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Abstract
An inertial iterative algorithm is proposed for approximating a solution of a maximal
monotone inclusion in a uniformly convex and uniformly smooth real Banach space.
The sequence generated by the algorithm is proved to converge strongly to a
solution of the inclusion. Moreover, the theorem proved is applied to approximate a
solution of a convex optimization problem and a solution of a Hammerstein equation.
Furthermore, numerical experiments are given to compare, in terms of CPU time and
number of iterations, the performance of the sequence generated by our algorithm
with the performance of the sequences generated by three recent inertial type
algorithms for approximating zeros of maximal monotone operators. In addition, the
performance of the sequence generated by our algorithm is compared with the
performance of a sequence generated by another recent algorithm for
approximating a solution of a Hammerstein equation. Finally, a numerical example is
given to illustrate the implementability of our algorithm for approximating a solution
of a convex optimization problem.

MSC: 47H10; 47J25; 47J05

Keywords: Nonlinear equations; Monotone maps; Zeros; Optimization;
Hammerstein equation; Strong convergence

1 Introduction
Let H be a real Hilbert space. A set-valued map A : H ⇒ H is called monotone if for each
u, v ∈ H , ηu ∈ Au, γv ∈ Av, the following inequality holds:

〈ηu – γv, u – v〉 ≥ 0. (1.1)

Monotone maps in Hilbert spaces were first introduced by Minty [34] to aid the abstract
study of electrical networks and later studied by Browder [6] and his school in the setting
of partial differential equations. The map A is called maximal monotone if it is monotone,
and in addition, its graph is not included in the graph of any other monotone map. The
extension of the monotonicity definition from a Hilbert space to itself
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. . . to operators from a Banach space into its dual has been the starting point for the
development of non-linear functional analysis . . . The monotone mappings appear in
a rather wide variety of contexts, since they can be found in many functional equations.
Many of them appear also in calculus of variations, as sub-differentials of convex func-
tions (Pascali and Sburian [36], p. 101).

For example, consider the following: Let E be a real Banach space with dual space E∗ and
let f : E →R∪ {∞} be a proper lower semicontinuous (lsc) and convex function. The sub-
differential of f , ∂f : E ⇒ E∗ is defined by

∂f (u) :=
{

u∗ ∈ E∗ : f (v) – f (u) ≥ 〈
v – u, u∗〉,∀v ∈ E

}
, u ∈ E. (1.2)

It is well known that ∂f is a monotone operator and that 0 ∈ ∂f (u∗) if and only if u∗ is a
minimizer of f . Setting ∂f ≡ A, it follows that solving the inclusion 0 ∈ Au, in this case,
is equivalent to solving for a minimizer of f . It is well known that any maximal mono-
tone map A : R⇒ R is the subdifferential of a proper, convex, and lsc function (see, e.g.,
Cioranescu, [24], Corollary 4.5, p. 170).

In general, a fundamental problem in the study of monotone maps in Banach spaces is
the following:

Find u ∈ E such that 0 ∈ Au. (1.3)

This problem has been investigated in Hilbert spaces by numerous researchers. The prox-
imal point algorithm (PPA) introduced by Martinet [33] and studied extensively by Rock-
afellar [41] and numerous other authors is concerned with an iterative method for ap-
proximating a solution of the inclusion 0 ∈ Au, where A is a maximal monotone map.
Specifically, given xn ∈ H , the proximal point algorithm generates the next iterate xn+1 by
solving the following equation:

xn+1 =
(

I +
1
λn

A
)–1

xn + en, (1.4)

where λn > 0 is a regularizing parameter. Rockafellar [41] proved that if the sequence
{λn}∞n=1 is bounded from above, then the resulting sequence {xn}∞n=1 of proximal point it-
erates converges weakly to a solution of (1.3), when E = H , provided that a solution exists.
Several alternatives and modifications of the PPA have been proposed to obtain strong
convergence under suitable conditions. For a brief review of these alternatives and mod-
ifications in Banach spaces more general than Hilbert spaces, interested readers may see,
e.g., [14, 30, 31, 39, 43, 46] and the references therein.

Chidume et al. [21] recently proved the following strong convergence theorem.

Theorem 1.1 (Chidume et al. [21]) Let E be a uniformly convex and uniformly smooth real
Banach space and let E∗ be its dual. Let A : E ⇒ E∗ be a maximal monotone and bounded
mapping with A–1(0) �= ∅. For arbitrary u1 ∈ E, define a sequence {un} iteratively by

un+1 = J–1(Jun – λnηn – λnθn(Jun – Ju1)
)
, ηn ∈ Aun, n ≥ 1, (1.5)
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where {λn} and {θn} are sequences in (0, 1) satisfying certain conditions and J is the normal-
ized duality map on E. Then, the sequence {un} converges strongly to a solution of 0 ∈ Au.

It is well known that the convergence of iterative algorithms for approximating zeros
of monotone maps are generally slow. This is expected since monotone maps are gener-
ally not differentiable. Thus, fast converging algorithms such as the Newton–Kantorovich
algorithm cannot be used. Consequently, a lot of effort is now being put into iterative al-
gorithms for approximating zeros of maximal monotone maps that improve the speed of
convergence of known algorithms. One method that is now studied is to incorporate the
inertial extrapolation term in algorithms.

In a recent paper, Alvarez [3] studied the asymptotic weak convergence of three inertial
implicit iterative methods for solving the inclusion 0 ∈ Au, when A is a maximal mono-
tone operator on a real Hilbert space, which generalizes the classical PPA. The motiva-
tion for the first of these three methods, called Inertial Proximal Point Algorithm (IPPA),
stems from a discretization of the equation for an oscillator with damping and conserva-
tive restoring force: x′′(t)+γ x′(t)+∇f (x(t)) = 0, where γ > 0 and f : H →R is differentiable.
In the context of optimization problems, this dynamical system which is called Heavy Ball
with Friction (HBF) was first considered by Polyak [37]. It has been known that the inertial
nature of the HBF could be exploited in numerical computations to accelerate the trajec-
tories and speed up convergence (see, e.g., [17, 18]). Concerning asymptotic convergence,
Alvarez [2] showed that if f is differentiable, i.e., if ∇f is monotone and (∇f )–1(0) �= ∅,
then, every trajectory of HBF converges weakly to some x∗ ∈ H with (∇f )(x∗) = 0. Consid-
ering the implicit discretization of the HBF, the following recursion formula, in terms of
resolvents, has been obtained (see, e.g., Alvarez [3], p. 774):

xk+1 = J∇f
λ

(
xk + α(xk – xk–1)

)
, k = 1, 2, . . . , (1.6)

where λ is a regularizing parameter that combines the damping factor of γ and the actual
step size h > 0. Replacing ∇f with a maximal monotone operator A, and considering vari-
able parameters λk > 0 and αk ∈ [0, 1), the discussion above motivated the introduction of
the inertial-type iteration:

xk+1 = JA
λk

(
xk + αk(xk – xk–1)

)
, k = 1, 2, . . . , (IPPA) (1.7)

where the extrapolation term αk(xk – xk–1) is intended to speed up convergence. The In-
ertial Proximal Point Algorithm (IPPA) was first considered in [2] for nonsmooth con-
servative operator A = ∂f , the subdifferential of a closed, proper, and convex function
f : H → R ∪ {∞}. Alvarez [2, Theorem 3.1] proved, under suitable conditions, that {xk}
converges weakly to a minimizer of f . For the nonconservative case, a partial positive result
for cocoercive operators was obtained in [29], where comparisons with first-order-in-time
methods are also given through numerical facts, showing improvements in the speed of
convergence.

The case of arbitrary maximal monotone operators is treated in [4] under the following
conditions:

(i) λ = infk≥0 λk > 0,
(ii) ∀k ∈N, αk ∈ [0, 1), α := supk≥0 αk < 1,

(iii)
∑

αk‖xk – xk–1‖2 < ∞.
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From a different point of view, the following Relaxed Proximal Point Algorithm (RPPA)
was proposed in [28] to accelerate the standard PPA:

xk+1 =
[
(1 – ρk)I + ρkJA

λk

](
xk

)
, (RPPA) (1.8)

where {ρk} ⊂ (0, 2) is a relaxing factor which is assumed to satisfy the following conditions:
infk≥0 ρk > 0 and supk≥0 ρk < 2.

Alvarez [3] recently coupled the IPPA and RPPA, two acceleration strategies, to propose
the following iterative method:

xk+1 =
[
(1 – ρk)I + ρkJA

λk

](
xk + αk(xk – xk–1)

)
. (RIPPA) (1.9)

He proved weak convergence of the sequence {xk} to some x∗ ∈ A–1(0).
We remark that each of the algorithms, IPPA, RPPA, and RIPPA, involves the resolvent

operator, JA
λ .

In this paper, an inertial iterative algorithm is proposed for approximating a solution
of a maximal monotone inclusion in a uniformly convex and uniformly smooth real Ba-
nach space. The sequence generated by the algorithm is proved to converge strongly to
a solution of the inclusion. Moreover, the theorem proved is applied to approximate a
solution of a convex optimization problem, and a solution of a Hammerstein equation.
Furthermore, numerical experiments are given to compare, in terms of CPU time and
number of iterations, the performance of the sequence generated by our algorithm with
the sequences generated by IPPA, RPPA, and RIPPA, respectively, for approximating a so-
lution of a maximal monotone inclusion in Hilbert spaces. Finally, numerical examples
are given to illustrate the implementability of our algorithm for approximating a solution
of a convex optimization problem and for approximating a solution of a Hammerstein
equation.

2 Preliminaries
Let E be a real normed space with dual space, E∗. A map J : E ⇒ E∗ defined by

J(v) :=
{

v∗ ∈ E∗ :
〈
v, v∗〉 = ‖v‖∥∥v∗∥∥,‖v‖ =

∥∥v∗∥∥}
,

is called the normalized duality map.
A normed space E is called uniformly convex, if for all ε ∈ (0, 2], there exists a δ = δ(ε) > 0

such that, if u, v ∈ E, with ‖u‖ ≤ 1, ‖v‖ ≤ 1, and ‖u – v‖ ≥ ε, then ‖ 1
2 (u + v)‖ ≤ 1 – δ.

A normed space E is called strictly convex, if for all u, v ∈ E, with u �= v, ‖u‖ = ‖v‖ = 1,
we have that ‖λu + (1 – λ)v‖ < 1, for all λ ∈ (0, 1).

A normed space E is called uniformly smooth, if given ε > 0, there exists a δ = δ(ε) > 0
such that, for all u, v ∈ E, with ‖u‖ = 1, ‖v‖ ≤ δ, one has

‖u + v‖ + ‖u – v‖ < 2 + ε‖v‖.

A normed space E is called smooth, if for every u ∈ E, ‖u‖ = 1, there exists a unique u∗

in E∗ such that ‖u∗‖ = 1 and 〈u, u∗〉 = ‖u‖.
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Remark 1 It is well known that if E is a smooth, strictly convex, and reflexive Banach
space, the normalized duality map, J , is single-valued, one-to-one and onto, respectively.
Also, if E is uniformly smooth, then J is uniformly continuous on bounded subsets of E.
For more properties of the normalized duality map, see e.g., Alber and Ryazantseva [1],
Lindenstrauss and Tzafriri [32], Chidume [9], and Cioranescu [24].

Let E be a real normed space with dim E ≥ 2. The modulus of convexity of E is the func-
tion δE : (0, 2] → [0, 1] defined by

δE(ε) :=
{

1 –
∥∥∥∥

u + v
2

∥∥∥∥ : ‖u‖ = ‖v‖ = 1; ε = ‖u – v‖
}

.

The following properties of the modulus of convexity will be needed in the sequel (see,
e.g., Chidume [9], page 9):

(a) δE(ε)
ε

is a decreasing function on (0, 2];
(b) δE : (0, 2] → [0, 1] is a convex and continuous function;
(c) δE : (0, 2] → [0, 1] is a strictly increasing function.

Let E be a smooth real normed space and let φ : E × E →R
+ be a map defined by

φ(u, v) = ‖u‖2 – 2〈u, Jv〉 + ‖v‖2, for all u, v ∈ E.

This map was introduced by Alber [1] and has been extensively studied by Alber [1] and
a host of other authors (see, e.g., [18, 20, 30]). It is obvious from the definition of the map
φ that, for any u, v ∈ E, we have:

(‖u‖ – ‖v‖)2 ≤ φ(u, v) ≤ (‖u‖ + ‖v‖)2, (2.1)

φ(v, u) = φ(u, v) + 2〈u, Jv〉 – 2〈v, Ju〉. (2.2)

Define a map V : E × E∗ → R by

V
(
u, u∗) = ‖u‖2 – 2

〈
u, u∗〉 +

∥∥u∗∥∥2, for u ∈ E, u∗ ∈ E∗. (2.3)

Then, it is easy to see that

V
(
u, u∗) = φ

(
u, J–1(u∗)), ∀u ∈ E, u∗ ∈ E∗. (2.4)

We shall use the following lemmas in the sequel, where Int(D(A)) denotes the interior of
the domain of A.

Lemma 2.1 (Alber and Ryazantseva [1]) Let E be a reflexive, strictly convex and smooth
Banach space with E∗ as its dual. Then,

V
(
u, u∗) + 2

〈
J–1u∗ – u, v∗〉 ≤ V

(
u, u∗ + v∗), (2.5)

for all u ∈ E and u∗, v∗ ∈ E∗.
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Lemma 2.2 (Pascali and Sburian [36], Lemma 3.6, Chap. III) Let E be a real normed space
and A : E ⇒ E∗ be a monotone map with 0 ∈ Int(D(A)). Then, A is quasi-bounded, i.e., for
any M > 0, there exists C > 0 such that:

(i) (y, v) ∈ G(A);
(ii) 〈v, y〉 ≤ M‖y‖; and

(iii) ‖y‖ ≤ M, imply ‖v‖ ≤ C.

Lemma 2.3 (Kamimura and Takahashi [30]) Let E be a uniformly convex and uniformly
smooth real Banach space and {xn}, {yn} be sequences in E such that either {xn} or {yn} is
bounded. If limn→∞ φ(xn, yn) = 0, then limn→∞ ‖xn – yn‖ = 0.

Lemma 2.4 (Alber and Ryazantseva [1], p. 50) Let E be a reflexive, strictly convex and
smooth Banach space with E∗ as its dual. Let W : E × E → R

1 be defined by W (x, y) =
1
2φ(y, x). Then,

W (x, y) – W (z, y) ≥ 〈Jx – Jz, z – y〉,

i.e.,

φ(y, x) – φ(y, z) ≥ 2〈Jx – Jz, z – y〉,

and also

W (x, y) ≤ 〈Jx – Jy, x – y〉,

for all x, y, z ∈ E.

Lemma 2.5 (Alber and Ryazantseva [1], p. 45) Let E be a uniformly convex Banach space.
Then, for any R > 0 and any x, y ∈ E such that ‖x‖ ≤ R, ‖y‖ ≤ R, the following inequality
holds:

〈Jx – Jy, x – y〉 ≥ (2L)–1δX
(
c–1

2 ‖x – y‖),

where c2 = 2 max{1, R}, 1 < L < 1.7.

Define

K := 4RL sup
{‖Jx – Jy‖ : ‖x‖ ≤ R,‖y‖ ≤ R

}
+ 1. (2.6)

Lemma 2.6 (Alber and Ryazantseva [1], p. 46) Let E be a uniformly smooth and strictly
convex Banach space. Then for any R > 0 and any x, y ∈ E such that ‖x‖ ≤ R, ‖y‖ ≤ R, the
following inequality holds:

〈Jx – Jy, x – y〉 ≥ (2L)–1δE∗
(
c–1

2 ‖Jx – Jy‖),

where c2 = 2 max{1, R}, 1 < L < 1.7, and δE is the modulus of convexity of E.
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Lemma 2.7 (Reich [38]) Let E∗ be a strictly convex dual Banach space with a Fréchet dif-
ferentiable norm, and let A : E ⇒ E∗ be a maximal monotone map with a zero and z ∈ E∗.
For each λ > 0, there exists a unique xλ ∈ E such that z ∈ Jxλ + λAxλ. Furthermore, xλ con-
verges strongly to a unique zero of A.

Lemma 2.8 From Lemma 2.7, setting λn := 1
θn

, where θn → 0, as n → ∞, θn ≤ θn–1, ∀n ≥ 1,
1
2 ( θn–1–θn

θn
K) ≤ 1, z = Jh, for some h ∈ E, vn ∈ Ayn and yn := (J + 1

θn
A)–1z, we have:

vn – θn(Jh – Jyn) = 0 and yn → y∗ ∈ A–1(0), (2.7)

where A : E ⇒ E∗ is maximal monotone.

Lemma 2.9 (Xu [45]) Let {an} be a sequence of nonnegative real numbers satisfying the
following relation:

an+1 ≤ (1 – σn)an + σnbn + cn, n ≥ 1,

where {σn}, {bn}, and {cn} satisfy the conditions:
(i) {σn} ⊂ [0, 1],

∑∞
n=1 σn = ∞;

(ii) lim supn→∞ bn ≤ 0;
(iii) cn ≥ 0,

∑∞
n=1 cn < ∞.

Then, limn→∞ an = 0.

3 Main results
The following conditions are required in the combined proofs of Lemma 3.1 and Theo-
rem 3.2 below, where {λn}, {βn}, and {θn} are sequences in (0, 1):

(i)
∑∞

n=1 λnθn = ∞,
(ii) δ–1

E (λnK) ≤ θ2
nγ0,

(iii) δ–1
E∗ (λnK) ≤ θ2

nγ0,
(iv) ωJ (βnK) ≤ λ4

nθnγ0,
(v) δ–1

E (ηn) → 0,
(vi) δ–1

E∗ (ηn) → 0,
(vii) δ–1

E (ηn)
λnθn

→ 0,

(viii) δ–1
E∗ (ηn)
λnθn

→ 0,
(ix) λn ≤ θnγ0,

where ηn = ( θn–1
θn

–1)K , for some constants γ0 > 0, K > 0; and δE is the modulus of convexity
of E, ωJ is the modulus of continuity of J .

Estimates for the moduli of convexity of E = Lp, 1 < p < ∞.
The following estimates have been obtained for δE in Lp spaces, 1 < p < ∞,

δE(ε) ≥
⎧
⎨

⎩

p–1
8 ε2, if 1 < p < 2;

1
p ( ε

2 )p, if p ≥ 2;

where ε ∈ (0, 2] (see e.g., Lindenstrauss and Tzafriri [32], see also, Chidume [9], p. 44).
Also, in Lp spaces, J is Lipschitz if 2 ≤ p < ∞ and it satisfies the following inequality:

‖Jx – Jy‖ ≤ H‖x – y‖p–1,
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if 1 < p < 2. Consequently, we have the following estimates:

ωJ (ε) ≤
⎧
⎨

⎩
Hε(p–1), if 1 < p < 2;

Mε, if p ≥ 2;

where ε > 0, H and M are positive constants, and J is the normalized duality map (see, e.g.,
Lindenstrauss and Tzafriri [32], see also Chidume [9]).

Prototypes of the parameters for Lemma 3.1 and Theorem 3.2 below in the case that
E = Lp, 1 < p < ∞ are:

For Lp spaces, 2 ≤ p < ∞,

λn = (n + 1)– 1
2 , θn = (n + 1)– 1

4p and βn = (n + 1)–(2+ 1
4p ), n ≥ 1.

For Lp spaces, 1 < p < 2,

λn = (n + 1)– 1
4 , θn = (n + 1)– 1

16 and βn = (n + 1)– 17
16(p–1) , n ≥ 1.

With these choices, conditions (i)–(ix) given in Lemma 3.1 and Theorem 3.2 are easily
satisfied.

Furthermore, we have the following formulae, for J and J–1 in Lp and lp, 1 < p < ∞, p–1 +
q–1 = 1 (see, e.g., Alber and Ryazantseva [1], p. 36):

Ju = ‖u‖2–p
lp v ∈ lq, v =

{|u1|p–2u1, |u2|p–2u2, . . .
}

, u = {u1, u2, . . . },
J–1u = ‖u‖2–q

lq v ∈ lp, v =
{|u1|q–2u1, |u2|q–2u2, . . .

}
, u = {u1, u2, . . . },

Ju = ‖u‖2–p
Lp

∣∣u(s)
∣∣p–2u(s) ∈ Lq(G), s ∈ G,

J–1u = ‖u‖2–q
Lq

∣∣u(s)
∣∣q–2u(s) ∈ Lp(G), s ∈ G.

We now prove the following lemma.

Lemma 3.1 Let E be a uniformly smooth and uniformly convex real Banach space and
A : E ⇒ E∗ be a maximal monotone operator with D(A) = E such that the inclusion 0 ∈ Az
has a solution. For arbitrary z0, z1 ∈ E, define a sequence {zn} by

⎧
⎨

⎩
wn = zn + βn(zn – zn–1),

zn+1 = J–1(Jwn – λnμn – λnθnJwn), μn ∈ Awn, n ≥ 1.
(3.1)

Then, the sequence {zn} is bounded.

Proof We show that the sequence {zn} is bounded.
Let z∗ be a solution of 0 ∈ Az, i.e., 0 ∈ Az∗. Then, there exists r > 0 (sufficiently large)

such that

r > max
{

4
∥∥v∗∥∥2,φ

(
z∗, z1

)}
. (3.2)
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Define B := {z ∈ E : φ(z∗, z) < r}, with 0 ∈ B. Clearly, B ⊂ Int(D(A)). It suffices to show that
{φ(z∗, zn)} is bounded. We proceed by induction. For n = 1, by construction, we have that
φ(z∗, z1) < r. Assume that φ(z∗, zn) < r, for some n ≥ 1. Using inequality (2.1), we have
that ‖zn‖ < ‖z∗‖ +

√
r. Now, we show that φ(z∗, zn+1) < r. Suppose for contradiction that

φ(z∗, zn+1) < r does not hold. Then, φ(z∗, zn+1) ≥ r.
Let y ∈ B be arbitrary and (y, v) ∈ G(A), u ∈ Ax. Since A is locally bounded at 0, there

exist h0 > 0, m0 > 0 such that

‖u‖ ≤ m0, ∀x ∈ Bh0 (0) ⊂ B.

By the monotonicity of A, we have that:

〈v, y〉 ≥ 〈u, y – x〉 + 〈v, x〉, ∀x ∈ Bh0 (0), v ∈ Ay,

〈v, –y〉 ≤ 〈u, x – y〉 + 〈v, –x〉.

Setting s = –y, we have that:

〈v, s〉 ≤ 〈u, x + s〉 + 〈v, –x〉
≤ ‖u‖(‖x‖ + ‖s‖) + ‖v‖‖x‖,

sup
‖s‖≤(‖z∗‖+

√
r)

∣∣〈v, s〉∣∣ ≤ m0
(
h0 +

∥∥z∗∥∥ +
√

r
)

+ ‖v‖h0,

so that

‖v‖ ≤ m0(h0 + ‖z∗‖ +
√

r)
‖z∗‖ +

√
r – h0

:= M0, ∀y ∈ B.

Define M := max{M0,‖z∗‖+
√

r}. Then, 〈v, y〉 ≤ M‖y‖ and ‖y‖ ≤ M. By Lemma 2.2, there
exists C > 0 such that ‖v‖ ≤ C, ∀y ∈ B. Define

M1 = sup
{‖μ + θ Jw‖, w ∈ B,μ ∈ Aw, θ ∈ (0, 1)

}
+ 1; (3.3)

M2 = sup
{∥∥J–1(Jw – λμ – λθ Jw)

∥∥, w ∈ B,μ ∈ Aw, θ ∈ (0, 1)
}

+ 1. (3.4)

From the recursion formula, Lemma 2.5, and the fact that J and J–1 are uniformly contin-
uous on bounded sets, we have that

‖Jzn+1 – Jwn‖ ≤ λnM1 and ‖zn+1 – wn‖ ≤ c2δ
–1
E

(
λnM∗), for some M∗ > 0. (3.5)

Define

γ0 := min

{
1,

r
32K∗

}
, (3.6)
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where K∗ = max{M∗, M1, M2, M1M2, M, c2M1}. Using Lemma 2.1 and denoting 0 ∈ Az∗ by
0∗, we compute:

φ
(
z∗, zn+1

)
= V

(
z∗, Jwn – λnμn – λnθnwn

)

≤ V
(
z∗, Jwn

)
– 2λn

〈
zn+1 – z∗,μn + θnJwn

〉

= φ
(
z∗, wn

)
– 2λn〈zn+1 – wn,μn + θnJwn〉 – 2λn

〈
wn – z∗,μn + θnJwn

〉

≤ φ
(
z∗, wn

)
+ 2c2λnδ

–1
E

(
λnM∗)M1 – 2λn

〈
wn – z∗,μn – 0∗〉

– 2θnλn
〈
wn – z∗, Jwn

〉

≤ φ
(
z∗, wn

)
+ 2c2λnδ

–1
E

(
λnM∗)M1 – 2θnλn

〈
wn – z∗, Jwn – Jzn+1

〉

– 2θnλn
〈
wn – z∗, Jzn+1

〉
. (3.7)

By Lemma 2.4, we have that

–2λnθn
〈
wn – z∗, Jzn+1

〉 ≤ λnθn
∥∥z∗∥∥2 + 2Mλnθn‖wn – zn+1‖ – λnθnφ

(
z∗, zn+1

)
,

φ
(
z∗, wn

) ≤ φ
(
z∗, zn

)
+ 2M2ωJ (βnM). (3.8)

It follows from inequality (3.7) that

r ≤ φ
(
z∗, zn+1

)

≤ φ
(
z∗, zn

)
+ 2M2ωJ (βnM) + 2c2λnδ

–1
E

(
λnM∗)M1 + λnθn

∥∥z∗∥∥2

+ 2λnθnM‖Jwn – Jzn+1‖ + 2λnθnM‖wn – zn+1‖ – λnθnφ
(
z∗, zn+1

)

≤ φ
(
z∗, zn

)
+ 2M2ωJ (βnM) + 2c2λnδ

–1
E

(
λnM∗)M1 + λnθn

∥∥z∗∥∥2

+ 2λ4
nθnMM1 + 2c2λnθnδ

–1
E

(
λnM∗)M – λnθnφ

(
z∗, zn+1

)

< r + 2M2λnθnγ0 + 2c2λnθnM1γ0 + λnθn
r
4

+ 2λnθnMM1γ0

+ 2λnθnγ0M – λnθnr

< r + λnθn
r
2

– λnθnr < r.

This is a contradiction. Hence, φ(z∗, zn+1) < r. Therefore, φ(z∗, zn) < r, for all n ≥ 1. �

Theorem 3.2 Let E be a uniformly smooth and uniformly convex real Banach space. Let
A : E ⇒ E∗ be a maximal monotone operator with D(A) = E such that the inclusion 0 ∈ Az
has a solution. For arbitrary z0, z1 ∈ E, define a sequence {zn} by algorithm (3.1). Then, the
sequence {zn} converges strongly to a zero of A (see Remark 2 below).

Proof Using Lemma 2.1 and equation (2.2), we have

φ(yn, zn+1) = V (yn, Jwn – λnμn – λnθnJwn)

≤ V (yn, Jwn) – 2λn〈zn+1 – yn,μn + θnJwn〉
= φ(wn, yn) + 2〈wn, Jyn〉 – 2〈yn, Jwn〉 – 2λn〈zn+1 – yn,μn + θnJwn〉. (3.9)
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Observe that

φ(wn, yn) = V (wn, Jyn) = V (wn, Jyn–1 + Jyn – Jyn–1)

≤ V (wn, Jyn–1) – 2〈yn – wn, Jyn–1 – Jyn〉. (3.10)

Thus, from inequalities (3.9), (3.10), and the fact that vn ∈ Ayn, we obtain

φ(yn, zn+1) ≤ V (wn, Jyn–1) – 2〈yn – wn, Jyn–1 – Jyn〉 + 2〈wn, Jyn〉 – 2〈yn, Jwn〉
– 2λn〈zn+1 – yn,μn + θnJwn〉

= φ(yn–1, wn) + 2〈yn–1, Jwn〉 – 2〈wn, Jyn–1〉 – 2〈yn – wn, Jyn–1 – Jyn〉
+ 2〈wn, Jyn〉 – 2〈yn, Jwn〉 – 2λn〈zn+1 – yn,μn + θnJwn〉

= φ(yn–1, wn) + 2〈yn–1 – yn, Jwn〉 + 2〈wn, Jyn – Jyn–1〉
– 2〈yn – wn, Jyn–1 – Jyn〉 – 2λn〈zn+1 – yn,μn + θnJwn〉

≤ φ(yn–1, wn) + 2‖yn–1 – yn‖‖wn‖ + 2‖wn‖‖Jyn – Jyn–1‖
+ 2‖yn – wn‖‖Jyn–1 – Jyn‖ + 2λn‖zn+1 – wn‖M1

– 2λn〈wn – yn,μn – vn〉 – 2λn〈wn – yn, vn〉 – 2λnθn〈wn – yn, Jwn〉. (3.11)

Observe that

–2λnθn〈wn – yn, Jwn〉 = 2λnθn〈wn – yn–1, Jyn–1 – Jwn〉 – 2λnθn〈yn–1 – yn, Jwn – Jyn–1〉
– 2λnθn〈wn – yn, Jyn〉 – 2λnθn〈wn – yn, Jyn–1 – Jyn〉

≤ –λnθnφ(yn–1, wn) + 2λnθn‖yn–1 – yn‖M

– 2λnθn〈wn – yn, Jyn〉 + 2λnθn‖Jyn–1 – Jyn‖M. (3.12)

Also, from Lemma 2.8, we obtain that

–2λn〈wn – yn, vn〉 – 2λnθn〈wn – yn, Jyn〉 = –2λn〈wn – yn, vn + θnJyn〉 = 0. (3.13)

Hence, substituting inequality (3.12) and equation (3.13) into inequality (3.11), we have
that

φ(yn, zn+1) ≤ (1 – λnθn)φ(yn–1, wn) + 2‖yn–1 – yn‖M + 4‖Jyn–1 – Jyn‖M

+ 2λn‖zn+1 – wn‖M + 2λnθn‖yn–1 – yn‖M + 2λnθn‖Jyn–1 – Jyn‖M

≤ (1 – λnθn)φ(yn–1, wn) + 2M
(
δ–1

E (ηn) + δ–1
E∗ (ηn)

)
+ 2λnδ

–1
E (λnM)M

+ 2λnθnM
(
δ–1

E (ηn) + δ–1
E∗ (ηn)

)

≤ (1 – λnθn)φ(yn–1, zn) + 2M2ωJ (βnM) + 2Mλnθ
2
nγ0

+ 2λnθn

(
δ–1

E (ηn)
λnθn

+
δ–1

E∗ (ηn)
λnθn

+ δ–1
E (ηn) + δ–1

E∗ (ηn)
)

M. (3.14)
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Applying inequalities (3.8) and (3.14), we obtain

φ(yn, zn+1) ≤ (1 – λnθn)φ(yn–1, zn) + 2Mλ4
nθnγ0

+ 2λnθn

(
δ–1

E (ηn)
λnθn

+
δ–1

E∗ (ηn)
λnθn

+ θnγ0 + δ–1
E (ηn) + δ–1

E∗ (ηn)
)

M. (3.15)

Set an := φ(yn–1, zn), σn := λnθn, cn := λ4
nθn, and

bn : = M
(

δ–1
E (ηn)
λnθn

+
δ–1

E∗ (ηn)
λnθn

+ δ–1
E (ηn) + δ–1

E∗ (ηn) + θnγ0

)
.

Hence, inequality (3.15) becomes an+1 ≤ (1 – σn)an + σnbn + cn, n ≥ 1. It follows from
Lemma 2.9 that limn→∞ φ(yn–1, zn) = 0. By Lemma 2.3, we have limn→∞ ‖zn – yn–1‖ = 0.
Since limn→∞ yn = y∗ ∈ A–10, we have that {zn} converges to y∗ ∈ A–10. This completes the
proof. �

Remark 2 This zero of A may be a minimum norm zero of A, for example, if A is the
subdifferential, ∂f , of a proper lower semicontinuous and convex function f .

4 Applications
4.1 Application to a convex optimization problem
The following lemma will be crucial in what follows.

Lemma 4.1 (Rockafellar [40]) Let E be a Banach space and let f : E →R∪{∞} be a proper,
convex and lower semicontinuous function. Then, the subdifferential of f , ∂f , is maximal
monotone. Furthermore, 0 ∈ ∂f (u∗) if and only if u∗ is a minimizer of f .

We now have the following theorem.

Theorem 4.2 Let E be a uniformly convex and uniformly smooth real Banach space with
dual E∗. Let f : E →R∪ {∞} be a proper, lower semicontinuous, and convex function such
that (∂f )–10 �= ∅. For given z0, z1 ∈ E, let {zn} be generated by the algorithm

⎧
⎨

⎩
wn = zn + βn(zn – zn–1),

zn+1 = J–1(Jwn – λn∂f (wn) – λnθnJwn), n ≥ 1.
(4.1)

Then, the sequence {zn} converges strongly to a minimizer of f .

Proof By Lemma 4.1, ∂f is maximal monotone. The conclusion follows from Theo-
rem 3.2. �

4.2 Applications to Hammerstein integral equations
Definition 4.3 Let Ω ⊂R

n be bounded. Let k : Ω × Ω → R and f : Ω ×R →R be mea-
surable real-valued functions. An integral equation (generally nonlinear) of Hammerstein-
type has the form

u(x) +
∫

Ω

k(x, y)f
(
y, u(y)

)
dy = w(x), (4.2)
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where the unknown function u and inhomogeneous function w lie in a Banach space E of
measurable real-valued functions.

If we define an operator K by K(v) :=
∫
Ω

κ(x, y)v(y) dy; x ∈ Ω , and the so-called super-
position or Nemytskii operator by Fu(y) := f (y, u), then equation (4.2) can be put in the
form

u + KFu = 0. (4.3)

Without loss of generality, we have taken w ≡ 0.
Interest in Hammerstein integral equations stems mainly from the fact that several prob-

lems that arise in differential equations, for instance, elliptic boundary value problems
whose linear part possesses Green’s function can, as a rule, be transformed into the form
of equation (4.2) (see, e.g., Pascali and Sburian [36], Chap. IV). Consider, for example, the
following pendulum problem:

⎧
⎨

⎩

d2v(t)
dt2 – a2 sin v(t) = z(t), t ∈ [0, 1],

v(0) = v(1) = 0,
(4.4)

where the driving the force z is periodical and odd. The constant a �= 0 depends on the
length of the pendulum and on gravity. Since the Green’s function of the problem

v′′(t) = 0, v(0) = v(1) = 0

is the function defined by

k(t, x) =

⎧
⎨

⎩
t(1 – x), 0 ≤ t ≤ x,

t(1 – x), x ≤ x ≤ 1,

problem (4.4) is equivalent to the nonlinear integral equation

v(t) = –
∫ 1

0
k(t, x)

[
z(x) – a2 sin v(x)

]
dx. (4.5)

If
∫ 1

0 k(t, x)z(x) dx = g(t) and v(t) + g(t) = u(t), then (4.5) can be written as the Hammerstein
integral equation

u(t) +
∫ 1

0
k(t, x)f

(
x, u(x)

)
dx = 0,

where f (x, u(x)) = a2 sin[u(x) – g(x)].
Equations of Hammerstein-type also play a special role in the theory of optimal control

systems and in automation and network theory (see, e.g., Dolezale [27]).
In the case when K and F are maximal monotone, several existence and uniqueness

theorems have been proved for equations of Hammerstein type (see, e.g., [5, 7, 8, 25]).
Iterative methods for approximating solutions of problem (4.3) have been studied (see

e.g., [10, 12, 13, 15, 19, 22, 23, 26, 35, 42] and the references therein).
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In this section, we shall apply Theorem 3.1, for the case where the map A is single-valued,
to approximate a solution of equation (4.3). First we state the following important lemmas.

Lemma 4.4 (Chidume and Idu [16]) Let X be a uniformly convex and uniformly smooth
real Banach space with dual space X∗ and E = X × X∗. Let F : X → X∗ and K : X∗ → X
be monotone maps with R(F) = D(K), where R(F) is the range of F and D(K) is the domain
of K . Let A : E → E∗ be defined by A[u, v] = [Fu – v, Kv + u]. Then, A is maximal monotone.

Let {λn}, {βn}, and {θn} be sequences in (0, 1) and satisfy the conditions as given in The-
orem 3.2.

Theorem 4.5 Let E be a uniformly convex and uniformly smooth real Banach space with
dual space E∗. Let F : E → E∗, K : E∗ → E be maximal monotone maps. Let X := E × E∗

and A : X → X∗ be defined by A[u, v] := [Fu – v, Kv + u]. For arbitrary z0, z1 ∈ X, define the
sequence {zn} in X by

⎧
⎨

⎩
wn = zn + βn(zn – zn–1),

zn+1 = J–1(Jwn – λnAwn – λnθnwn), n ≥ 1.
(4.6)

Assume that the equation u + KFu = 0 has a solution, then the sequence {zn}∞n=1 converges
strongly to a solution of u + KFu = 0.

Proof By a result of Chidume [9], E is uniformly smooth and uniformly convex, also, by
Lemma 4.4, A maximal monotone. Therefore, the conclusion follows from Theorem 3.2.�

Theorem 4.5 can also be stated as follows.

Theorem 4.6 Let E be a uniformly smooth and uniformly convex real Banach space with
dual space E∗. Let F : E → E∗, K : E∗ → E be maximal monotone maps with R(F) = D(K),
where R(F) is the range of F and D(K) is the domain of K .

For arbitrary (u0, v0), (u1, v1) ∈ E × E∗, define the sequences {un} and {vn} in E × E∗ by

⎧
⎪⎪⎨

⎪⎪⎩

cn = un + βn(un – un–1), dn = vn + βn(vn – vn–1),

un+1 = J–1(Jcn – λn(Fcn – dn) – λnθnJcn), n ≥ 1,

vn+1 = J(J–1dn – λn(Kdn + cn) – λnθnJ–1dn), n ≥ 1.

(4.7)

Assume that the equation u+KFu = 0 has a solution, then the sequences {un}∞n=1 and {vn}∞n=1

converge strongly to u∗ and v∗, respectively, where u∗ is a solution of u + KFu = 0, with
v∗ = Fu∗.

Remark 3 Algorithm (4.7) (Inertial Algorithm 2) will be compared with Algorithm (4.8)
of Uba et al. [44] and Algorithm (4.9) of Chidume et al. [11] below. We state the theorems
for completeness.

Theorem 4.7 (Uba et al. [44]) Let E be a uniformly convex and uniformly smooth real
Banach space and and F : E → E∗, K : E∗ → E be maximal monotone and bounded maps.
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For u1 ∈ E and v1 ∈ E∗, define the sequences {un} and {vn} in E and E∗, respectively, by

⎧
⎨

⎩
un+1 = J–1(Jun – λn(Fun – vn) – λnθn(Jun – Ju1)), n ≥ 1,

vn+1 = J(J–1vn – λn(Kvn + un) – λnθn(J–1vn – J–1v1)), n ≥ 1,
(4.8)

where λn and θn are sequences in (0, 1) satisfying appropriate conditions. Assume that the
equation u + KFu = 0 has a solution. Then, the sequences {un} and {vn} converge strongly
to u∗ and v∗, respectively, where u∗ is the solution of u + KFu = 0 with v∗ = Fu∗.

Theorem 4.8 (Chidume et al. [11]) Let E be a uniformly convex and uniformly smooth
real Banach space and F : E → E∗, K : E∗ → E be maximal monotone maps. For u1 ∈ E
and v1 ∈ E∗, define the sequences {un} and {vn} in E and E∗, respectively, by

⎧
⎨

⎩
un+1 = J–1(Jun – λn(Fun – vn) – λnθnJun), n ≥ 1,

vn+1 = J(J–1vn – λn(Kvn + un) – λnθnJ–1vn), n ≥ 1,
(4.9)

where λn and θn are sequences in (0, 1) satisfying appropriate conditions. Assume that the
equation u + KFu = 0 has a solution. Then, the sequences {un} and {vn} converge strongly
to u∗ and v∗, respectively, where u∗ is the solution of u + KFu = 0 with v∗ = Fu∗.

5 Numerical illustration
In this section, we present numerical examples to compare the convergence of the se-
quence of our inertial algorithms and some recent important algorithms. First, we com-
pare the convergence of the sequence of Inertial Algorithm (3.1) (Inertial Algorithm 1)
with IPPA (1.5), (1.7) (IPPA), (1.8) (RPPA), and (1.9) (RIPPA), respectively. Also, we present
numerical examples to compare the convergence of the sequence of Algorithm (4.7) (In-
ertial Algorithm 2) with Algorithms (4.8) and (4.9), respectively. Finally, we present a nu-
merical example to illustrate the implementability of Algorithm (4.1) whose sequence ap-
proximates a solution of a convex optimization problem.

Example 1 (Zeros of a maximal monotone map in a real Hilbert space) In Theorem 1.1,
IPPA, RPPA, RIPPA, and Theorem 3.2 set E = L2([0, 1]). Consider the map A : E → E de-
fined by

(Au)(t) := (t + 1)u(t).

Then, it is easy to see that A is maximal monotone. Furthermore, the function u(t) = 0,
∀t ∈ [0, 1] is the solution of the equation Au(t) = 0. In Theorem 1.1, we take αn = 1

(n+1)
1
2

,

θn = 1

(n+1)
1
4

; in Algorithm (1.7) (IPPA), take λk = k
k+1 , αk = 1

(k+1)2 ; in Algorithm (1.8) (RPPA),

take λk = k
k+1 = ρk ; in Algorithm (1.9) (RPPA), take λk = k

k+1 = ρk , αk = 1
(k+1)2 ; and in Theo-

rem 3.2, we take αn = 1

(n+1)
1
2

, θn = 1

(n+1)
1
4

, βn = 1
(n+1)2 , n = 1, 2, . . . , as our parameters. Clearly,

these parameters satisfy the hypothesis of the respective theorems. In all the tables below,
we use the following notions:

• IP—initial point,
• n—number of iterations,
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• ‖un+1‖—norm of the approximate solution at the (n + 1)th iteration,
• T(s)—time in seconds.

Setting a tolerance of 10–6 and maximum number of iterations n = 10, we obtain the iter-
ates which are shown in Tables 1 and 2.

Table 1 Numerical results for Example 1

Algorithm (1.5) Algorithm (1.7) (Inertial PPA) Algorithm (3.1) (Inertial Algorithm 1)
IP n ‖un+1‖ T (s) IP n ‖un+1‖ T (s) IP n ‖un+1‖ T (s)

u1(t) = t2 + 1 10 0.3587 0.032 u1(t) = t2 + 1 10 0.0762 0.081 u0(t) = 2t
u1(t) = t2 + 1

10 1.999E–6 15.69

u1(t) = 1
t+1 10 0.2093 0.058 u1(t) = 1

t+1 10 0.1056 0.082 u0(t) = 2t
u1(t) = 1

t+1

10 1.87E–6 17.65

u1(t) = tet 10 0.2984 0.056 u1(t) = tet 10 0.0552 0.095 u0(t) = 2t
u1(t) = tet

8 1.89E–6 92.44

Table 2 Numerical results for Example 1

Algorithm (1.8) (RPPA) Algorithm (1.9) (RIPPA) Algorithm (3.1) (Inertial Algorithm 1)
IP n ‖un+1‖ T (s) IP n ‖un+1‖ T (s) IP n ‖un+1‖ T (s)

u1(t) = t2 + 1 10 0.005 0.025 u1(t) = t2 + 1 10 0.0051 16.68 u0(t) = 2t
u1(t) = t2 + 1

10 1.999E–6 15.69

u1(t) = 1
t+1 10 0.0041 0.0381 u1(t) = 1

t+1 10 0.0042 17.95 u0(t) = 2t
u1(t) = 1

t+1

10 1.87E–6 17.65

u1(t) = tet 10 0.0021 0.0392 u1(t) = tet 10 0.0017 21.13 u0(t) = 2t
u1(t) = tet

8 1.89E–6 92.44
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Example 2 (Numerical example for solutions of Hammerstein equation) In Theorems 4.7,
4.8, and 4.6 (Inertial algorithm 2), respectively, set E = L5([0, 1]), then, E∗ = L 5

4
([0, 1]) and

F : L5([0, 1]) → L 5
4

([0, 1]) is defined by

(Fu)(t) = Ju(t).

Then, it is easy to see that F is maximal monotone. Let K : L 5
4

([0, 1]) → L5([0, 1]) be defined
by

(Kv)(t) = tv(t).

Observe that K is linear. Furthermore, it is easy to see that K maximal monotone and the
function u∗(t) = 0, ∀t ∈ [0, 1] is the only solution of the equation u + KFu = 0. In the algo-
rithm of Theorem 3.1 in [44], we take λn = θn = 1

(n+1)
1
2

; in the algorithm of Theorem 3.4 in

Theorem [11], αn = 1

(n+1)
1
2

, βn = 1

(n+1)
1
4

, n = 1, 2, . . . ; and in the algorithm of Theorem 3.1, we

take αn = 1

(n+1)
1
2

, θn = 1

(n+1)
1
4

, βn = 1
(n+1)2 , n = 1, 2, . . . , as our parameters and fixed u0(t) = t

and v0(t) = t + 1. Clearly, these parameters satisfy the hypotheses of the respective theo-
rems. Setting a tolerance of 10–6 and maximum number of iterations n = 6, we obtain the
iterates which are shown in Table 3.
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Table 3 Numerical results for Example 2

Algorithm (4.8) Algorithm (4.9) Algorithm (4.7) (Inertial Algorithm 2)
IP n ‖un+1‖ T (s) IP n ‖un+1‖ T (s) IP n ‖un+1‖ T (s)

u1(t) = sin t
v1(t) = cos t

6 0.5193 41.56 u1(t) = sin t
v1(t) = cos t

6 0.0337 92.78 u1(t) = sin t
v1(t) = cos t

6 0.0291 4129.97

u1(t) = t2 – 2
v1 = et – 1

6 1.2381 244.31 u1 = t2 – 2
v1 = et – 1

6 0.0463 28.55 u1 = t2 – 2
v1 = et – 1

6 0.0424 884.05

u1(t) = 2t3 – 2
v1 = tet + 2t

6 1.4154 647.69 u1 = 2t3 – 2
v1 = tet + 2t

6 0.0720 57.03 u1 = 2t3 – 2
v1 = tet + 2t

6 0.0519 2268.58

Example 3 (Numerical example for solutions of convex optimization problem) In Theo-
rem 4.2, set set E = L2([0, 1]). Let f : E →R∪ {∞} be defined by

f (z) = ‖z‖, then ∂f (z) =

⎧
⎨

⎩

z(t)
‖z‖ , z(t0) �= 0, t0 ∈ [0, 1];

B(0, 1), z(t) = 0,∀t ∈ [0, 1].
(5.1)

Then it is easy to see that ∂f is maximal monotone. Furthermore, the function z(t) = 0,
∀t ∈ [0, 1] is the solution of the equation ∂fz(t) = 0. We take αn = 1

(n+1)
1
2

, θn = 1

(n+1)
1
4

, βn =
1

(n+1)2 , n = 1, 2, . . . , as our parameters. Clearly, these parameters satisfy the hypotheses of
Theorem 4.2. Setting a tolerance of 10–6 and maximum number of iterations n = 10, we
obtain the iterates which are shown in Table 4.
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Table 4 Numerical results for Example 3

n Algorithm (4.1)
‖zn+1‖

1 0.2581
2 0.685
3 0.6209
4 0.5979
5 0.0347
6 0.2352
7 0.1707
8 0.2011
9 0.1536
10 0.1766

Observations
1. In Example 1, we presented a numerical experiment for zeros of a maximal

monotone map A on E, where E = L2([0, 1]). With a tolerance of 10–6, setting the
maximum number of iterations to n = 10 and considering u1(t) = t2 + 1, the sequence
generated by Algorithm (1.5) and the sequence generated by the IPPA (1.7) are yet to
converge to zero, whereas the sequence generated by our algorithm, Algorithm (3.1),
converges to zero in less than 6 iterations already with the 8th iterate as 1.89E–6, a
very good approximation to a zero.

Furthermore, the sequence generated by the RPPA converges to zero with the 10th
iterate as 0.005, and the sequence generated by the RIPPA converges to zero with the
10th iterate as 0.0051 in 16.68 seconds, whereas the sequence generated by our
algorithm, Algorithm (3.1), converges to zero as in the example. The convergence of
the sequence generated by our algorithm is better than the convergence of the
sequence generated by either the RPPA and RIPPA. A similar trend is observed when
the initial vector is changed to u1(t) = 1

t+1 .
2. In Example 2, we presented a numerical experiment for solutions of a Hammerstein

integral equation, where E = L5([0, 1]), F : E → E∗ and K : E∗ → E are maximal
monotone. With a tolerance of 10–6, setting the maximum number of iterations to
n = 6, and taking u1(t) = sin t and v1(t) = cos t, the sequence generated by
Algorithm (4.8), after 6 iterations in 41.56 seconds is yet to converge to any zero of A,
whereas Algorithms (4.7) and (4.9) after 6 iterations, in 4129.97 and 92.78 seconds,
respectively, converged to a zero of A. Furthermore, Algorithm (4.9) and our
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Algorithm (4.7), with these initial vectors, both converge to zero almost jointly with
the 6th iterate as 0.0337 in 92.78 and 0.0291 in 4129.97 seconds, respectively. Similar
trends are observed when the initial vectors are changed to u1(t) = t2 – 2,
v1(t) = et – 1, and u1(t) = 2t3 – 2, u1(t) = tet .

3. Example 3, where E = L2([0, 1]), f : E →R∪ {∞} and ∂f : E ⇒ E∗ are maps defined in
equation (5.1), demonstrates the implementability of the sequence generated by
Algorithm (4.1) with a tolerance of 10–6, maximum number of iterations n = 10, and
z1(t) = t + sin t.

Remark 4 Theorems involving IPPA, RPPA, and RIPPA as cited above are proved in real
Hilbert spaces, whereas our theorems in this paper are proved in much more general, uni-
formly smooth and uniformly convex real Banach spaces. Moreover, a strong convergence
theorem is proved in Theorem 3.2, whereas a weak convergence theorem is proved for
IPPA, RPPA and RIPPA, respectively.

6 Conclusions
An inertial iterative algorithm which does not involve the resolvent operator is proposed
for approximating a solution of a maximal monotone inclusion in uniformly convex and
uniformly smooth real Banach spaces. The sequence generated by the algorithm is proved
to converge strongly to a solution of the inclusion. Furthermore, the theorem proved is
applied to approximate a solution of a convex optimization problem, and a solution of
a Hammerstein integral equation. In addition, numerical experiments are given to com-
pare, in terms of CPU time and number of iterations, the performance of the sequence
generated by our algorithm with the performance of the sequences generated by IPPA,
RPPA and RIPPA, respectively. In these examples, the performance of the sequence gen-
erated by our algorithm is much better than the performance of the sequence generated
by any of IPPA, RPPA, and RIPPA. A numerical example is also given to illustrate the
implementability of our algorithm for approximating a solution of a convex optimization
problem and for approximating a solution of a Hammerstein integral equation. Finally,
it is clear that our algorithm is a welcome addition to the inertial proximal point type
algorithms for approximating solutions of maximal monotone inclusions and their appli-
cations.
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