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Abstract. The Compton camera is a gamma ray imaging device expected to provide
clinically relevant images in the SPECT applications where collimated cameras are sub-
optimal. Its imaging performances depend not only on the design of the detection system
but also on choices related to tomographic reconstruction. The aim of this work is to
show that the accuracy in modeling the acquisition largely influences the quality of the
images. For this purpose we restrict here to Doppler broadening models in conjunction
with the list-mode maximum likelihood expectation maximization (LM-MLEM) algorithm.
The study was carried out with Monte Carlo simulation. We show that the reconstructed
point spread function is location-dependent when the model is not accurate, and the usual
elongation artefacts well-known in Compton camera imaging will appear. The model we
propose allows to reconstruct isolated point sources and more complex non-uniform sources
with improved resolution even in the direction orthogonal to the camera.

1. Introduction

Using the Compton camera to detect v rays was proposed during 1970’s simultaneously for
astronomical ([I]) and nuclear medicine ([2]) imaging applications. Its advantage over other
devices such as the widely employed collimated cameras and the coded aperture is the large
angle acceptance. To identify the direction of an incoming v ray the camera makes use
of a coincidence mechanism based on Compton scattering. More recently its application
to ion-range monitoring in proton and hadron-therapy through prompt-gamma detection
was proposed. The energies of the prompt-y rays are in this case too large to cope with
parallel-hole acquisition, unless hard collimation is employed (|3], [4]), and this complicates
three-dimensional imaging and reduces the resolution.

Despite the evident interest that Compton cameras may have in nuclear medicine
applications (|5, 6, [7, B, &, O, 10]), in the medical world imaging of + sources is still



carried out with collimated cameras. Along with the more complicated design and the
cost of the detection system, the image reconstruction is also an important obstacle in their
development. The projection data are noisy realizations of weighted integrals of the intensity
of the source on conical surfaces. The difficulty to define an adapted mathematical model
and the increased dimension of the projection manifold compared to traditional modalities
PET and SPECT leads to a more challenging image reconstruction.

A strong argument in favour of Compton cameras is the theoretical possibility they
offer to produce a three-dimensional image of the source with a single camera, without
the need to make it turn around the patient. However, in practice the quality of three-
dimensional reconstructions is limited. The most common artefact, seen as inevitable, is the
elongation of the source in the direction orthogonal to the camera. Its origin can be easily
explained by the missing data. Indeed, for an infinite planar camera and for ideal data, the
dataset is complete, even over-determined and the reconstruction should be perfect (|11}, 12]).
The smaller the camera, the less complete the dataset and the more visible reconstruction
artefacts should be. While this argument holds for analytic reconstruction with specific
filtered back-projection algorithms, it was noticed that iterative algorithms are more robust
to missing data ([I3], 14, 15]). To put it simply, an iterative algorithm will solve a linear
system. If the system is over-determined, the solution may be found even if some equations
are withdrawn, where missing projections are interpreted as zeroes by the analytic algorithm.
However, if the camera is very small, the shape and orientation of the projection cone do not
vary much from one event to another, producing an ill-conditioned system matrix leading
to a high sensitivity to noise. Regularization will improve the conditioning of the problem
but should not solve it in extreme situations. We tried to understand if missing data is
the actual and single cause of the elongation artefacts and of spatial Point Spread Function
(PSF) variability, at least for data exempt of measurement uncertainties.

In this study we only consider uncertainties on the measured energies produced by
Doppler broadening. The Doppler effect is a phenomenon first presented by Christian
Doppler in 1842. It describes the change of frequencies or wavelengths of a wave source
in relation to a moving observer. Due to the distribution of velocities of particles, Doppler
effect will cause the broadening of spectral lines. In the pioneering experimental work of
Du Mond [I6] the Doppler broadening was considered and measured for the distribution of
Compton spectra line. The probability distribution for a v-ray to scatter with given energy
and angle off an electron from the n'" electronic shell of the atom is described by a double-
differential cross section depending on the electron’s pre-collision momentum [I7]. There
is a balance between Compton cross-section and Doppler broadening in the conception of
Compton camera [I8]. Materials with low Z elements such as silicon are often chosen for
the scatterer in order to achieve both high Compton to photoelectric ratio and low Doppler
broadening. Scatterers made of Ge, CZT and LaBrs might be employed at high energies to
reach a larger efficiency of detection, but the Doppler broadening might be increased and the
Compton to photoelectric ratio will be reduced. In [19] this phenomenon was accounted for



in the image reconstruction process as an event-dependent Gaussian mixture calculated from
physical laws. The numerical tests show that precise modeling reduces the shift-variance of
the image domain PSF. Still, the PSF is obviously changing as one moves further from the
detector, although with a relatively small step. The considered camera has small dimensions,
so the above discussion about missing projections likely applies. What is still unclear from
these numerical tests is whether an appropriate model could completely remove artefacts at
least for a relatively large camera, where the artifacts caused by the limited field of view can
be neglected.

Acquisition models have to consider two influences: the solid angle an elementary
detector surface covers at the source and the broadening of the conical surface due to the
measurement uncertainties ([20, 21]). The latter used to be written as a weighted convolution
of the source intensity with some kernel. This kernel can be expressed by Dirac on the cone
when the data is ideal ([22]), a Gaussian ([23, 24], 21]), a von Mises distribution ([25]) or
a Lorentzian [26]. Gaussian mixtures were investigated in 2D ([27]) and in 3D ([19]) for
modeling Doppler induced uncertainties.

Three-dimensional images of the source were reconstructed with the list-mode (LM)
version of the maximum likelihood expectation maximization (MLEM) algorithm. When
the projection operator is sharp, namely when the conical surface model is taken, MLEM
iterations have to be stopped early to limit the noise in the image. But when uncertainties
are considered in a smoothing operator the convergence is slowed down by the intrinsic
deconvolution. In this case, the high frequencies are very difficult to recover. This allows
to obtain smooth images and a kind of numerical convergence in few iterations (|28, 29]).
Nevertheless, the objects will remain blurred as the sharp edges are long to recover.
Regularization with sparsity-inducing priors, as the total variation semi-norm, allows to
control the noise (|30} B1]). It also accelerates convergence by addition of high frequencies
specifically along the edges of the objects. By convergence we understand here numerical
convergence. In this work we use total variation regularization and the convergent TV-MAP-
EM algorithm from [32] for the reconstruction of sources that are not point-like.

We should mention here that when the projection operator is not perfectly fit to the
acquisition model, the resulting image is the convolution of the true image (the one that
would be produced with the appropriate projection operator) with a spatially-variant PSF
(|33, [34]). In practice, the situation is more complex. The convolution kernels are difficult
to calculate and the deconvolution process introduces ring artefacts. Low statistics is a
degrading factor in this context.

The paper is organised as follows. Section 2 introduces the simulation set-up and the
reconstruction strategy. Some variants of the models for the calculation of the sensitivity
and of the system matrix are discussed. Then the Gaussian mixture model we propose is
presented in this section. Finally we describe the Monte-Carlo simulations required for the
calculation of the parameters of the model and for the numerical tests. The fitted models
are shown in section 3. Section 3 also shows some numerical results. They concern the



spatial variability of the reconstructed point spread function and the reconstruction of a
non-symmetric source with variable intensity. Section 4 is dedicated to discussions on the
methods and results and in section 5 we present our conclusions.

2. Materials and methods

2.1. The Compton camera

A Compton camera is usually composed of at least one scattering detector and one absorption
detector. A photon detected by the camera is recorded as a Compton coincidence when it
satisfies the following conditions. First, the photon has to scatter on an electron from the
detector, where it deposits parts of its energy. Then the scattered photon may undergo other
interactions. Finally, it should be absorbed by photo-electric absorption. The unknown
Compton scattering angle S can be estimated from the measured energies. It corresponds
geometrically to the angle between the direction of the incident ray and the direction of
the scattered ray. The estimated value is denoted hereafter Sz and can be calculated from
the known initial energy Ej, and the energy deposited in the first interaction recorded as F;

following the equation:
TﬂeC2 E1

(By— BBy’ 1)

where m. denotes the rest mass of an electron and ¢ denotes the speed of light. When the

cos(fg) =1+

initial energy is unknown, its value can be estimated as the sum of energies deposited by
the photon. With the position of the first and second interactions being recorded as V;
and V5, it can be deduced that the photon was emitted somewhere on the surface of the
cone € (V1, Vs, BEp) with apex Vi, axis direction m and half-opening angle Sg. Figure
illustrates the geometry of the camera used in our study. The camera is composed of three
stripped silicon scatterers (512 strips on each face) and a segmented LaBrs (lanthanum
bromide) absorber with individual crystals of 0.5 X 0.5 x 4 cm?®. The thickness is 0.2 cm for
the scattering layer.

We do not consider here the events with three or more Compton interactions, which
do not require the knowledge of the initial energy Ej, but might be more sensitive to noise
(|35, 36]). In practice the recorded energy Ej is usually associated with some uncertainties
due to the limited energy resolution of the detectors. This causes inexact measurement
of the energy deposited by the electron ejected from the nuclear shell by the scattered ~
ray. Besides, the deposited energy is also affected by Doppler broadening, related to the
fact that the electron is in motion. Even for ideal detectors capable to measure exactly the
energy of the scattered electron, the Doppler broadening means that the measured deposited
energy F; will not lead to the real scattering angle S5. The energy uncertainties produce
angular uncertainties known under the name of angular resolution measurement (ARM). The
theoretical conical surface becomes a conical shell. The thickness and the internal consistency
of the shell depend on the model of uncertainties.
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Figure 1. (a) Illustration of the simulation geometry. The camera is composed of three
scatterers and an absorber with large surfaces. (b) Acquisition parameters. A photon
emitted at a point M will undergo Compton scattering at some point V; from the scatterer
then will be absorbed at V5. The unknown Compton angle S¢ can be estimated form the
measured energies. The estimated value is denoted Sg. The point M that should in theory

lie on the conical surface will belong in practice to a conical shell defined by the measurement
uncertainties.

2.2. Image reconstruction

The number of photons detected by virtual elements of Compton camera follows Poisson laws.
Let Y denote the vector of measurements and A denote the mean vector of photons emitted
by the J voxels. The reconstruction algorithm MLEM (|37, B8|) solves the minimization
problem:

min{—((\[Y) : A€ (R.)’}, 2)

where the log-likelihood function is defined as:

(Y = Z (— Ztm +uin(> tih) - ln(yi!)> ; (3)

i=1 j=1 7j=1

where [ is the total number of data bins. For list-mode data, no more than one event can
be detected in a given bin. We thus have y; = 1 if an event was detected in the bin and
y; = 0 otherwise. The list mode is particularly well adapted for Compton camera imaging
where the number of detected events is extremely low with respect to the dimension of the
data space. We denote hereafter Z the index set of the detected events. Let ¢;; denote the
probability of a photon emitted in voxel j to be detected as event i. The matrix T" composed
of these probabilities is the matrix of the system. The LM-MLEM reconstruction algorithm
consists in calculating, starting from some initial value PURS (Rj)‘] , the sequence

Y .
+1 _ 77 )
= 2N )

=
i€T Zk tik}‘k

where s = (s;);=1,..s is the so-called sensitivity vector, containing the detection probabilities
for photons emitted from voxels. Equation can be reformulated using matrix



multiplication and element-wise operations on vectors as:

Sin = A [é} | (5)
s TN

where T™* is the adjoint operator of T" and corresponds to back-projection and 1 is a vector
of ones with the same size as the projection. The images produced by the MLEM algorithm
are very noisy. For sources that are not point-like, the iterations have to be stopped before
high frequencies are added and the resulting images have to be smoothed. On the purpose
of reducing the noise caused by Poisson-distributed data in the extended source, we have
applied a total-variation regularized reconstruction which consists to solve:

min{—((A]Y) + al[A|zv © A € (Ry)7}, (6)

where || - ||y is the TV semi-norm and « is a strictly positive regularization parameter. The

discrete total variation of A\ seen as a three-dimensional image, element of A = R7=*Jvx/z

with J,J,J, = J, is defined as:

Ay = > [(VA)ijkl (7)
1<i<J5,1<j<Jy,1<k<J;
where (V\); ;1. is the discrete gradient of the image at voxel (i, j, k) and |v| = \/v? + v3 + v3
is the norm of the three-dimensional vector v = (vi,vy,v3) € R®  Let us consider
I' = A x A x A the space of gradients with its scalar product:

<p7 q>F = Z(pil,j,kqil’j’k —|—pij’kq2jyk —i—p?,j,kqf”j’k), for all (p, q) el'xT. (8)
0,5,k

An equivalent definition of ||A||ry is then:

| All7v = sup {{p, VA)r : ¢ € I' such that |¢; ;x| <1, 1 <i< J,,1<35j<J,1<k<J,}.

(9)

We applied here the MAP-EM algorithm from [32], consisting to alternate LM-MLEM
steps

~

~ AL t. .

N2 SINT (10)
’ Sj ZI: Zk tzk>\€g

with Poisson TV-denoising in a globally convergent algorithm. The denoising step consists

to solve the minimization problem:

A € argmin {(u —NF 2 10g 0, s) + oz||u||TV} : (11)
u€(Ry )7
which is a weighted Poisson denoising. The solution writes:

N N+1/2
N = 20 (12)
s + adive*

6



where p* € T is the limit of the sequence defined as ¢* = 0 € T' and

kE_ ok Ni+1/2
k1 _ ¥ D . k SA
= - th =V|— . 13
® R with p <s+adiv<pk> (13)

Arithmetical operations on vectors are applied element-wise and div is the divergence
operator. The minimization step 7 should be chosen such that 7 < «/L, where

3/):”1/2
L= 12a2w, (14)
(Smin — 6)?
is a function of the sensitivity s, of its minimum value s.;, = min;s;, of the image to

be denoised A+/2 and of the regularization parameter . Note that the regularization
parameter has to verify the constraint o < sy, /6.

2.3. Sensitivity

We evaluate separately sensitivity and system matrix, both by analytic models. In theory the
sensitivity should be calculated as s; = >, t;; = (7%1); with the sum taken on all possible
events. However, in the evaluation of the system matrix described hereafter we neglect some
coefficients which depend only on the event and thus get cancelled in the reconstruction
formula (4]). These coefficients are probabilities difficult to estimate precisely. Numerical
errors on these coefficients would not affect the reconstruction but are important if we want
to calculate the sensitivity as s = T*1. The mismatch between sensitivity and system matrix
might be a source of artefacts in the reconstruction.

We consider a coordinate system with the z axis perpendicular to the camera and passing
through its center (see figure [I). Each of the L scatterer layers has dimensions (2a, 20, d)
cm. As shown in figure , we denote O;(z;,y;,2;) the center of voxel j, D;, the distance
from O; to the n'® scatterer and ; the angle made by a vector NO;, N from the scatterer,
with the z axis.

0j (% 3j» )

z '.’\_4
2b / ,,,,,,, E? / 1d
N(x, v 2)
2a X

Figure 2. Sensitivity calculation for the " voxel. The point Oj(xj,y;, 2;) is the center of
voxel j, Dj, is the distance from Oj; to the n™ scatterer and (2a,2b, d) are dimensions of a
scatterer layer.



Assuming that the probability of generating a Compton event is the same for all the
photons once they have been scattered, we calculate hereafter the sensitivity with the model
M1:

cos 0;
1— —ped/ cos ;) —(n—1)usd/ cos do d 15
§j X Z/ / (x —z; ( ‘ ) ’ e 1)

(y y]) + D]2',n

with L the number of layers. The first factor accounts for the solid angle of the detector
pixel seen from the center of the voxel, the second accounts for the probability of interaction
in the n'" scattering layer and the last one accounts for the probability that the photon pass
through the n — 1 previous layers without interaction. The linear attenuation coefficients
1e and py stand respectively for Compton and total attenuation. They depend on detector
material and photon energy. The calculation can be deduced from the data table in [39]. For
511 keV gamma rays in Silicon (density 2.32), the Compton linear attenuation coefficient is
te = 0.199cm ™! and the total linear attenuation coefficient y; = 0.201cm™?.

The numerical evaluation of is relatively time consuming (order of minutes) but
can be calculated once and saved for further use. If the attenuation factors are neglected
one obtains the model from [27]. When the value of j.d/cosb; is close to zero, the factor

1 —e—#ed/ 0395 can be replaced with its first order approximation leading to sensitivity model:

1
—(n—1)ud/ costd d 16
b e ydzx.

j?n

If we further neglect the varlablhty of the absorption probability in the previous layers we
obtain the model M2, given as:

1
2 x dydz, 17
) L o

that can be partially evaluated as:

b—y;

L
@ 1
M2 E / -— | arctan
n=1Y @ <$ B xj)2 + Djvn \/(l‘ — Ij)2 -+ Din

b+y;
V@ =2+ D2,

The performances of these two models can be appreciated in figure 3| where they are

+ arctan dydzx.

compared to Monte-Carlo simulation from point sources emitting at 511 keV. The sources
were placed at different positions on (a) a line parallel to the Oz axis at 4 cm for the
upper scatterer and (b) on the Oz axis. Only Doppler broadening was simulated as data
degradation factor. We obtained qualitatively the same results for realistic data (not shown

8
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Figure 3. Comparison of the models M1-M2 against Monte-Carlo simulations (see text
for details).

here), where we considered not only the Doppler broadening, but also the limited spatial
and energy resolution as the source of the uncertainties.

The numerical computation was implemented on Intel Core i7-6600U CPU @ 2.60GHz
as a rectangle integration scheme with 100 equispaced sampling points in each dimension.
For a volume with 41 x 41 x 41 voxels the calculation of sensitivity by M1 takes about 400
seconds, while M2 takes only two seconds. The model M1 performs reasonably well against
simulation. Model M2 is hundreds times faster to compute but shows more discrepancies
with the simulation. For this reasons we will use hereafter the model M1.

2.4. Doppler broadening modeling in the system matriz

An approximate value of the sensitivity can be calculated with a large Monte Carlo
simulation. Calculation of the system matrix by Monte Carlo simulation is a challenging
task because of the large dimension of the data space. Rough approximations and binning
would be necessary.

The coefficient t;; of the system matrix 7" is calculated with the equation from [20]. Some
other models have been proposed in the literature (|25, 23], 40, @]). For an event i where the
Compton scattering with some measured angle Sz occurs at V; and the absorption at V5 and
for a voxel j we use a quadrature formula with a single node to approximate the integral:

tii = K(Ba, E 8 Gﬁ )
ij — G, O)Wh( ‘ﬁE)d,U7 (19>
1

Pev;

where g is the geometric angle between the vectors 171? and ‘TV; (see figure , K(B, Ep)
is the Klein-Nishina differential cross section of Compton scattering with angle § at some
given initial energy FEj, and the next factor represents a solid angle. The angular distance
from V1 P to the cone is 0 = S — Sg and h(-|8g) is a kernel modeling the uncertainties on

9



the Compton angle. In our study it only accounts for Doppler broadening. Involving this
effect in analytical methods allows to improve the quality of reconstruction ([41]).

For the purpose of the comparison we also simulated Doppler-free ideal data. The
images were then reconstructed with a variant of where h(-|fg) was replaced with a
narrow Gaussian function with argument the Euclidean distance from the center of the voxel
J to the conical surface of event i. When the standard-deviation parameter decreases to zero,
we obtain an approximate value for the conical surface integral. In our algorithm we fixed
the value of the standard deviation to one voxel and we cut the Gaussian to 3o0. Another
way to calculate the surface of the intersection between the cone and the voxel is to use a
ray-tracing algorithm and the appropriate quadrature formula. We found this method more
time consuming as a large number of rays should be traced for a complete sampling of the
volume ([42]).

The shape of the ARM distribution that translates energy uncertainties in angular
uncertainties has a narrow peak and long tails. In [25] authors proposed a von Mises fit
of the ARM. For narrow distributions, the von Mises distribution can be approximated
with a Gaussian. The Voigt function, which is a convolution of the Gaussian distribution
and the Lorentzian distribution, was used to fit ARM distributions with long tails in
[26]. Uncertainties caused by Doppler broadening are often modeled by a Gaussian kernel
([40, @]) or neglected against uncertainties from realistic data also modeled with Gaussians
([18, 43, 20]). In reality, different contributions from the different electronic orbitals build
up and produce this distribution. In order to approximate the long tails, in [19] a mixed
Gaussian model was considered. Also, an accurate error distribution model specific to
Germanium detectors was developed.

For a point source at some known position denoted M, the exact scattering and
absorption positions were obtained from the simulation. The true (geometrical) scattering
angle can then be computed from a scalar product:

MV, iV
cos(fBg) = Al 2‘. (20)

The angular uncertainties are measured by the ARM, calculated for each event as
0 = PBg — Pr. We fitted both a Gaussian and a mixture of Gaussian distributions to
the empirical ARM histogram. Because of the similarity between von Mises and Gaussian
distribution, we didn’t apply the von Mises fit. The Gaussian fit consists to evaluate the
parameters k and o that minimize the ¢y error between the empirical distribution and the
model 52
h(6;k,0) = kexp (_ﬁ) ) (21)
The Gaussian mixture fit consists to evaluate the parameters k1,07 and ks, 09 that
minimize the /5 error between the empirical distribution and the model

52 52
h(6; k1, 01, ko, 09) = ky exp (_W) + kg exp (_F) . (22)

1 2
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We also tested mixtures of more than two Gaussians. As the images we obtained were very
close to the ones provided by the simpler two-Gaussian mixture model in the case of Silicon,
we do not show them here.

2.5. Data simulation

The Monte Carlo simulation were performed with the Gate toolkit, version 8.2 [44] and
Geant4 version 10.5. We have alternatively selected the physics model in order to account or
not for the Doppler effect. The events with only two interactions, one Compton scattering
and one photo-electric process, are selected and their ordering is known. The positions of
the hits and the deposited energies are exactly measured by the detector. The electron
generated in the Compton interaction is not tracked in the simulation. We took option 1 of
the standard electromagnetic physics list for ideal data without Doppler broadening caused
uncertainties, and option 4 for data simulated with Doppler broadening. The Compton
scattering in option 4 is implemented by the Monash University model [45] which uses a
relativistic formalism and the conservation of energy and momentum to derive the energy
and angular distributions of Compton scattered photons off non-stationary atomic bound
electrons. Four point sources were simulated for the calculation of the ARM, one emitting
at 4 MeV and three emitting at 511 keV. The source emitting at 4 MeV is placed in (0,0, 0)
in centimeters. The sources emitting at the lower energy are placed at different distances
from the camera and from its axis in order to evaluate the relation between ARM and source
position. Their positions are respectively (0, 0,0), (0,0,—5) and (20,20, 0) in centimeters.

VA

Slice parallel to the camera

| Slice orthogonal to the camera

= ™~

Figure 4. Geometry of simulation for the source composed of seven points.

To evaluate the influence of the proposed Gaussian mixture model on the images, we
calculated the reconstructed PSF at different positions. We simulated seven mono-energetic
point sources emitting simultaneously at 511 keV, located at (0, 0, 0), (0, 0, 3), (0, 0, -3), (0,
3, 0), (0,-3,0), (3,0,0), (-3, 0, 0) in centimeters. 20,000 Compton events are used for the
reconstruction. The simulation geometry is depicted in figure [d], along with two planes that
indicate the positions of the slices extracted for visualisation from the reconstructed volume.

We then simulated a mono-energetic source consisting of five letters with thickness
1 cm centered on the origin, 10 cm away from the detector. The intensity was piece-wise

11
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Figure 5. Central slices from the mono-energetic non-uniform source.

constant and the v photons were emitted at 511 keV. The letters were placed first parallel
then perpendicular to the camera, in order to observe the elongation in the axial direction.
Central slices of the source are shown in figure[5] For each test we simulated 2 x 10> Compton
events.

3. Results

3.1. Fit of the angular resolution measurement

The uncertainties caused by Doppler broadening depend on the material and the initial
energy of photons. In figure [0] is shown the distribution of the Doppler-modified Compton
angle S as function of its true value (g, for a first interaction in the scatterer in (a) and a
first interaction in the absorber in (b). In other words, the two sub-figures show respectively
the dispersion for silicon and lanthanum bromide at 511 keV.

The colors in the figure are related to the number of counts. Over 60% simulated
photons will not produce an event. A number of 3 x 10" photons were simulated to obtain
4 x 10° Compton events, 30% of events will interact twice on the same layer. Only about
2% of events had a first interaction in the absorber. For the events with a first interaction
on the scatterer layer, the maximum value of 35 is 147°. This value can be explained by
the camera geometry depicted in figure |1l and corresponds to the photons being scattered on
one boundary of the first scattering layer and then absorbed on the opposed boundary of
the absorber.

Figure[7]shows the ARM distribution extracted from all two-sites events for four sources,
one emitting at 4 MeV and the others emitting at 511 keV. The empirical distributions plotted
with red dotted lines are histograms with 0.125° bins. Gaussian fits of the histograms were
calculated following equations and . They are plotted respectively as clear blue and

12
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(a) First interaction occurs on the scatterers

the dark blue lines. The uncertainties increase when the energy decreases from 4 MeV to
511 keV, as it can be seen by comparing panels (a) and (b). From panels (b)-(d) it could be
deduced that this averaged distribution is not very sensitive to the distance to the source.
Numerical results for the different sources and fits are shown in table Il The Gaussian
mixture model allows for a mean square error (MSE) two orders of magnitude lower compared

Figure 6.
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(b) First interaction occurs on the aborber

Uncertainties of Compton scattering angle for ideal data with Doppler
broadening. The value Sg calculated from energies is plotted as function of the geometrical
value B¢. (a) Events with first hit in the scattering detector. (b) Events with first hit in the
absorber. Among the two-site events, 98% are in (a) and 2% are in (b). The uncertainty on
the scatter angle depends on the uncertainties on the deposited energies. In our simulation
the total energy being known, only uncertainties on the energy deposited in the scatterer are
considered. Energy uncertainties are taken constant in Silicon and depend on the energy
of the incident photon in LaBrs. The distribution of g in (a) is less dependent on the

scattering angle than in (b), although some variability persists due to equation .

to the Gaussian fit at 511 keV.

Table 1. Parameters of the Gaussian fit

case in Figm

single Gaussian

(k, o, MSE x 107%)

(kl, o1, k’g, g9, MSE x 1078)

Gaussian mixture

a0 T o

0.0503
0.0317
0.0428
0.0256

0.1346
0.5438
0.6097
0.5699

242.80
151.64
200.58
117.42

0.0456
0.0292
0.0399
0.0236

0.0621
0.2350
0.2497
0.2335

0.0175
0.0116
0.0161
0.0099

0.3490
1.3424
1.4675
1.3215

11.59
2.16
3.37
2.40

3.2. Position dependency of the image PSF

We reconstructed the image of the source composed of seven mono-energetic point sources
as a volume of size 10.25% cm? divided into 413 voxels. Each voxel measures 2.52 mm?3. We
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Figure 7. Distribution of Doppler angular uncertainties. The errors on the Compton angle
are calculated as Sg — Bg and only for the two-site events with first interaction on the
scattering layer. (a) Point source emitting at 4 MeV. (b)-(d) Point sources emitting at 511
keV at different positions as indicated in the captions. For each configuration the histogram
of values is plotted as red dotted line and the FWHM is shown. The clear blue and the dark
blue lines represent Gaussian fits with respectively one Gaussian and a linear combination
of two Gaussians. Their parameters are shown in table[I]

normalised the volumes to their maximum of intensity. Results are shown in figure [§ The
algorithm began to converge after 20 iterations, as shown in figure where the /5 distance
between the iterates was plotted. For this reason we stopped the algorithm at 50 iterations.

In figure [§ we show results for simulations with and without Doppler broadening. The
first column corresponds to the reconstruction of data simulated without Doppler broadening
and reconstructed with the model described in section [2.4] for Doppler-free data. The second
and third columns show data simulated with Doppler broadening. The second column shows
the reconstruction with a single Gaussian kernel modeling the Doppler-induced uncertainties.
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Figure 8. Central slices in the planes xy (first line) and yz (second line) from the volume
representing the source composed of seven mono-energetic point-like sources. The geometry
of the simulation is represented in figure[d The first column shows images for data simulated
without Doppler broadening. The second and third column show the reconstruction of data
simulated with Doppler broadening. For the second column we took the kernel h as a
Gaussian with standard deviation ¢ = 0.54°, value extracted from table [1} single Gaussian
fit, case (b). For the third column, h was taken as a Gaussian mixture with parameters
given in table[1} case (c).

Its standard-deviation o = 0.54° is the one estimated from the Monte Carlo simulations and
given in table [1] (b) for the single Gaussian fit. The third column is the reconstruction
obtained with the Gaussian mixture parameters.

F igure shows central profiles through the volumes in the direction orthogonal to the
camera. The intensities of the sources are closer to each other when the Gaussian mixture
model is used. The profile is moreover similar to the one obtained for the simulation without
Doppler broadening.

Increasing the value of o leads to smooth images, but to even more heterogeneous PSFs.
This can be seen in figure [10] for ¢ = 1.8°, where obviously the intensities of the sources were
not reconstructed to the same value.
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Figure 9. (a) Central profile from the reconstructed volume taken through the vertical

direction. (b) The LM-MLEM algorithm began to converge numerically after 20 iterations,
but 50 iterations were performed to ensure that the images will not change significantly.
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Figure 10. Typical PSF heterogeneity induced by inaccurate modeling of the ARM. A
single Gaussian was used here with o = 1.8°, two times larger than the one from figure [§

3.3. Non-uniform source

We consider here the mono-energetic non-uniform source consisting of five letters, represented
in figure 5] We ran 200 iterations of the TV-MAP-EM algorithm described in section [2.2]
although numerical convergence was reached much earlier. The TV regularization parameter
was set to 5 x 1076 for all the experiments. Note that this value depends on the sensitivity
vector which in our case is calculated to reproduce simulations up to a multiplicative constant
that may be different from a model to another. The reconstructed volumes were composed
of 121 x 33 x 41 voxels of dimensions 0.25 x 0.25 x 0.25 cm?® each and we normalised the
images to their maximum.

In figure we show the central slices of the volume for the source placed parallel to
the camera. In figure we show central slices for the source placed perpendicular to the
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Figure 11. Central slices of the reconstructed volume obtained for the non-uniform source
when placed parallel to the camera. The physics model differ between the two images to
include or not Doppler broadening. We used the reconstruction model adapted to each
data type. Results are shown after 50 iterations of the TV-MAP-EM algorithm with
regularization parameter a = 5 x 1076, The slices are normalised to their maximum.

camera: the two slices differ in the physics model that is used in the simulations (including
or not Doppler broadening) but also in the way the acquisition is modeled in the system
matrix. For the Doppler data we used the Gaussian mixture model. Figure [I4] shows the
mean square error (MSE) and the structural similarity index measure (SSIM) between the
reconstruction and the ground truth for the four volumes. The ideal data corresponds to the
simulation without Doppler broadening, and the Compton shell is considered to has constant

thickness.
5
0.8 0.8
E 0 0.6 0.6
2 0.4 0.4
N 0.2 0.2
-5
-10 0 10 -10 0 10
X (cm) x (cm)
(a) with Doppler broadening (b) without Doppler broadening

Figure 12. Central slices of the reconstructed volume obtained for the non-uniform source
when placed perpendicular to the camera. The physics model differ between the two images
to include or not Doppler broadening. We used the reconstruction model adapted to each
data type. Results are shown after 50 iterations of the TV-MAP-EM algorithm with
regularization parameter o = 5 x 1076, The slices are normalised to their maximum.

Compared to the ideal data projector, the Doppler broadening projector contains a
convolution with the kernel h, which becomes wider as we move away from the camera. When
Doppler data is reconstructed with the ideal data model, the correction for this convolution
is not made and the images are slightly more blurred. This can be seen in figure (13| where
we show the image of the vertical source reconstructed with the conical surface model.
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Figure 13. Central slice of the reconstructed volume obtained with the conical surface
model applied to Doppler enlarged data. The non-uniform source was placed perpendicular
to the camera. TV regularisation was added with parameter « =5 x 1076,
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Figure 14. Evolution of the mean square error and of the structural similarity index
measure with the number of iterations, for the sources parallel and perpendicular to
the camera. Ideal data corresponds to the simulation without Doppler broadening. TV
regularization allows the error to decrease to a lower limit and prevents it from rising up
significantly after the optimal value is reached. Thanks to the regularization, numerical
convergence is largely achieved at 50 iterations for all the reconstructed images and there is
no need of an optimal stopping criterion.

4. Discussions

The objective of this paper was to investigate the effect of modeling on the images
reconstructed from Compton camera data. We simulated data where the only unknown
is the energy dispersion produced by the velocity of the electron on which the v ray scatters.
This process is called Doppler broadening. It causes energy measurement errors that depend
on the material and on the energy of the ray. We then calculated the errors that Doppler
broadening induce on the Compton angle for a large number of photons. Finally, we fitted
a linear combination of two Gaussians to the histogram of errors. The parameters of the
fit were included in the reconstruction model as an uncertainty on the measured Compton
angle. We compared this model to two other models, one of them consisting to fit only one
Gaussian function and the other one being the ideal conical surface model that ignores all
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uncertainties.

The comparison was first carried with mono-energetic point-like sources. We have been
observed in previous tests that when several identical point-like sources are simultaneously
placed in the field of view, the reconstructed intensities may not be identical. The PSF is
thus varying spatially. Moreover, an elongation of the PSF can be observed in the direction
orthogonal to the camera. These artefacts are strongly related to the dimensions of the
camera, to the distance from the source to the camera and to the uncertainties on the
measurements. We thus take a large camera, relatively ideal data, and we show that modeling
can play a decisive role and can alleviate these effects.

Results proved that the mixed Gaussian model is more adapted for image reconstruction
than one single Gaussian. The reconstruction results from figures |§] and [10] show that with
a more accurate model the elongation artefact in the direction orthogonal to the camera
is decreased. The sources were well identified and had similar reconstructed intensities.
The PSF should thus be less spatially-variant and radial when a model adapted to the
data is used, at least for detectors covering a large field of view at the source position.
Besides, the artefacts may also be caused by the mismatch between estimated sensitivity and
employed system matrix. For list mode data the sensitivity matrix can only be estimated
from Monte Carlo simulation or analytic models, instead of being calculated by summing
the system matrix element. More accurate reconstructed images can be expected by finding
a compensation between system matrix modeling and estimated sensitivity.

In all simulations we considered that the first interaction took place in the scatterer. In
our tests with point-like sources this is true for about 98% of the two-site Compton events.
For the remaining 2% of events, the coefficients of our model, fitted for the silicon, are wrong.
This strategy could be ameliorated and replaced with a method that can identify the order of
interactions with a good probability. Also, considering event-dependent mixture parameters
as in [19] is a more costly but potentially more precise alternative.

Compton cameras become interesting for nuclear medicine application above a limit
of approximatively 300 keV. Below this limit collimated cameras perform better. As the
energy of the photons increases, Doppler broadening decreases and there is lower interest of
modeling it. The value we chose in our tests, 511 keV, is slightly above this limit but low
enough to justify careful handling of the Doppler effect.

The MLEM algorithm is well-adapted to reconstruct point-like sources. For other
geometries smoothing should be introduced in the process, either as a post-processing step
or during the iterations. In this work we used TV regularization that is well adapted to
our piece-wise constant sources. For smooth intensity distributions, TV regularization will
produce cartoon-like images. Compared to the non-regularized MLEM algorithm, total
variation regularization allows to accelerate convergence in the sense of the mean squared
error and to reduce dependence of the result on the stopping criterion (see figure . Figures
and [12| show slices reconstructed with the most adapted model and for data simulated
with and without Doppler broadening. Figure [13[shows the result of application of the ideal
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conical surface model to Doppler enlarged data. The result is not very different from the one
obtained with the Gaussian mixture model and displayed in figure [12] however the elongation
artefacts are slightly more important and creates more ghost activity at the bottom of the
source.

5. Conclusions

Elongation of the sources, non uniform intensities and blur were often observed in the
direction orthogonal to the camera for Compton camera imaging. We show here that
improving modeling of the physical processes during the reconstruction contributes to
alleviate these artefacts. This study concentrates on investigating the energy uncertainties
caused by Doppler broadening in ideal condition. No errors in the measurement were added
and the simulations were carried out with a large field of view, with the simulated source
placed close to a large surface camera. The Gaussian mixture model we obtain by fitting
the Monte-Carlo simulated ARM allows to strongly improve the spatial uniformity of the
reconstructed point spread functions.

We propose a Gaussian mixture fit for the ARM distribution of Monte Carlo simulated
data for an ideal Compton camera composed of a scatterer in silicon and an absorber in
LaBrs. This model is physically sound and reproduces relatively well the data when only
Doppler uncertainties are considered. It allows to strongly improve the spatial uniformity of
the reconstructed point spread functions. For realistic data, the detector introduces energy
uncertainties and the sequence of interactions has unknown ordering. The fit of a model
to the ARM is more difficult in this case and remains an open problem. The choice of the
probabilistic distribution that fits Doppler broadened data is just a small step, that at best
can give a perfect fit valid only for ideal data. The parameters of the fit seem relatively
independent of the angular coverage but strongly depend on the energy of the source and on
the material of the detector.

In this study more general uncertainties caused by detector resolution, as well as false
coincidences, are leaved out. The Gaussian mixture considered here might be insufficient for
realistic data and more complex models or even image-space resolution recovery methods
should be employed. Besides, the artefacts on MLEM reconstructed images may also be
caused by an mismatch between estimated sensitivity and employed system matrix. Further
investigation on the sensitivity calculation, as well as the Monte Carlo based system matrix
modeling can be expected. However, we have shown that an accurate acquisition modeling
largely improves the quality of the images and such a method could be implemented to deal
with other types of uncertainties.
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