Ahmed Alquraan, Hatem Takruri, Mohammed Alfatafta, and Samer Al-Kiswany. 2018. An analysis of network-partitioning failures in

cloud systems. In 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18). 51ś68.

[13] Seth Gilbert and Nancy Lynch. 2002. Brewer’s Conjecture and the Feasibility of Consistent, Available, Partition-Tolerant Web Services.

SIGACT News 33, 2 (June 2002), 51ś59. DOI:http://dx.doi.org/10.1145/564585.564601

[14] Diego Ongaro and John Ousterhout. 2014. In search of an understandable consensus algorithm. In 2014 USENIX Annual Technical

Conference (USENIX ATC 14). 305ś319.

[15] Leslie Lamport et al. 2001. Paxos made simple. ACM Sigact News 32, 4 (2001), 18ś25.

[16] Douglas B Terry, Marvin M Theimer, Karin Petersen, Alan J Demers, Mike J Spreitzer, and Carl H Hauser. 1995. Managing update

conlicts in Bayou, a weakly connected replicated storage system. In SOSP, Vol. 95. 172ś182.

[17] Barbara Liskov and James Cowling. 2012. Viewstamped Replication Revisited. Technical Report MIT-CSAIL-TR-2012-021. MIT.

[18] RabbitMQ message broker. https://www.rabbitmq.com. ([n. d.]). Accessed: June 2021.

[19] VoltDB In-Memory Database Platform. https://www.voltdb.com/. ([n. d.]). Accessed: June 2021.

[20] The Ceph object store. https://ceph.io/. ([n. d.]). Accessed: June 2021.

[21] Mohammed Alfatafta, Basil Alkhatib, Ahmed Alquraan, and Samer Al-Kiswany. 2020. Toward a Generic Fault Tolerance Technique

for Partial Network Partitioning. In 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20). USENIX

Association, 351ś368. https://www.usenix.org/conference/osdi20/presentation/alfatafta

[22] Robin J. Wilson. 2010. Introduction to Graph Theory. Prentice Hall/Pearson, New York.

[23] bnx2 Cards Intermittantly Going Oline. https://www.spinics.net/lists/netdev/msg152880.html. ([n. d.]). Accessed: June 2021.

[24] CloudFlare Blog: A Byzantine failure in the real world. https://blog.cloudlare.com/a-byzantine-failure-in-the-real-world/. ([n. d.]).

Accessed: June 2021.

[25] Google Cloud Networking Incident #18003. https://status.cloud.google.com/incident/cloud-networking/18003. ([n. d.]). Accessed: June

2021.

[26] Lyft Engineering: Operating Apache Kafka Clusters 24/7 Without A Global Ops Team. https://eng.lyft.com/operating-apache-kafka-

clusters-24-7-without-a-global-ops-team-417813a5ce70. ([n. d.]). Accessed: June 2021.

[27] Datadog: Learning from AWS failure. https://www.datadoghq.com/blog/gray-aws-failures/. ([n. d.]). Accessed: June 2021.

[28] Simon J Maple and Ian Robinson. 2015. Transaction recovery in a transaction processing computer system employing multiple transaction

managers. (Oct. 20 2015). US Patent 9,165,025.

[29] Christian Maihofer. 2004. A survey of geocast routing protocols. IEEE Communications Surveys & Tutorials 6, 2 (2004), 32ś42.

[30] Matthew Milano and Andrew C Myers. 2018. MixT: a language for mixing consistency in geodistributed transactions. In Proceedings of

the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation. ACM, 226ś241.

[31] Observability in Paxos clusters. https://davecturner.github.io/2017/08/18/observability-in-paxos.html. ([n. d.]). Accessed: June 2021.

[32] Partial network partitions and obstacles to innovation. https://rachelbythebay.com/w/2012/02/16/partition/. ([n. d.]). Accessed:June

2021.

[33] Partial network partition and retries. https://github.com/elastic/elasticsearch/issues/6105. ([n. d.]). Accessed: June 2021.

[34] Healthchecking is Not Transitive. https://www.robustperception.io/healthchecking-is-not-transitive. ([n. d.]). Accessed: June 2021.

[35] Cluster broken after switches upgrade. https://github.com/elastic/elasticsearch/issues/9495. ([n. d.]). Accessed: June 2021.

[36] Using map output fetch failures to blacklist nodes is problematic. https://issues.apache.org/jira/browse/MAPREDUCE-1800. ([n. d.]).

Accessed: June 2021.

[37] Elasticsearch: Distributed search & Analytics. https://www.elastic.co/products/elasticsearch. ([n. d.]). Accessed: June 2021.

ACM Trans. Comput. Syst.

http://dx.doi.org/10.1145/564585.564601
https://www.rabbitmq.com
https://www.voltdb.com/
https://ceph.io/
https://www.usenix.org/conference/osdi20/presentation/alfatafta
https://www.spinics.net/lists/netdev/msg152880.html
https://blog.cloudflare.com/a-byzantine-failure-in-the-real-world/
https://status.cloud.google.com/incident/cloud-networking/18003
https://eng.lyft.com/operating-apache-kafka-clusters-24-7-without-a-global-ops-team-417813a5ce70
https://eng.lyft.com/operating-apache-kafka-clusters-24-7-without-a-global-ops-team-417813a5ce70
https://www.datadoghq.com/blog/gray-aws-failures/
https://davecturner.github.io/2017/08/18/observability-in-paxos.html
https://rachelbythebay.com/w/2012/02/16/partition/
https://github.com/elastic/elasticsearch/issues/6105
https://www.robustperception.io/healthchecking-is-not-transitive
https://github.com/elastic/elasticsearch/issues/9495
https://issues.apache.org/jira/browse/MAPREDUCE-1800
https://www.elastic.co/products/elasticsearch


Partial Network Partitioning • 29

[38] MongoDB: The database for modern applications. https://www.mongodb.com/. ([n. d.]). Accessed: June 2021.

[39] The Apache Hadoop project. http://hadoop.apache.org/. ([n. d.]). Accessed: June 2021.

[40] Apache HBase. https://hbase.apache.org/. ([n. d.]). Accessed: June 2021.

[41] Apache Mesos. http://mesos.apache.org/. ([n. d.]). Accessed: June 2021.

[42] Hazelcast | The Leading In-Memory Computing Platform. https://hazelcast.com/. ([n. d.]). Accessed: June 2021.

[43] Kafka: A distributed streaming platform. https://kafka.apache.org/. ([n. d.]). Accessed: June 2021.

[44] MooseFS: Distributed ile system. https://moosefs.com/. ([n. d.]). Accessed: June 2021.

[45] ActiveMQ: Flexible & Powerful Open Source Multi-Protocol Messaging. http://activemq.apache.org/. ([n. d.]). Accessed: June 2021.

[46] Dkron: A distributed Cron service. https://dkron.io/. ([n. d.]). Accessed: June 2021.

[47] Arbiters in pv1 should vote no in elections if they can see a healthy primary of equal or greater priority to the candidate. https:

//jira.mongodb.org/browse/SERVER-27125. ([n. d.]). Accessed: June 2021.

[48] Possible data loss when RS goes into GC pause while rolling HLog. https://issues.apache.org/jira/browse/HBASE-2312. ([n. d.]). Accessed:

June 2021.

[49] Partial network partition and retries. https://github.com/elastic/elasticsearch/issues/6105. ([n. d.]). Accessed: June 2021.

[50] Hazelcast: the Leading In-Memory Data Grid. https://hazelcast.com/. ([n. d.]). Accessed: June 2021.

[51] Redis: in-memory data structure store. https://redis.io/. ([n. d.]). Accessed: June 2021.

[52] A. Herr. 2016. Veritas Cluster Server 6.2 I/O Fencing Deployment Considerations. Technical Report. Veritas Technologies.

[53] Two primaries with network partitioned replica set (non-transient). https://jira.mongodb.org/browse/SERVER-2544. ([n. d.]). Accessed:

June 2021.

[54] Synchronisation causes crash in duplicated master #1006. https://github.com/rabbitmq/rabbitmq-server/issues/1006. ([n. d.]). Accessed:

June 2021.

[55] Brian M. Oki and Barbara H. Liskov. 1988. Viewstamped Replication: A New Primary Copy Method to Support Highly-Available

Distributed Systems. In Proceedings of the Seventh Annual ACM Symposium on Principles of Distributed Computing (PODC ’88). Association

for Computing Machinery, New York, NY, USA, 8ś17. DOI:http://dx.doi.org/10.1145/62546.62549

[56] Partial network partitioning leads to cluster unavailability. https://github.com/elastic/elasticsearch/issues/43183. ([n. d.]). Accessed:

June 2021.

[57] Apache Zookeeper. https://zookeeper.apache.org/. ([n. d.]). Accessed: June 2021.

[58] ZooKeeper Recipes and Solutions. https://zookeeper.apache.org/doc/current/recipes.html. ([n. d.]). Accessed: June 2021.

[59] ActiveMQ cluster blocks indeinitely in the presence of partial network partition. https://issues.apache.org/jira/browse/AMQ-7064. ([n.

d.]). Accessed: June 2021.

[60] Kafka leader election doesn’t happen when leader broker port is partitioned of the network. https://issues.apache.org/jira/browse/

KAFKA-8702. ([n. d.]). Accessed: June 2021.

[61] Giorgos Myrianthous. Kafka No Longer Requires ZooKeeper. https://towardsdatascience.com/kafka-no-longer-requires-zookeeper-

ebfbf3862104. ([n. d.]). Accessed: June 2021.

[62] Colin McCabe. Apache Kafka Needs No Keeper: Removing the Apache ZooKeeper Dependency. https://www.conluent.io/blog/removing-

zookeeper-dependency-in-kafka/. ([n. d.]). Accessed: June 2021.

[63] MapReduce Ticket 4832. https://issues.apache.org/jira/browse/MAPREDUCE-4832. ([n. d.]). Accessed: June 2021.

[64] Mesos-1529: Handle a network partition between Master and Slave. https://issues.apache.org/jira/browse/MESOS-1529. ([n. d.]).

Accessed: June 2021.

[65] Disconnect between coordinating node and shards can cause duplicate updates or wrong status code #9967. https://github.com/elastic/

elasticsearch/issues/9967. ([n. d.]). Accessed: June 2021.

[66] Mirrored queue crash with out of sync ACKs. https://github.com/rabbitmq/rabbitmq-server/issues/749. ([n. d.]). Accessed: June 2021.

[67] KAFKA-3686: Kafka producer is not fault tolerant. https://issues.apache.org/jira/browse/KAFKA-3686. ([n. d.]). Accessed: June 2021.

[68] Partial network partition and retries #6105. https://github.com/elastic/elasticsearch/issues/6105. ([n. d.]). Accessed: June 2021.

[69] HDFS-1384: NameNode should give client the irst node in the pipeline from diferent rack other than that of excludedNodes list in the

same rack. https://issues.apache.org/jira/browse/HDFS-1384. ([n. d.]). Accessed: June 2021.

[70] Michael Stonebraker and Ariel Weisberg. 2013. The VoltDB Main Memory DBMS. IEEE Data Eng. Bull. 36, 2 (2013), 21ś27.

[71] LogCabin. https://github.com/logcabin/logcabin. ([n. d.]). Accessed: June 2021.

[72] How does VoltDB handle partial network partitions? https://www.voltdb.com/resources/transaction-consistency-faq#net. ([n. d.]).

Accessed: June 2021.

[73] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Cliford Stein. 2009. Introduction to algorithms. MIT press.

[74] Coen Bron and Joep Kerbosch. 1973. Algorithm 457: Finding All Cliques of an Undirected Graph. Commun. ACM 16, 9 (Sept. 1973),

575ś577. DOI:http://dx.doi.org/10.1145/362342.362367

[75] Faulty recovery caused by partial network partitions. https://github.com/elastic/elasticsearch/pull/8720. ([n. d.]). Accessed: June 2021.

ACM Trans. Comput. Syst.

https://www.mongodb.com/
http://hadoop.apache.org/
https://hbase.apache.org/
http://mesos.apache.org/
https://hazelcast.com/
https://kafka.apache.org/
https://moosefs.com/
http://activemq.apache.org/
https://dkron.io/
https://jira.mongodb.org/browse/SERVER-27125
https://jira.mongodb.org/browse/SERVER-27125
https://issues.apache.org/jira/browse/HBASE-2312
https://github.com/elastic/elasticsearch/issues/6105
https://hazelcast.com/
https://redis.io/
https://jira.mongodb.org/browse/SERVER-2544
https://github.com/rabbitmq/rabbitmq-server/issues/1006
http://dx.doi.org/10.1145/62546.62549
https://github.com/elastic/elasticsearch/issues/43183
https://zookeeper.apache.org/
https://zookeeper.apache.org/doc/current/recipes.html
https://issues.apache.org/jira/browse/AMQ-7064
https://issues.apache.org/jira/browse/KAFKA-8702
https://issues.apache.org/jira/browse/KAFKA-8702
https://towardsdatascience.com/kafka-no-longer-requires-zookeeper-ebfbf3862104
https://towardsdatascience.com/kafka-no-longer-requires-zookeeper-ebfbf3862104
https://www.confluent.io/blog/removing-zookeeper-dependency-in-kafka/
https://www.confluent.io/blog/removing-zookeeper-dependency-in-kafka/
https://issues.apache.org/jira/browse/MAPREDUCE-4832
https://issues.apache.org/jira/browse/MESOS-1529
https://github.com/elastic/elasticsearch/issues/9967
https://github.com/elastic/elasticsearch/issues/9967
https://github.com/rabbitmq/rabbitmq-server/issues/749
https://issues.apache.org/jira/browse/KAFKA-3686
https://github.com/elastic/elasticsearch/issues/6105
https://issues.apache.org/jira/browse/HDFS-1384
https://github.com/logcabin/logcabin
https://www.voltdb.com/resources/transaction-consistency-faq#net
http://dx.doi.org/10.1145/362342.362367
https://github.com/elastic/elasticsearch/pull/8720


30 • Alkhatib, et al.

[76] Designing Highly Available Mesos Frameworks. http://mesos.apache.org/documentation/latest/high-availability-framework-guide/. ([n.

d.]). Accessed: June 2021.

[77] Wait on shard failures. https://github.com/elastic/elasticsearch/issues/14252. ([n. d.]). Accessed: June 2021.

[78] Deep Medhi and Karthik Ramasamy. 2017. Network routing: algorithms, protocols, and architectures. Morgan Kaufmann.

[79] Dimitri P Bertsekas, Robert G Gallager, and Pierre Humblet. 1992. Data networks. Vol. 2. Prentice-Hall International New Jersey.

[80] OpenFlow Switch Speciication, Version 1.5.1 (ONF TS-025). Open Networking Foundation, 2015. ([n. d.]).

[81] Ben Pfaf, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin

Shelar, et al. 2015. The design and implementation of open vswitch. In 12th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 15). 117ś130.

[82] iPerf: The ultimate speed test tool for TCP, UDP and SCTP. https://iperf.fr/. ([n. d.]). Accessed: June 2021.

[83] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. 2010. Benchmarking Cloud Serving Systems

with YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing (SoCC ’10). Association for Computing Machinery, New York,

NY, USA, 143ś154. DOI:http://dx.doi.org/10.1145/1807128.1807152

[84] 2018. TPC-H BENCHMARK (Decision Support) Standard Speciication. Transaction Processing Performance Council. Revision 2.18.0.

[85] Kashi Venkatesh Vishwanath and Nachiappan Nagappan. 2010. Characterizing cloud computing hardware reliability. In Proceedings of

the 1st ACM symposium on Cloud computing. ACM, 193ś204.

[86] Robert Birke, Ioana Giurgiu, Lydia Y Chen, Dorothea Wiesmann, and Ton Engbersen. 2014. Failure analysis of virtual and physical

machines: patterns, causes and characteristics. In 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and

Networks. IEEE, 1ś12.

[87] Daniel Ford, François Labelle, Florentina Popovici, Murray Stokely, Van-Anh Truong, Luiz Barroso, Carrie Grimes, and Sean Quinlan.

2010. Availability in globally distributed storage systems. (2010).

[88] Weihang Jiang, Chongfeng Hu, Yuanyuan Zhou, and Arkady Kanevsky. 2008. Are disks the dominant contributor for storage failures?:

A comprehensive study of storage subsystem failure characteristics. ACM Transactions on Storage (TOS) 4, 3 (2008), 7.

[89] Nosayba El-Sayed and Bianca Schroeder. 2013. Reading between the lines of failure logs: Understanding how HPC systems fail. In 2013

43rd annual IEEE/IFIP international conference on dependable systems and networks (DSN). IEEE, 1ś12.

[90] Yinglung Liang, Yanyong Zhang, Anand Sivasubramaniam, Morris Jette, and Ramendra Sahoo. 2006. Bluegene/l failure analysis and

prediction models. In International Conference on Dependable Systems and Networks (DSN’06). IEEE, 425ś434.

[91] Bianca Schroeder and Garth Gibson. 2009. A large-scale study of failures in high-performance computing systems. IEEE transactions on

Dependable and Secure Computing 7, 4 (2009), 337ś350.

[92] Theophilus Benson, Sambit Sahu, Aditya Akella, and Anees Shaikh. 2010. A First Look at Problems in the Cloud. HotCloud 10 (2010), 15.

[93] Hucheng Zhou, Jian-Guang Lou, Hongyu Zhang, Haibo Lin, Haoxiang Lin, and Tingting Qin. 2015. An empirical study on quality issues

of production big data platform. In Proceedings of the 37th International Conference on Software Engineering-Volume 2. IEEE Press, 17ś26.

[94] Haryadi S Gunawi, Mingzhe Hao, Riza O Suminto, Agung Laksono, Anang D Satria, Jefry Adityatama, and Kurnia J Eliazar. 2016. Why

does the cloud stop computing?: Lessons from hundreds of service outages. In Proceedings of the Seventh ACM Symposium on Cloud

Computing. ACM, 1ś16.

[95] Ariel Rabkin and Randy Howard Katz. 2012. How hadoop clusters break. IEEE software 30, 4 (2012), 88ś94.

[96] Haryadi S Gunawi, Mingzhe Hao, Tanakorn Leesatapornwongsa, Tiratat Patana-anake, Thanh Do, Jefry Adityatama, Kurnia J Eliazar,

Agung Laksono, Jefrey F Lukman, Vincentius Martin, et al. 2014. What bugs live in the cloud? a study of 3000+ issues in cloud systems.

In Proceedings of the ACM Symposium on Cloud Computing. ACM, 1ś14.

[97] Sihan Li, Hucheng Zhou, Haoxiang Lin, Tian Xiao, Haibo Lin, Wei Lin, and Tao Xie. 2013. A characteristic study on failures of production

distributed data-parallel programs. In Proceedings of the 2013 International Conference on Software Engineering. IEEE Press, 963ś972.

[98] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao, Yongle Zhang, Pranay U Jain, and Michael Stumm. 2014. Simple

testing can prevent most critical failures: An analysis of production failures in distributed data-intensive systems. In 11th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 14). 249ś265.

[99] David Andersen, Hari Balakrishnan, Frans Kaashoek, and Robert Morris. 2001. Resilient Overlay Networks. 35, 5 (Oct. 2001), 131ś145.

DOI:http://dx.doi.org/10.1145/502059.502048

[100] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan. 2001. Chord: A Scalable Peer-to-Peer Lookup Service

for Internet Applications. SIGCOMM Comput. Commun. Rev. 31, 4 (Aug. 2001), 149ś160. DOI:http://dx.doi.org/10.1145/964723.383071

[101] Antony Rowstron and Peter Druschel. 2001. Pastry: Scalable, Decentralized Object Location, and Routing for Large-Scale Peer-to-Peer

Systems. In Middleware 2001, Rachid Guerraoui (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 329ś350.

[102] Yuchao Zhang, Junchen Jiang, Ke Xu, Xiaohui Nie, Martin J. Reed, Haiyang Wang, Guang Yao, Miao Zhang, and Kai Chen. 2018. BDS:

A Centralized near-Optimal Overlay Network for Inter-Datacenter Data Replication. In Proceedings of the Thirteenth EuroSys Conference

(EuroSys ’18). Association for Computing Machinery, New York, NY, USA, Article 10, 14 pages. DOI:http://dx.doi.org/10.1145/3190508.

3190519

ACM Trans. Comput. Syst.

http://mesos.apache.org/documentation/latest/high-availability-framework-guide/
https://github.com/elastic/elasticsearch/issues/14252
https://iperf.fr/
http://dx.doi.org/10.1145/1807128.1807152
http://dx.doi.org/10.1145/502059.502048
http://dx.doi.org/10.1145/964723.383071
http://dx.doi.org/10.1145/3190508.3190519
http://dx.doi.org/10.1145/3190508.3190519


Partial Network Partitioning • 31

[103] John Byers, Jefrey Considine, Michael Mitzenmacher, and Stanislav Rost. 2002. Informed Content Delivery across Adaptive Overlay

Networks (SIGCOMM ’02). Association for Computing Machinery, New York, NY, USA, 47ś60. DOI:http://dx.doi.org/10.1145/633025.

633031

[104] Michael Dalton, David Schultz, Jacob Adriaens, Ahsan Arein, Anshuman Gupta, Brian Fahs, Dima Rubinstein, Enrique Cauich

Zermeno, Erik Rubow, James Alexander Docauer, et al. 2018. Andromeda: performance, isolation, and velocity at scale in cloud network

virtualization. In 15th USENIX Symposium on Networked Systems Design and Implementation (NSDI 18). 373ś387.

[105] An Wang, Yang Guo, Songqing Chen, Fang Hao, TV Lakshman, Doug Montgomery, and Kotikalapudi Sriram. 2017. vPROM: VSwitch

enhanced programmable measurement in SDN. In 2017 IEEE 25th International Conference on Network Protocols (ICNP). IEEE, 1ś10.

[106] Zili Zha, An Wang, Yang Guo, Doug Montgomery, and Songqing Chen. 2018. Instrumenting open vSwitch with monitoring capabilities:

designs and challenges. In Proceedings of the Symposium on SDN Research. ACM, 16.

[107] Pakapol Krongbaramee and Yuthapong Somchit. 2018. Implementation of SDN stateful irewall on data plane using open vswitch. In

2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE). IEEE, 1ś5.

[108] Anat Bremler-Barr, David Hay, Idan Moyal, and Liron Schif. 2017. Load balancing memcached traic using software deined networking.

In 2017 IFIP Networking Conference (IFIP Networking) and Workshops. IEEE, 1ś9.

[109] Alex FR Trajano and Marcial P Fernandez. 2015. Two-phase load balancing of In-Memory Key-Value Storages through NFV and SDN.

In 2015 IEEE Symposium on Computers and Communication (ISCC). IEEE, 409ś414.

[110] I. Kettaneh, A. Alquraan, H. Takruri, S. Yang, A. S. Dusseau, R. Arpaci-Dusseau, and S. Al-Kiswany. 2019. The Network-Integrated

Storage System. IEEE Transactions on Parallel and Distributed Systems (2019). DOI:http://dx.doi.org/10.1109/TPDS.2019.2938158

[111] Xiaozhou Li, Raghav Sethi, Michael Kaminsky, David G Andersen, and Michael J Freedman. 2016. Be fast, cheap and in control with

SwitchKV. In 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI 16). 31ś44.

APPENDIX A: THE PROBABILITY OF VOLTDB CLUSTER SHUTDOWN

We consider a VoltDB cluster with � nodes. The cluster stores � shards with a replication factor of �. When a
partial network partition happens, VoltDB identiies the surviving clique and all the nodes that are not part of
the clique shutdown. We denote the number of nodes that shutdown due to a partial partition as � (Since � is not
in the surviving clique then � <

�

2 ), leaving the system with (� − � ) surviving nodes.
Assumptions.We assume that:

(1) The system selects � nodes to hold the replicas of a given shard using a uniform random distribution.
(2) Shard placement is independent of other shards locations.
(3) Each node has enough capacity to store all the shards.

VoltDB will shut down if the surviving clique does not have all the shards, i.e., if the � failed nodes contain all
the � replicas of any of the shards, then VoltDB shuts down. In other terms, the VoltDB cluster will survive a
partial partition if every shard has at least one replica in the surviving clique.
Step I. Single Shard Probability. Consider the case of a system with a single shard. The system will survive in
all cases in which the surviving clique has at least a single replica of the shard. To compute the probability a
system will survive a partial partition, we will compute the number of possible replica placements in the cluster,
then compute how many of those placements would fail when losing � nodes. Finally, we will use these two
numbers to compute the probability a system survives a partial partitioning fault.
Number of possible combinations to place a shard. The system selects � nodes to hold the replicas for a shard.

The selection is without replacement since no two copies of the shard can be placed on the same node, and order
of selected nodes is not important.

Number of possible combinations for placing a shard is:

� (�, �) =
� !

(� − �)! × �!
(1)

If � nodes fail, the number of combinations in which all the replicas of the shard are on the � failed nodes is
(this is again without replacement and ordering is not important)
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Fig. 18. Probability of a VoltDB system shut down.

� (�, �) =
� !

(� − �)! × �!
(2)

The probability the system shutdown when � nodes fail is

� (������_�ℎ���_�ℎ������) =
� (�, �)

� (�, �)

=

� !
(�−�)!×�!

� !
(�−�)!×�!

=

� !(� − �)!

� !(� − �)!

(3)

And the probability of a system surviving a partial partition that shuts down F nodes is

� (������_�ℎ���_���������) = 1 −
� !(� − �)!

� !(� − �)!
(4)

Step II. Multi-shard probability. Assuming that shards are placed independently, the probability of a system
with � shard surviving a partial partition with � nodes shutting down is:

� (������_���������) =

(

1 −
� !(� − �)!

� !(� − �)!

)�

(5)

The probability the system shuts down is

� (������_�ℎ������) = 1 −

(

1 −
� !(� − �)!

� !(� − �)!

)�

(6)

Example.We used this formula to compute the probability of failure of VoltDB on diferent cluster sizes. The
number of shards VoltDB allocates to nodes is equal to the number of cores. Figure 18 shows the probability of
VoltDB shutting down for diferent cluster sizes, with replication level of 3, and assuming nodes with 32 CPU
cores. The igure shows that isolating only 10% of the nodes leads to over 50% probability of shutting down
the entire cluster, and isolating only 20% of the nodes leads to a staggering 90% chance for a complete cluster
shutdown.
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Fig. 19. The median number of paused nodes in a cluster of

15 nodes. In all runs, 3 node are unafected by the partition.

The notation (i, j) shows the number of nodes on each side of

the partition.
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Fig. 20. The median number of paused nodes in a cluster of

15 nodes. In all runs, 5 node are unafected by the partition.

The notation (i, j) shows the number of nodes on each side of

the partition.

APPENDIX B: THE IMPACT OF PARTIAL PARTITIONS ON RABBITMQ

RabbitMQ’s has two main policies for handling partial partitions. The irst policy changes a partial partition to a
complete partition which may lead to multiple inconsistent copies of the data. The second is the pause policy
which preserves data consistency but may lead to pausing the entire system or the majority of its nodes.

To determine how many nodes pause when using the pause policy, we conduct an experiment in which we
deploy a 15-node RabbitMQ cluster, introduce a partial partition, and observe how many nodes pause. In all
experiments, we inject a partition such that one node remains unafected and able to reach all nodes. Figures 7,
19, and 20 show the median number of paused nodes under various partition conigurations. We run each
coniguration 30 times. Note that the maximum number of nodes that can pause is 14, 12, and 10 in Figures 7, 19,
and 20, respectively, because the rest of the nodes are bridge nodes that can reach all the nodes in the cluster.
Surprisingly, under all partial partition scenario a signiicant number of the afected nodes pause. Our investigation
of this failure scenario reveals that nodes declare another node unreachable after missing its heartbeats for a
timeout period. In RabbitMQ, the default timeout period is 1 minute, which gives enough time for many nodes to
detect the partition and pause. We experimented with signiicantly shorter timeout periods, but that caused some
nodes to prematurely declare that other nodes had failed, even without a partial partition.
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