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Wrong place, wrong time: Runt‑related 
transcription factor 2/SATB2 
pathway in bone development and 
carcinogenesis
Yusha Zhu, Angelica Ortiz, Max Costa

Abstract:
Upregulation or aberrant expression of genes such as special AT‑rich sequence‑binding protein 
2 (SATB2) is necessary for normal cell differentiation and tissue development and is often associated 
with carcinogenesis and metastatic progression. SATB2 is a critical transcription factor for biological 
development of various specialized cell lineages, such as osteoblasts and neurons. The dysregulation 
of SATB2 expression has recently been associated with various types of cancer, while the mechanisms 
and pathways by which it mediates tumorigenesis are not well elucidated. Runt‑related transcription 
factor 2  (RUNX2) is a master regulator for osteogenesis, and it shares common pathways with 
SATB2 to regulate bone development. Interestingly, these two transcription factors co‑occur in 
several epithelial and mesenchymal cancers and are linked by multiple cancer‑related proteins 
and microRNAs. This review examines the interactions between RUNX2 and SATB2 in a network 
necessary for normal bone development and the circumstances in which the expression of RUNX2 
and SATB2 in the wrong place and time leads to carcinogenesis.
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Introduction

Special AT‑rich sequence‑binding protein 
2 (SATB2) is a nuclear matrix‑associated 

protein that regulates gene transcription by 
binding to the nuclear matrix‑attachment 
regions and altering organization of 
eukaryotic chromosomes. It is an important 
regulator of the osteoblastic, craniofacial, 
and nervous system development.[1‑3] SATB2 
was identified at locus 2q32, in which the 
chromosomal changes contributed to the 
pathogenesis of isolated cleft palate.[2,3] 
SATB2‑knockout mice presented a similar 
phenotype as observed in humans, such as 
delayed bone formation and mineralization, 
resulting in death shortly after birth.[1] 
Further examination of SATB2‑knockout 

mice during embryonic development 
showed that the observed cleft palate 
malformation was caused by a defect in 
skeletal patterning,[1] which suggested failure 
to form areas of condensed mesenchymal 
progenitor cells or improper differentiation 
of chondrocytes or osteoblasts.

While SATB2 has been identified mainly 
as a gene contributing to embryonic 
development, it was recently found 
expressed in adenocarcinomas, as well as in 
many other tumors, such as breast, ovarian, 
lung, and sinonasal carcinomas.[4] Recent 
studies have revealed an important role of 
SATB2 in mediating heavy metal‑induced 
cell transformation.[5,6] SATB2 plays an 
important role in the cell development 
and differentiation, while its pathway 
and mechanisms in cancers are not well 
understood. Thus, this review aims to 
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explore a potential signaling pathway in which SATB2 
and Runt‑related transcription factor 2  (RUNX2) 
cooperate to promote carcinogenesis.

Runt‑related Transcription Factor 2 and 
SATB2 in Bone Development

RUNX2 is another important regulator in the bone 
development. RUNX2 expression establishes commitment 
to the osteoblast lineage and is necessary for proliferation 
of osteoprogenitors and immature osteoblasts, as well 
as upregulation of the bone matrix molecules needed 
for differentiation into mature osteoblasts.[7] Like 
SATB2‑knockout mice, mice lacking RUNX2 exhibited 
an absence of mature osteoblasts and ossification and 
neonatal mortality.[8,9] If RUNX2 is a master switch 
for inducing osteoblast differentiation, then SATB2 is 
believed to be a molecular node in the transcriptional 
network regulating osteoblast differentiation.[10] SATB2 
is not considered as a direct interacting transcription 
factor with RUNX2, but the connection between 
RUNX2 and SATB2 through their participation 
in the bone development and formation has been 
described.[11] The interaction between RUNX2 and SATB2 
is supported by pathway analysis.[12] As shown in the 
Gene Oncology Study of String (https://string‑db.org), 
a potential SATB2/RUNX2 pathway is mainly involved 
in osteoblast differentiation and development, 
and bone morphogenetic protein  (BMP) signaling 
pathway, as well as many other cancer‑associated 
pathways, such as extracellular matrix organization, 
epithelial–mesenchymal transition  (EMT), cell 
proliferation, and cell death signaling pathways [Table 1].

Common Upstream Regulators

RUNX2 and SATB2 share common upstream regulators 
during osteoblast differentiation, such as BMP‑2 and 
SMAD pathways. While BMP‑2 is not required for 

RUNX2 to induce the expression of osteoblast genes, 
the formation of RUNX2–SMAD complex is necessary 
for BMP‑2 to transduce osteoblastogenic signals and 
to complete osteogenic processes.[13] A study also 
found that BMP‑2 activated RUNX2 in the early 
osteogenesis mediated by two homeodomain proteins 
Dlx3 and Dlx5, which are essential mechanisms in the 
commitment to osteogenic lineage, and in later stages, 
BMP‑2 facilitated RUNX2 in cell differentiation.[14] 
BMP‑2 also stimulated SATB2 expression in a time‑ and 
concentration‑dependent manner in C2C12 cells, a 
mouse myoblast cell line used to study the differentiation 
of myoblasts and osteoblasts under expression of various 
target proteins, which was mediated through SMAD1/5 
by directly binding and activating SATB2 promoter to 
mediate myoblast/osteoblast transdifferentiation.[15]

Mitogen‑activated protein kinases/extracellular 
signal‑regulated kinases (MAPK/ERK) is the upstream 
of RUNX2 and phosphorylates and activates RUNX2, 
promoting osteoblast differentiation.[16‑19] MAPK/
ERK was reported to participate in SATB2‑mediated 
o s t e o g e n e s i s , [ 2 0 ]  a n d  m a n y  d o w n s t r e a m 
microRNAs  (miRNAs) targeted by SATB2 in mouse 
bone mesenchymal stem cells  (BMSCs) were also 
involved in MAPK/ERK signaling as determined by 
pathway analysis.[21] In contrast, continuous activation 
of ERK by extracellular stimuli had a negative effect in 
BMP‑2 induction of osteoblast genes and an inhibitory 
effect on osteogenesis.[22,23] It was pointed out that 
ERK phosphorylated BMP‑associated SMAD1/5/8 
and mediated degradation of SMAD proteins in a 
cell‑specific manner.[22] ERK inhibited SATB2 activity,[23] 
supporting the role of MAPK/ERK signaling in 
osteoblast differentiation showing that SATB2 was 
downstream of MAPK/ERK pathway.

Common Downstream Targets

Genes regulated by RUNX2 and SATB2 individually 
have been identified, and there are also genes controlled 
by both of these transcription factors.[1] RUNX2 was 
found to directly target many osteoblast‑specific 
genes. The osteoblast‑specific cis‑acting element 
2 (OSE2, ACCACA) is a binding site for RUNX2, 
and it has been characterized in the promoters of 
many osteo‑specific genes: osteocalcin  (OCN), bone 
sialoprotein  (BSP), COL1A1, osterix  (OSX), and 
osteopontin (OPN).[24] SATB2 is also found to target a 
few genes regulated by RUNX2, such as BSP, COL1A1, 
and OCN.[1,25] BSP is an essential component of bone 
extracellular matrix and an important protein for bone 
development.[26] Several studies have demonstrated that 
SATB2 regulated BSP by binding to its promoter.[1,10,27] 
Microarray analysis indicated COL1A1 as a downstream 
of SATB2.[1] COL1A1 is another osteomarker gene 

Table 1: Runt‑related transcription factor 2 and 
SATB2 are correlated in many biological processes 
as supported by string gene oncology study analysis
Biological process P
Osteoblast differentiation 6.32E‑09
Osteoblast development 4.82E‑08
BMP signaling pathway 4.80E‑06
Positive regulation of extracellular matrix organization 5.32E‑06
Positive regulation of epithelial to mesenchymal 
transition

3.46E‑05

Regulation of epithelial cell proliferation 0.0002
Apoptotic process 0.0054
Stress‑activated MAPK cascade 0.0059
Negative regulation of cell death 0.0061
Notch signaling pathway 0.0067
BMP: Bone morphogenic protein, MAPK: Mitogen‑activated protein kinase
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induced by RUNX2 during osteoblast development that 
encodes fibrillar collagen in connective tissues.[24,28] One 
study found that lower RUNX2 level failed to decrease 
COL1A1 expression in mature osteoblast,[29] indicating 
that the expression of COL1A1 can be maintained 
through other pathways independent of RUNX2 and 
may be a compensatory pathway aided by SATB2.

SATB2 can act as a protein scaffold to enhance the 
activity of other DNA‑binding proteins. Although 
SATB2 was shown to directly bind to the promoter 
of OCN, OCN was activated by SATB2 binding and 
promoting the activity of RUNX2.[1] It was suggested 
that the interaction of SATB2 with RUNX2 occurs at the 
108 N‑terminal residues of RUNX2, where a QA domain 
is present to mediate this activation.[1] QA domain of 
RUNX2 was believed to be responsible for preventing 
the heterodimerization with core‑binding factor (CBF)‑β, 
a co‑factor for RUNX2 transactivity.[30,31] SATB2 may 
have compromised the function of the QA domain of 
RUNX2, promoting RUNX2 binding with CBF‑β, thereby 
stimulating the transcription of genes controlled by the 
RUNX2/CBF‑β complex, e.g., OCN, and other targets 
necessary for bone development.

Intermediate Genes between Runt‑related 
Transcription Factor 2 and SATB2

RUNX2 and SATB2 are also connected by osteomarkers. 
OSX is a critical transcription factor in osteoblast 
differentiation and is downstream of RUNX2 regulated 
by an OSE2 element that binds RUNX2.[32‑34] OSX was 
reported to regulate SATB2 expression in C2C12 cells 
by promoter activation.[27] Another study reported that 
SATB2 increased RUNX2 transactivity on OSX promoter 
and SATB2 also increased OSX expression independent 
of RUNX2.[10] This indicates a positive feedback signal in 
the RUNX2/OSX/SATB2 pathway and suggests SATB2 
also functions independently of RUNX2, to regulate OSX 
expression.

Although many studies placed SATB2 downstream 
of RUNX2 during osteogenesis, SATB2 can also 
regulate upstream. HOXA2 is a direct target of SATB2 
and a negative regulator of RUNX2.[1,35] HOXA2 was 
upregulated in SATB2−/− embryos and osteoblasts, and 
SATB2 was able to bind to the EII enhancer of HOXA2 
in vivo and decrease H3K4me at the endogenous HOXA2 
promoter.[1] HOXA2 inhibits skeletal formation,[35,36] and 
inactivation of the HOXA2 gene in SATB2−/− embryos 
rescues the delay in calvarial bone formation.[1] RUNX2 
expression was found increased in the HOXA2‑mutated 
embryos,[35] indicating that HOXA2 might modulate 
SATB2 and RUNX2 signaling by SATB2‑repressing 
HOXA2, activating RUNX2 expression. In fact, studies 
reported that overexpression of SATB2 in the BMSCs 

rapidly induced osteogenic differentiation with increased 
expression of RUNX2 as well as other osteo‑specific 
markers such as BSP, OSX, and ALP.[37] Another study 
suggested that SATB2 interacted and upregulated 
RUNX2 in the early stages of osteoblast differentiation.[38] 
During craniofacial development, SATB2 was activated 
early, allowing the induction of RUNX2 by inhibiting 
HOXA2.[38] SATB2‑induced RUNX2 was reported by Mi 
et al., although it was not clear whether the induction 
was a direct interaction between SATB2 and RUNX2 or 
mediated through other factors. The authors suggested 
that SATB2 might be involved in the BMP‑2/RUNX2 
pathway with BMP‑2–activating SATB2, which then 
induces RUNX2 to mediate osteoblast differentiation.[39]

miRNAs are short noncoding RNA molecules that 
target mRNA degradation, inhibiting protein translation 
and altering chromatin structure to repress gene 
expression.[40‑43] A group of miRNAs associated with 
osteogenic lineage commitment in the  mesenchymal 
stem cells (MSCs) has been characterized and termed 
osteo‑miRNA,[44] many of which are involved in 
RUNX2/SATB2 network during osteogenesis. miR‑31 
and miR‑23a~27a~24‑2 are negatively regulated 
by RUNX2 to suppress SATB2 expression in 
osteogenesis.[45‑47] SATB2 was found to control the 
expression of many miRNAs that negatively correlated 
with the expression of SATB2, including miR‑125b, 
miR‑132, miR‑128, miR‑127, miR‑143, and miR‑22,[48] 
many of which also target RUNX2 as confirmed by the 
TargetScan (http://www.targetscan.org). Some miRNA 
downstream of RUNX2, such as miR‑690 and miR‑185, 
was found to target SATB2.[49,50] A list of miRNAs 
involved with SATB2 and RUNX2 is shown in Table 2 
along with their role in osteogenesis.

An illustration of SATB2 and RUNX2 network in 
the bone development is shown in Figure  1. In total, 
SATB2 and RUNX2 function in the same network but 
have independent roles in osteoblast differentiation. 
In addition, SATB2 induces expression of factors that 
limit osteoblast differentiation, such as ATF3 and 
AP2‑β,[10,27] indicating that RUNX2 and SATB2 might act 
to balance differentiation at certain stages. Considering 
this intricate interaction between RUNX2 and osteoblast 
differentiation during normal bone development, it 
is important to consider the conditions in which they 
are aberrantly expressed and the targets they induce to 
initiate cancer and promote disease progression.

Runt‑related Transcription Factor 2 and 
SATB2 in Carcinogenesis

Transitioning from a normal cell to a cancer cell 
occurs through germline mutations or epigenetic 
alterations caused by exposure to carcinogens. These 
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germline mutations or epigenetic changes may result 
in haploinsufficiency of tumor suppressors or increased 
expression of oncogenes. Tumor suppressors activate 
pathways that limit cell proliferation, promote contact 
inhibition, prevent cell migration and invasion, and 
support normal autophagy and apoptosis. Oncogenes, 
however, activate pathways that increase cell proliferation, 
migration, and invasion while preventing contact 
inhibition and programmed cell death. It is important 
to understand the roles of RUNX2 and SATB2 as either 
tumor suppressors or oncogenes as they cooperate or 
antagonize one another in promoting cancer progression.

Runt‑related transcription factor 2 and SATB2 as 
tumor suppressor
The role of SATB2 in cancers has been reviewed 
by Chen et  al., suggesting that SATB2 can function 
either as an oncogene or tumor suppressor.[59] For 
example, SATB2 is recognized as a biomarker for 
colorectal cancer  (CRC). However, in some studies, 
CRC cells exhibit low SATB2 mRNA expression; 
however, when SATB2 expression was turned on, 
cancer cell proliferation was reduced.[60] RUNX2 also 
exerts paradoxical effects in carcinogenesis, acting as 
a tumor suppressor or oncogene.[61] RUNX2 serves as 
a regulator for cell cycle and inhibits cell proliferation 
during osteogenesis.[62] RUNX2 can arrest the cell cycle 
in the G1 phase, allowing cells to exit the cell cycle and 
avoid abnormal cell proliferation.[63] A loss of RUNX2 
function was related to enhanced in  vitro growth 
potential in RUNX2‑deficient osteoblasts.[64]

Runt‑related transcription factor 2 and SATB2 as 
oncogene
On the other hand, RUNX2 and SATB2 are well‑known 
oncogenes. While SATB2 expression is associated with 
normal embryonic development, its expression in 
cancers, however, determines overall progression and 
patient prognosis. SATB2 was first reported to mediate 
head and neck squamous cell carcinoma  (HNSCC) as 
a novel binding partner for p63 and p73 promoting 
chemoresistance, and its expression was associated 
with advanced‑stage HNSCC.[65] SATB2 was also a 
diagnostic marker for CRC.[66] Increased expression of 
SATB2 has been observed in many other cancers such as 
osteosarcoma,[67] pancreatic cancer,[68] breast cancer,[69,70] 
endometrial cancer,[71] and cancer stem cells (CSCs).[64] In 
addition, many downstream targets of SATB2 such as 
B‑cell lymphoma 2 (BCL‑2), BSP, c‑MYC, KLF‑4, HOXA2, 
and NANOG are key regulators of cell pluripotency and 
survival.[68]

Table 2: The microRNAs cooperating with Runt‑related transcription factor 2 and SATB2 in osteogenesis
Genes Target gene Regulator Study model Function
miR‑31[45,46] SATB2* RUNX2* Rat BMSC; Human 

primary dental follicle cell
Inhibit osteogenic transcription factors; Regulate 
matrix remodeling and osteoclast activity

miR‑23a~27a~24‑2[47] SATB2* RUNX2* ROB, MC3T3‑E1 Suppress osteogenic differentiation
miR‑690[49] SATB2 RUNX2* C2C12 Suppress osteogenic differentiation
miR‑185[50] SATB2 RUNX2* MC3T3‑E1 Suppress amelogenesis and osteogenesis
miR‑205[51] RUNX2, SATB2* Rat BMSC Suppress osteogenic differentiation
miR‑127[48,52] RUNX2* SATB2 Rat BMSC Promote chondrogenic and cartilage differentiation
miR‑128[48,53] RUNX2* SATB2 Human MSCs Promote osteogenic differentiation
miR‑132[48,54] RUNX2* SATB2 Human osteoblast Suppress osteoblast differentiation
miR‑22[48,55] RUNX2* SATB2 Mouse pre‑osteoblast Stimulate osteoblast differentiation; Suppress 

adipogenic differentiation
miR‑218[48,56] RUNX2* SATB2 MEC3T3‑E1 Suppress osteoblast differentiation
miR‑103a[48,57] RUNX2* SATB2 hFOB 1.19 Inhibit bone formation
miR‑125b[48,58] RUNX2* SATB2 Human BMSC Suppress osteogenic differentiation
*Experimentally confirmed. BMSC: Bone mesenchymal stem cell, ROB: Rat primary osteoblasts, MC3T3‑E1: Mouse pre‑osteoblast cell line, C2C12: Myogenic 
progenitor cell, MSCs: Mesenchymal stem cells; hFOB 1.19: Human osteoblast

Figure 1: An illustration of SATB2 and Runt‑related transcription factor 2 network in 
bone development. Runt‑related transcription factor 2 and SATB2 share common 

upstream regulators such as MAPK/ERK pathway and bone morphogenetic protein/
SMAD pathway, and they have overlapping downstream genes such as osteocalcin, 

bone sialoprotein, and COL1A1 in osteogenesis. They are connected by 
HOXA2, osterix, and various microRNAs in either direction, allowing Runt‑related 
transcription factor 2 and SATB2 to act as an upstream regulator for one another. 
Among the microRNAs connecting SATB2 and Runt‑related transcription factor 2, 
miR‑31 and miR‑23‑27a ~24‑2 have solid evidence supporting the pathway axis in 
osteoblast differentiation. In addition, SATB2 also displays physical interaction with 
Runt‑related transcription factor 2 to regulate its transcription activity and induce the 

expression of osteocalcin
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RUNX2 is expressed only in a limited number of 
nonosseous tissues, including testis,[72,73] mammary 
epithelium,[74,75] thymus,[75] endothelial cells,[76] and 
transformed cells.[64] Aberrant expression of RUNX2 
has been described in the progression and metastasis of 
several human cancers, including pancreatic cancer,[77] 
thyroid cancer,[78] bone cancer,[79] breast cancer,[80] and 
prostate cancer.[81] RUNX2 promoted cell proliferation 
and inhibited cell death by repressing transcription 
of p21/CDKN1A in fibroblasts and osteosarcoma 
cells, which act to arrest in the G1 phase.[82] RUNX2 
activated Gpr30 expression and reduced Rgs2 level 
to increase mitogenic signaling through cAMP and 
G‑protein–coupled receptors.[83] Moreover, downstream 
genes of RUNX2, such as MMPs, vascular endothelial 
growth factor (VEGF), BSP, and c‑MYC, are involved in 
promoting cancer cell metastasis.[74,84‑86] RUNX2‑regulated 
genes such as SOX9, SNAI2, SNAI3, TWIST1, and 
SMAD3 are potential inducers of cell invasion.[87,88]

Runt‑related transcription factor 2/SATB2 in 
osteosarcoma
Osteosarcoma is an aggressive bone cancer with poor 
clinical outcome. It was conventionally believed that 
osteosarcoma originated from osteoblasts due to the 
presence of the bone matrix osteoid, whereas it was 
later found that it can originate from the differentiation 
of MSCs to a mature osteoblasts.[89] RUNX2 and SATB2 
are both key transcription factors in osteoblast lineage 
commitment and development; thus, cell transformation 
and metastasis would be supported by aberrant 
expression of these proteins during osteogenesis.

Improper expression of the development‑related genes, 
at the wrong time, contributed to carcinogenesis. 
The expression level of RUNX2 was dynamic from 
pre‑osteoblast to immature osteoblasts, and finally 
to the maturation of osteoblast.[90] Early onset of 
RUNX2 expression in MSCs may direct the cells to 
osteoblast progenitors, which is required for their 
expansion.[91] The expression of RUNX2 increases in 
immature osteoblast, regulating the expression of many 
bone matrix proteins.[92] However, in the late stage of 
osteogenesis, RUNX2 was largely decreased to allow 
maturation of osteoblasts.[93] RUNX2 was not required 
for the expression of major bone matrix genes in mature 
osteoblast, and continuous expression of RUNX2 
at high levels was found to inhibit and impair bone 
formation in immature mouse osteoblasts.[90,93] RUNX2 
overexpression was confirmed in osteosarcomas and 
associated with poor tumor response to chemotherapy.
[94] A frequent amplification and rearrangement where 
the RUNX2 gene is located (6p12–p21) was found in 
osteosarcoma.[94] Deregulation of cell cycle control 
might be a factor promoting osteosarcoma mediated 
by RUNX2, since studies had reported that high levels 

of RUNX2 in SAOS‑2, a human osteogenic sarcoma 
cell line, lost cell cycle control.[95] Further studies 
indicated that the function of RUNX2 in osteosarcoma 
was related to pRB and p53.[96] Activation signaling 
pathways for RUNX2, such as PI3K/Akt, Wnt, BMP/
TGF‑β, MAPK/ERK, and Notch, were all found turned 
on in osteosarcoma,[97‑100] indicating that increased 
expression of RUNX2 at the wrong time, e.g., final stage 
of osteogenesis, caused formation of too many immature 
osteoblast cells, resulting in osteosarcoma.

SATB2 was also found commonly expressed in 
osteosarcoma and has been suggested as a sensitive 
marker for this cancer.[67] However, SATB2 expression 
was not specific for osteosarcoma since it was also 
expressed in other types of bone sarcomas, such as 
undifferentiated pleomorphic sarcoma and bone 
fibrosarcoma, and high‑grade chondrosarcomas.[101] 
It is a marker for osteoblast differentiation in both 
benign and malignant bone tumors. One study reported 
that SATB2 enhanced osteosarcoma stem cell‑like 
characteristics through the induction of N‑cadherin and 
NF‑κB signaling, and knockdown of SATB2 repressed 
these genes, leading to impaired osteosarcoma sphere 
formation and tumor cell proliferation.[102] In normal 
cells, NF‑κB is activated by host defense mechanisms 
in response to inflammation, but this pathway activates 
osteosarcoma tumorigenesis.[103] However, NF‑κB is 
an inhibitor for RUNX2 in osteoblasts since induced 
expression of NF‑κB was found to repress the binding 
of RUNX2 with β‑catenin and with the downstream 
target genes such as BSP and OCN, leading to decreased 
expression of matrix protein and bone formation.[104] 
Although NF‑κB failed to affect RUNX2 expression, 
considering the transactivity of RUNX2 can be mediated 
by co‑factors, a compensation of RUNX2 expression 
would be possible by prolonged inflammation. In 
addition, SATB2 is an activator of β‑catenin,[105] allowing 
a counteracting effect with NF‑κB on RUNX2, which 
contributes to SATB2‑driven osteosarcoma.

c‑MYC is a transcription factor that plays an important 
role in cell proliferation, apoptosis, and metabolism.[106] It 
is involved in cancers such as ovarian, breast, pancreatic, 
gastric, and uterine cancer and CRC.[107,108] It was also 
found overexpressed in osteosarcoma and this was 
related with metastasis.[109] MYC promoted OS cell 
invasion by MEK/ERK pathway.[110] c‑MYC was a target 
for RUNX2, and it was overexpressed in human and 
mouse OS cells compared to MSCs. RUNX2 promoted 
c‑MYC expression by recruiting the COMPASS‑like 
complex to the promoter of c‑MYC, and RUNX2/c‑MYC 
pathway contributed to survival of OS cells. Although 
RUNX2 is required to maintain the expression of 
c‑MYC, in OS cells, c‑MYC can be induced through 
other factors.[111] In fact, c‑MYC is also a downstream 
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target for SATB2. It was found that SATB2 can directly 
target c‑MYC promoter and regulate its transcription 
in CSCs.[70] Ectopic expression of c‑MYC in mature 
fibroblasts inhibited cell differentiation and promoted 
formation of multifunctional progenitor cells. SATB2 
alone increased expression of c‑MYC as well as other 
pluripotency factors such as Oct‑4, SOX‑2, and KLF‑4, to 
induce de‑differentiation and transformation of  human 
mammary epithelial cells (HMEGs) into progenitor 
cells.[70]

Runt‑related Transcription Factor 2 and 
SATB2 in Other Cancers

A search of the cBio genomic cancer portal (http://www.
cbioportal.org) for RUNX2 and SATB2 in the Cancer 
Genome Atlas database found expression of these two 
transcription factors in cancers, including testicular, 
bladder, and lung squamous carcinoma, HNSCC, 
melanoma, CRC, and prostate, breast, papillary thyroid, 
and cervical cancer [Table 3].

Lung squamous cell carcinoma is a major subtype of 
nonsmall cell lung cancer (NSCLC) and accounts for about 
25%–30% of all lung cancers. RUNX2 was suggested as a 
novel prognostic marker in NSCLC since its expression 
correlated with tumor size, tumor stage, and lymph node 
metastasis.[112] Although SATB2 has been characterized 
as a tumor suppressor for NSCLC,[113] SATB2 mediated 
Beas2B cell transformation by metal carcinogens.[5] 
Inhibition of SATB2 in transformed Beas2B cells reduced 
cell proliferation and anchorage‑independent growth.[6] 
SATB2 was induced by arsenic exposure in Beas2B by 
the downregulation of miR‑31, following induction 
of RUNX2 during cellular transformation.[114] miR‑31 
was implicated as an important negative regulator 
in osteogenesis with RUNX2 and SATB2 in an 

osteoblast differentiation pathway.[45,46] MiRNA‑31 is 
a pleiotropically acting miRNA involved in CRC,[115‑117] 
squamous cell carcinoma,[118] and breast,[119] gastric,[120] 
and pancreatic cancer.[121] Two binding sites for miR‑31 
were characterized in the 3’UTR of SATB2 and identified 
as a direct target for miR‑31 in cancer‑associated 
fibroblasts.[122] The miR‑31/SATB2 axis was also active in 
CRCs in which upregulated miR‑31 reduced SATB2 level 
promoting cell proliferation, invasion, and metastasis.[117]

Wnt/β‑catenin pathway plays an important role in 
SATB2‑induced CRC,[123,124] while RUNX2 is known 
to be downstream of Wnt/β‑catenin pathway in 
osteogenesis.[125] An increased level of RUNX2 was 
found in CRC cells, confirming its function in CRC 
metastasis, TMN stages, and prognosis.[126‑128] SATB2 
was suggested to be a diagnostic marker for CRCs since 
SATB2 stained positively in 71%–97% of primary and 
metastatic CRCs biopsies with immunohistochemistry. 
Reduced expression of SATB2 in colon cancer was 
associated with poor prognosis, while increased 
expression enhanced therapeutic sensitivity.[66,129‑132] 
One study found that SATB2 induction and subsequent 
transformation of colon epithelial cells  (CRL‑1831) 
were mediated through Wnt/β‑catenin/TCF/LEF 
pathway.[105] Many downstream genes of the pathway 
have been associated with cell transformation, including 
c‑MYC, cyclin, and VEGF.[105] Many studies have 
indicated the role of VEGF in colon cancer.[133] VEGF is 
an important factor during osteogenesis in directing the 
invasion of blood vessels into cartilage, and it is also a 
shared downstream target by SATB2 and RUNX2.[10,134] 
However, VEGF was not directly targeted by SATB2. 
As a target of Wnt/β‑catenin signaling, RUNX2 is 
very likely involved in the SATB2‑induced VEGF via 
Wnt/β‑catenin pathway in CRC carcinogenesis. The 
HDAC4/RUNX2/VEGF pathway was investigated 
in chondrosarcoma, suggesting that reduced HDAC4 
induced expression of RUNX2 and thereby increased 
VEGF to enhance angiogenesis, tumor growth, and 
metastasis.[86]

RUNX2 level was found aberrantly increased in pancreatic 
cancer, and its expression was associated with poor 
prognosis.[77] SATB2 was also found highly expressed in 
pancreatic CSCs causing cell proliferation and EMT by 
inducing the expression of many pluripotency and stem 
cell markers such as NANOG, OCT‑4, CD24, CD44, as 
well as BCL‑2.[68] BCL‑2 regulates cell apoptosis and is 
a pluripotency‑maintaining factor directly targeted by 
SATB2.[68] However, in osteoblasts, deficient in BCL‑2 
was associated with increased expression of RUNX2 
and other osteogenic markers such as OSX, COL1A1, 
OCN, and OPN, indicating a negative relationship 
between BCL‑2 and osteoblast differentiation.[135,136] In 
MG‑62, nitric oxide induced expression of BCL‑2 by 

Table 3: SATB2 and Runt‑related transcription factor 
2 co‑occurred in cancers as in the cBio genomic 
cancer portal queried Cancer Genome Atlas Database
Cancer type Log2 

OR
P Q Tendency

Testis cancer >3 0.002 0.002 Co‑occurrence
Head and neck 
squamous cancer

>3 0.002 0.002 Co‑occurrence

Bladder cancer >3 <0.001 0.005 Co‑occurrence
Melanoma 2.47 0.006 0.14 Co‑occurrence
Lung squamous cell 
carcinoma

1.846 0.026 0.219 Co‑occurrence

Colorectal 
adenocarcinoma

2.409 0.087 0.087 Co‑occurrence

Prostate cancer 0.129 0.618 0.658 Co‑occurrence
Breast cancer 0.879 0.249 0.358 Co‑occurrence
Papillary thyroid cancer 2.338 0.085 0.312 Co‑occurrence
Cervical cancer 2.249 0.247 0.829 Co‑occurrence
OR: Odds ratio
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inducing RUNX2 and promoted cancer cell survival 
under oxidative stress conditions.[137] Hypoxia‑induced 
expression of RUNX2 increased cell viability by inducing 
the cell apoptosis‑associated factor, BCL‑2, resulting in 
apoptosis resistance in prostate cancer cells.[81]

RUNX2 was upregulated in the HNSCC with lymph 
node metastasis and was identified as a key transcription 
factor in promoting HNSCC progression and metastasis. 
RUNX2 level was found negatively regulated by 
miR‑376c, which mediated cell metastasis via the 
RUNX2/inhibin subunit beta A axis.[138] SATB2 was 
highly expressed in advanced HNSCC enhancing 
resistance to chemotherapy and radiation‑induced 
cell death by promoting the dominant‑negative p63a 
level and subsequently inhibiting proapoptotic Tap73b 
and p53 signaling.[65] SATB2 is also a direct target of 
miR‑376c (http://www.targetscan.org), indicating that 
RUNX2 and SATB2 could be co‑regulated in HNSCCs.

RUNX2 expression is increased in bladder cancers 
(compared to noncancerous bladder tissue/cells), 
and it has been suggested that RUNX2 level in 
bladder cancer cells was regulated by miRNAs such 
as miR‑217 and miR‑154.[139,140] Calcification is one of 
the symptoms of papillary thyroid carcinoma (PTC), 
and RUNX2 when induced by HOXA9 was associated 
with PTC calcification and invasiveness.[78] An 
increased expression of RUNX2 was observed in 
melanoma cells, and RUNX2 regulated expression 
of matrix metalloproteases implicated in tumor 
invasion and metastasis, which furthers the conclusion 
that regulated RUNX2 expression is important to 
maintain specialized mesenchymal lineages.[141] A 
Runt domain of RUNX2 was necessary for melanoma 
cell proliferation and cell migration,[134] and RUNX2 
may probably mediate cell malignancy by regulating 
downstream genes such as BSP, MMPs, and COL3.[141] 
SATB2 was also found increased by an unknown 
mechanism in PTC, breast cancer (BC), and melanoma 
cancer cells as shown in the Human Protein Atlas 
Database. A summary of RUNX2 and SATB2 in various 
cancers is listed in Table 4.

MicroRNAs in Runt‑related transcription factor 
2/SATB2 network in carcinogenesis
Both SATB2 and RUNX2 have been implicated in 
the regulation of miRNA in cancers.[59,140] MiRNAs 
connecting them with osteogenesis might also be 
important in RUNX2/SATB2‑mediated carcinogenesis. 
miR‑31 not only links RUNX2 and SATB2 with 
osteogenic differentiation but also negatively regulates 
SATB2 in mediating lung and colon cancer.[114,117] miR‑23a 
connects RUNX2 and SATB2 in osteoblasts, and it is 
also targeted by RUNX2 in mouse liver cancer cells to 
increase metastatic potential.[142] A summary of miRNAs 

involved in RUNX2/SATB2 pathway and carcinogenesis 
is listed in Table 5.

miR‑127 is an upstream regulator of RUNX2 in 
rat BMSCs  (bone mesenchymal stromal cells).[52] 
Osteosarcoma cells had reduced miR‑127 level, while 
the restoration of miR‑127 inhibited cell migration, 
invasion, and increased apoptosis.[146] An inverse 
expression level between miR‑153 and RUNX2 was 
observed in breast cancers and RUNX2 overexpression 
reversed cell proliferation, migration, and invasion 
of breast cancer cells which was suppressed by 
miR‑153.[145] miR‑103 inhibited bone formation by 
acting as a mechanosensitive miRNA and directly 
targeting RUNX2 at its 3’UTR.[57] It also prolonged 
the Wnt signaling and promoted CRC stemness along 
with miR‑107 pathway.[142] miR‑34c downregulated 
RUNX2 in OS cells and was negatively regulated by 
p53, creating a novel network p53‑miR‑34c‑RUNX2 in 
osseous cells and osteosarcoma (OS) cells.[147] SATB2 was 
found upregulated when miR‑34c was silenced by DNA 
methylation increasing cell metastasis and EMT in the 
CRC cells.[148] miR‑211 significantly reduced SATB2 level 
in hepatocellular carcinoma, resulting in the reduction 
of cell proliferation and migration.[149] miR‑211 with 
its homologous miR‑204 negatively regulated RUNX2 
to inhibit osteogenesis and promoted adipogenesis in 
mesenchymal progenitor cells and BMSCs.[150] miR‑205 
was found to target RUNX2 in inhibiting pancreatic 
cancer progression.[143] Together, this suggests that 
SATB2‑driven miRNA expression may alter RUNX2 
activity and that epigenetic alterations of SATB2 may 
affect normal osteogenesis or cell differentiation, thereby 
resulting in bone dysmorphia, osteosarcoma, or other 
cancers. Additional evidence is required to confirm the 
axis connected by miRNA under different cell context.

In addition, many downstream miRNAs regulated by 
SATB2 are also potential regulators for CBF‑β with its 
3’UTR directly targeted by miR‑143, miR‑128, miR‑124, 
miR‑125a, miR‑381, and miR‑326, as searched on the 
TargetScan.[48] Other than by physically interacting 
with RUNX2 domains, this provides a new potential 
mechanism for SATB2 affecting CBF‑β binding and 
cooperating with RUNX2 to regulate downstream 
genes [Figure 2].

Conclusion

It is known that both RUNX2 and SATB2 are key 
regulators of osteoblast differentiation and development. 
While many studies tend to place RUNX2 upstream of 
SATB2, the interaction between the two transcription 
factors is complex. They are linked by common 
upstream regulators and osteo‑specific markers as well 
as multiple miRNAs, allowing them to act upstream or 



Zhu, et al.: RUNX2/SATB2 in bone development and carcinogenesis

8	 Journal of Carcinogenesis - 2021, 20: 2

Table 4: Runt‑related transcription factor 2 and SATB2 in cancers
Cancer type Gene Author Year Significant finding and conclusion
Osteosarcoma SATB2 Davis and Horvai[67] 2016 SATB2 is a sensitive marker for osteosarcoma

Machado et al.[101] 2016 SATB2 immunoexpressing can help to distinguish osteosarcoma from its mimickers, 
except between chondroblast osteosarcoma and high‑grade chondrosarcoma

Xu et al.[102] 2017 SATB2 plays an important role in regulating osteosarcoma stem cell‑like properties 
and tumor growth, while metformin reduces the cancer‑like phenotypes and tumor 
growth via inhibition of N‑cadherin/NF‑kB signaling

RUNX2 Westendorf et al.[82] 2002 RUNX2 promotes cell proliferation and inhibits cell death by interacting with HDAC6 
and repressing p21 promoter in osteosarcoma cells

Sadikovic et al.[94] 2010 RUNX2 is significantly overexpressed in osteosarcoma and is associated with poor 
chemotherapy response

Galindo et al.[95] 2005 RUNX2 level is not regulated by cell proliferation and remained high in 
osteosarcoma cells

Pereira et al.[96] 2009 pRB, p53, and RUNX2 form a bone‑specific regulatory network that controls normal 
cell cycle progression in osteoblasts and that is deregulated in osteosarcoma cells

CRC SATB2 Dragomir et al.[66] 2014 SATB2 can be a diagnostic marker for primary and metastatic CRCs
Yu et al.[105] 2017 SATB2/β‑catenin/TCF‑LEF pathway induces cellular transformation by generating 

cancer stem cells in colorectal cancer
Yang et al.[117] 2013 miR‑31 mediates colorectal cancers progression by directly inhibiting SATB2 level
Eberhard et al.[129] 2012 SATB2 expression level can be a prognosis marker for colon cancer
Lin et al.[130] 2014 SATB2 and cadherin‑17 are sensitive and specific immunomarkers for colorectal 

carcinomas
Moh et al.[131] 2016 High SATB2 expression can distinguish ovarian metastasis of colorectal origin from 

primary ovarian tumors
Zhang et al.[132] 2018 SATB2 can be a promising biomarker for identifying a colorectal origin from liver 

metastatic adenocarcinomas
RUNX2 Wen et al.[126] 2017 Inhibiting RUNX2 by miR‑539 can repress colorectal cancer progression and can be 

a potential therapeutic approach
Wang et al.[127] 2016 CBX4 can suppress metastasis of colorectal carcinoma via inhibiting RUNX2 

promoter
Ji et al.[128] 2019 MALAT1 elevates RUNX2 expression in CRC cells, and they are two biomarkers for 

predicting the recurrence and metastasis of CRC
Breast cancer SATB2 Yu et al.[70] 2017 SATB2 is highly expressed in human breast cancer cell lines and may have a role in 

regulation of pluripotency, cell survival, and proliferation
Patani et al.[69] 2009 SATB2 mRNA expression is significantly associated with increasing tumor grade and 

poorer overall survival in breast cancer
RUNX2 Zuo Z, et al.[142] 2019 Inhibition of RUNX2 by miR‑153 can reverse breast tumor growth and metastasis, 

and miR‑153/RUNX2 axis may be used as a potential therapeutic target in breast 
cancer treatment

Barnes et al.[80] 2003 RUNX2 expression in metastatic breast cancer cells and may explain the 
metastasize to the bone

HNSCC SATB2 Chung et al.[65] 2010 SATB2 expression positively correlates with HNSCC chemoresistance, 
and knockdown of SATB2 resensitizes HNSCC to chemotherapy‑ and 
γ‑irradiation‑induced apoptosis

RUNX2 Chang et al.[138] 2016 RUNX2 is widely upregulated in HNSCC and downregulation of RUNX2 by 
miR‑376c will suppress metastatic capability

Pancreatic 
cancer

SATB2 Yu et al.[68] 2016 SATB2 can induce dedifferentiation by inducing stemness and may have a role in 
pancreatic carcinogenesis and can be used as a diagnostic biomarker

RUNX2 Kayed et al.[77] 2007 RUNX2 is overexpressed in pancreatic cancer cells and is regulated by cytokines 
such as TGF‑1 and BMP‑2 to modulate the expression of extracellular matrix 
modulators

Zhuang et al.[143] 2019 miR‑205 is a tumor suppressor by targeting RUNX2 in pancreatic cancer to inhibit 
cell proliferation and migration

NSCLC SATB2 Ma et al.[113] 2018 SATB2 suppressed lung cancer cell invasion and metastasis and regulated the 
expression of EMT‑related proteins and histone methylation by G9a

Clancy et al.[5] 2012 SATB2 is a commonly increased gene during metal‑induced bronchial epithelial cell 
transformation

Wu et al.[6] 2016 SATB2 plays a pivotal role in Ni‑induced bronchial epithelial cell transformation
Chen et al.[114] 2018 SATB2 plays an important role in arsenic‑induced bronchial epithelial cell 

transformation

Contd...
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downstream of each other, or function in concert in the 
network that orchestrates osteogenesis. In this review, 
we describe how RUNX2 and SATB2 were involved 
in many cancers and improper expression of these 

proteins at a wrong time during osteogenesis or wrong 
place in other organs contributes to tumorigenesis. 
However, the exact pathway between the two proteins 
has not been well studied as these bone regulators act 

Table 5: The microRNAs connecting Runt‑related transcription factor 2 and SATB2 in carcinogenesis
miRNA Target gene Regulator Cancer type Function/activity
miR‑31[114,117] SATB2* RUNX2 Lung cancer, CRC Inhibition of lung epithelial cell transformation induced by arsenic; regulate 

CRC cell proliferation, invasion, and metastasis
miR‑23a[144] SATB2 RUNX2* Liver cancer Increase the metastatic potential of mouse liver cancer cell
miR‑153[145] RUNX2* SATB2 Breast cancer Suppress breast cancer cell proliferation, migration, and invasion
miR‑127[146] RUNX2* SATB2 Osteosarcoma Inhibit osteosarcoma cell migration, invasion, and induced cell apoptosis
miR‑103[142] RUNX2* SATB2 CRC Promote CRC stemness
miR‑34c[147] RUNX2* Osteosarcoma Regulate cell proliferation
miR‑34c[148] SATB2* CRC Regulate cell metastasis
miR‑205[143] RUNX2* SATB2 Pancreatic cancer Inhibit pancreatic cancer progression
miR‑211[149] SATB2*/RUNX2 Liver cancer Reduce cell proliferation and migration
*Experimentally confirmed. CRC: Colorectal cancer, miRNA: MicroRNA, RUNX2: Runt‑related transcription factor 2

Figure 2: An illustration of a potential pathway that SATB2 mediated core‑binding 
factor‑β binding with Runt‑related transcription factor 2 by inhibiting QA domain 

and microRNAs that target core‑binding factor‑β to induce the expression of 
Runt‑related transcription factor 2 downstream genes

Figure 3: An illustration of a possible SATB2 and Runt‑related transcription factor 2 
network in carcinogenesis. SATB2 and Runt‑related transcription factor 2 are linked 

by multiple microRNAs in the pathways of carcinogenesis. Improper activation of 
Runt‑related transcription factor 2 might also be induced by SATB2 via β‑catenin/

NF‑kB pathway under a prolonged inflammation condition. Runt‑related transcription 
factor 2 and SATB2 also share many downstream targets such as B‑cell lymphoma 
2, c‑MYC, and vascular endothelial growth factor in mediating cell transformation

Table 4: Contd...
Cancer type Gene Author Year Significant finding and conclusion

RUNX2 Li et al.[112] 2013 RUNX2 may play an important role in NSCLC tumorigenesis and it might serve as a 
novel prognostic marker in NSCLC

Thyroid cancer RUNX2 Niu et al.[78] 2012 Enhanced RUNX2 is functionally linked to tumor invasion and metastasis of thyroid 
carcinoma by regulating EMT‑related molecules, matrix metalloproteinase, and 
angiogenic/lymphangiogenic factors

Prostate 
cancer

RUNX2 Browne et al.[81] 2012 Increased expression of RUNX2 modulates the expression of apoptosis‑associated 
factors, specifically Bcl‑2, serves as a contributing mechanism for progression of 
prostate cancer cells to a malignant phenotype

Bladder 
cancer

RUNX2 Zhao et al.[139] 2017 Inhibition of RUNX2 by miR‑154 in bladder cancer cells can inhibit cellular 
malignancy

Huang et al.[140] 2018 RUNX2 expression induced by has_circ_0000144 is critical for its oncogenic role, 
while inhibition of RUNX2 by miR‑217 suppresses bladder cancer cell proliferation 
and invasion

Melanoma RUNX2 Riminucci et al.[141] 2003 The expression of RUNX2 may control the BSP expression and invasive behavior in 
malignant melanoma cells

Deiana et al.[134] 2018 RUNT domain is important in melanoma metastasis and cell migration, and RUNX2 
may serve as a prospective target in malignant melanoma therapy

Endometrial 
cancer

SATB2 McCluggage and 
Van de Vijver[71]

2019 Increased expression of SATB2 in modular metaplasia is associated with the 
endometrioid histotype of endometrial

HNSCC: Head and neck squamous cell carcinoma, CRC: Colorectal cancer, NSCLC: Nonsmall cell lung cancer, BMP: Bone morphogenic protein, 
TGF: Transforming growth factor, EMT: Epithelial–mesenchymal transition, RUNX2: Runt‑related transcription factor 2, NF-kB: nuclear factor kappa-light-chain-
enhancer of activated B cells, TCF-LEF: T-cell factor/lymphoid enhancer factor
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in concert, independently, or in opposition depending 
on cellular conditions and context. This review provides 
a comprehensive summary of the current studies 
addressing the relationship between RUNX2 and 
SATB2 in osteogenesis and sheds lights on their roles in 
carcinogenesis. A summary of RUNX2/SATB2 network 
in carcinogenesis is shown in Figure 3. Some potential 
mechanisms and pathways between RUNX2 and SATB2 
have also been proposed, to involve CBF‑β, miRNAs, and 
β‑catenin. In the end, more studies are needed to clarify 
the relationship between SATB2 and RUNX2, such as the 
mechanism of their physical interaction between the two 
proteins, promoter‑binding possibilities between the two 
transcription factors, and roles of different miRNAs in 
their regulation under different cell context.
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