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Abstract

Living tissues are dynamic, heterogeneous compositions of objects, including molecules, cells and 

extra-cellular materials, which interact via chemical, mechanical and electrical process and 

reorganize via transformation, birth, death and migration processes.

Current programming language have difficulty describing the dynamics of tissues because: 1: 

Dynamic sets of objects participate simultaneously in multiple processes, 2: Processes may be 

either continuous or discrete, and their activity may be conditional, 3: Objects and processes form 

complex, heterogeneous relationships and structures, 4: Objects and processes may be 

hierarchically composed, 5: Processes may create, destroy and transform objects and processes. 

Some modeling languages support these concepts, but most cannot translate models into 

executable simulations.

We present a new hybrid executable modeling language paradigm, the Continuous Concurrent 

Object Process Methodology (CCOPM) which naturally expresses tissue models, enabling users to 

visually create agent-based models of tissues, and also allows computer simulation of these 

models.

1 INTRODUCTION

Living tissues result from the complex interplay among a wide variety of objects, including 

molecules, macromolecules, organelles, cells, extra-cellular matrix, fluids and tissues 

participating in spatial, mechanical and chemical processes at multiple scales (Brodland 

2015, Gilbert 2014, Alberts, Bray, Hopkin, Johnson, Lewis, Raff, Roberts, and Walter 2013). 

The disruption of any of these objects or processes can severely impair tissue development 

or function.

In nature, changing sets of objects can participate concurrently in multiple processes. 

Process activity and object participation may both be conditional. Processes may be active 
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continuously, trigger explicitly under specific conditions, or may invoke other processes. 

Processes may also combine or aggregate to form composite processes out of child 

processes, and child-process ordering may be either concurrent or sequential. For example, 

in a simplified description of the respiration process in a cell object, glucose transporter 

objects (GLUTx) transport glucose (GLU) across the cell membrane. The glycolysis 

pathway consumes GLU, producing a pair of high energy ATP molecules. The GLUTx also 

consumes ATP to function. The transport process moves GLU into the cell at the same time 

that the glycolysis process consumes it. As another example, multiple sub-processes 

compose the complex continuous process of cell growth, whose net effect is to consume 

extra-cellular chemical objects, increase the volume of the cell object and produce waste 

product objects. Mitosis is a complex discrete process in which the cell object prepares for 

and completes cell division. Specific conditions trigger mitosis and the mitosis process 

transforms the parent cell and creates a new daughter cell. Cell adhesion is a continuous 

process which causes cells to adhere to cells of specific cell types under specific 

circumstances.

The ensemble of biological objects and processes in a tissue form a biological description, or 

biological model. Our terms – “consumes”, “produces”, “rate” – suggest that we can 

naturally describe many biological processes using equations which specify variables 

(properties) representing the states of biological objects, the relationships between variables 

and how variables change over time. For example, a rate equation can describe the flux of a 

chemical compound through a cell membrane. Reaction-kinetic equations can describe 

reacting chemical compounds. Force equations can describe adhesion or movement 

processes. Algorithmic descriptions are more natural for other kinds of processes. For 

example, condition rules can trigger a mitosis process. The sequential invocation of a series 

of sub-processes to replicate DNA, separate DNA, and divide the parent cell into two cells, 

can model biological mitosis. Both mathematical and algorithmic descriptions may be 

appropriate for different kinds of processes. A biological model plus mathematical or 

algorithmic descriptions of all processes in the model forms a quantitative model.

Established compiler design techniques can readily convert algorithmic processes into 

executable code. However, in order to translate a set of a mathematical process descriptions 

into an executable simulation, a compiler must analyze the equations comprising the 

mathematical processes and determine how to solve for their state variables. Mathematical 

descriptions do not directly determine their solution algorithms, so many different solution 

algorithms may correspond to the same mathematical description (Fisher and Henzinger 

2007).

Agent-based physical simulations of tissues enable researchers to better understand how 

tissue organization and function arise out of the constituent objects and processes, which 

occur across a range of length and time scales. Building such models requires creating and 

assembling many object and process components [REF]. For decades, engineers have used 

Computer Aided Engineering (CAE) simulations to facilitate design, development and 

testing of complex products. CAE programs allow engineers to construct virtual 

representations (models) of proposed component objects, assemble them into composite 

device objects, and simulate their processes and resulting behaviors in virtual experiments to 
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evaluate their performance, reliability and failure modes. Virtual experiments allow 

engineers to test a much wider range of possible component and device object designs under 

a much wider range of conditions than would be practical if they realized each component 

object, device object and test condition.

Certain areas in the life sciences have successfully used CAE techniques, such as molecular 

dynamics and reaction kinetics models in computational drug design, finite element models 

in prosthetics design and virtual-surgery training. Life science practitioners in these fields 

use specialized CAE tools in much the same way engineers use packages like SolidWorks. 

First, they build a model out of mainly pre-existing component objects using a visual model 

development environment. They then compile and link the model with a simulation engine, 

define its parameters and initial and boundary conditions, and finally execute it. (Fisher and 

Henzinger 2007).

Common engineered objects such as hydraulics, electronics, suspensions, airframes, and 

control systems have simpler model definitions than tissues. The number of objects, their 

identity, and their connectivity –which objects participate in a specific application of a given 

process – typically remain fixed for the duration of the simulation. For example, in 

simulations of automotive suspensions or electronic circuits, the set of model objects 

remains fixed. Models do not dynamically add or remove wheels in a vehicle’s suspension 

nor do they add or remove circuit elements in an electronic circuit. While engineering 

simulations of vehicle suspensions, artificial heart valves, and bone replacements include 

processes which deform component objects, they tend not to involve structural 

reorganization of objects. Tissue processes, on the other hand, continuously create, destroy, 

move and re-arrange, reshape and change the identity of objects.

2 REQUIREMENTS

Researchers frequently need to write computer programs to model or simulate a real-world 

system. A programmer creates a mental model of the system and writes source code in a 

programming language to implement that model. Both humans and computers understand 

computer programming languages, enabling programmers to direct the computer to carry out 

a calculation or task. Modeling, on the other hand, is the formalization of hypotheses 

concerning a real-world system. A model embodies understanding of that system. A 

modeling language specifically helps formalize a modeler’s conceptualization and 

understanding of a real-world system. Model definition has significant value, because it 

provides a framework to capture and formalize domain knowledge. A model’s components 

and sub-models form a repository, which supports capture, storage, searching and extraction 

of domain knowledge.

Computer programming often requires modeling, but programmers rarely formalize the 

modeling component of program development and most programming languages do not 

support modeling intrinsically, because they lack tools to capture and represent meaning. On 

the other hand, many modeling languages do not produce executable programs, because they 

do not contain sufficient procedural detail to specify an unambiguous sequence of 

instructions.
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An executable modeling language both allows representation of the understanding of a 

system as a model and contains sufficient information to allow conversion of the model into 

executable instructions.

An executable modeling language must be able to: a) define model components (objects and 

processes), b) assemble components to form composite components and models, and c) 

compile models into executable models which a computer can simulate.

To enable general-purpose object-oriented programming languages to support executable 

modeling of the complex and varied objects and processes in living tissues, the Continuous 

Concurrent Object Process Methodology (CCOPM) adds support for the knowledge 

representation and capture aspects of modeling. In addition, while most programming 

languages can define data structures (corresponding to simple model objects) and functions 

that manipulate these data structures (corresponding to simple model processes), the 

CCOPM adds intrinsic support for the many object and process types not present as 

primitives in general-purpose languages.

2.1 Expressive Capacity

A domain-specific modeling language should express concepts in the problem domain in a 

form natural and intuitive to domain experts. Tissue physiology includes a number of 

complex concepts not common in engineering, which present challenges for programming 

language design.

A modeling language must determine how to categorize modeled components. 

Unfortunately, terms frequently have different meanings in different disciplines. Biology 

uses the term type fluidly. The term genotype refers to inheritable information, specifically 

an organism’s set of genes. Genotype can refer to the entire genome, or to specific variants 

of specific genes (alleles). A phenotype is a category for which a set of actual observed 

properties or characteristics, such as morphology, development, or behavior, define 

membership. Phenotypes definitions are non-exclusive and ambiguous, and objects often 

interpolate between or simultaneously participate in multiple phenotypes. We often ask the 

degree to which a cell corresponds to a particular phenotype, for example, cells frequently 

and gradually transition between mesenchymal and epithelial phenotypes. In our discussion, 

we abbreviate phenotype to type except when we need to distinguish genotype from 

phenotype.

The type of an object in a programming language must be unambiguous, since the type 

assigns meaning to a block of memory. A type formally defines the layout of a memory 

block and the types of data it stores. Typed programming languages associate a type 

definition with every named language construct (object, processes, functions, variables, 

expressions, etc.). A type system is a collection of rules that define the set of object types 

which can participate in a given process.

Most programming languages lack a concept corresponding to phenotype. A programming 

language cannot, in general, look at a memory block and determine the type of object it 

contains by analyzing its contents. A phenotype, on the other hand, is a list of conditions that 

Somogyi et al. Page 4

Proc Winter Simul Conf. Author manuscript; available in PMC 2017 December 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



determine how to categorize an object from the object’s properties. However both 
programming languages and biology have type systems. Indeed, biological modeling is the 

creation of a type system for a specific situation –collecting and defining a set of rules which 

specify which types of objects participate in which types of processes.

CCOPM extends the programming language concept of type with a rule-based definition of 

type. The type definition needs to be fuzzy so that we can ask how much an object instance 

participates in a type. Current programming languages support only Boolean type inquiries, 

in the CCOPM inquiring if an object is of a specified type returns a real value between 0 and 

1.

In tissues, dynamic sets of objects participate simultaneously in multiple processes. The 

CCOPM must therefore be able to execute efficiently many processes concurrently. The 

number of active processes may range from hundreds for the simple simulations, to many 

millions, more than the number of processors in most computers. The CCOPM compiler and 

run time must handle concurrency in continuous and discrete processes differently. 

Mathematical equations define continuous processes. The CCOPM compiler must convert 

these relations into numerically-solvable differential equations and invoke numerical solvers 

to evaluate the time evolution of their continuous state variables. Discrete processes 

resemble messages in actor-oriented programming languages 3, with the CCOPM runtime 

creating a thread pool, storing pending discrete processes invocations in a queue, and 

dispatching them to available threads.

In biology, complex conditions determine the activity of continuous processes and the 

triggering of discrete processes. The CCOPM must be able to: a) express these conditions, 

and b) continuously monitor these conditions and appropriately activate, terminate or trigger 

processes. When a discrete process triggers, the CCOPM runtime must create a closure for 

the process (the set of variables available to the triggered process at the moment it triggers), 

then place the process and its associated closure into a priority queue.

The CCOPM must express complex, heterogeneous spatial relationships and structures. 

Many types of objects and processes exist in an explicit or implied containing space. Some 

types of objects may have spatial extent or shape, be volume excluding or contain other 

objects spatially. Volume exclusion and containment may be complex. CCOPM objects and 

processes must be composable – objects may contain other objects and process may contain 

other processes. Objects with spatial extent and spatial objects contained in other spatial 

objects require geometric transform to map their local coordinate systems to the containing 

spatial object’s coordinates. All spatial objects reside within a top-level global coordinate 

system.

Biological tissues continually create, destroy and rearrange both objects and processes. The 

CCOPM must support creating and destroying both discrete objects such as cells and 

continuum objects such as chemical concentrations, fields and fluids. Objects frequently 

change type, e.g., through cell differentiation or chemical reactions. The CCOPM requires a 

type system for expressing and querying type information.
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Biological objects always exist in an environment. The phenotype of a biological object 

changes with its environment. Since biological objects move through numerous local 

environments, the CCOPM must automatically provide the local environmental state to any 

processes in which an object participates. Equivalently, we could say that the local 

environment participates in all processes. Many programs organize objects in containment 

hierarchies, since the processes in which an object participates often need to obtain 

information from the objects containing that object. Gil and Lorenz (Gil and Lorenz 1996) 

have denoted the automatic provision of this information, environmental acquisition.

2.2 Usability

The CCOPM should also be convenient to use, with a minimal learning curve, and present 

complex information in a comprehensive and readily understandable form. The CCOPM 

should also enable domain experts to create, view and edit models using familiar 

representations.

Diagrams are nearly always a first step in capturing knowledge. Textbooks and journal 

articles nearly always include diagrams and explanatory text. Diagrams both summarize 

mechanistic understanding of sets of observations and qualitatively and/or quantitaively 

present information. Unfortunately, while diagrams can be intuitive to humans, they lack 

semantic information intelligible to computers. For example diagrams extensively and 

ambiguously use the symbol →. Depending on context, → can mean influencing, moving 

towards, becoming, consuming or several of these meanings at once. Even humans require 

tacit, domain-specific knowledge to interpret (and misinterpret) diagrams. Diagrams in many 

domains are essentially free-form, with little standardization. While systems biology and 

object-process modeling have developed standard graphical notations such as the systems 

biology graphical notion (http://www.sbgn.org) and object-process methodology (Dori 

2002), these standards are far from universal. Where practical, the CCOPM should follow 

existing standards of graphical notation.

2.3 Model Composition

Complex objects in biology are almost always composites of smaller objects (whether 

organs, tissues, cells, organelles or molecules). Tissues modeling requires composition of 

sub-models into larger models, for example models of synapses may couple models of sub-

cellular chemical reaction to models of extracellular diffusion (Greget, Pernot, Bouteiller, 

Ghaderi, Allam, Keller, Ambert, Legendre, Sarmis, Haeberle, Faupel, Bischoff, Berger, and 

Baudry 2011). Multi-cell models may couple models of models of intra- and extracellular 

dynamics to cell motion (Swat, Thomas, Belmonte, Shirinifard, Hmeljak, and Glazier 2012). 

Whole-cell models may couple Boolean network models of regulation to flux balance and 

chemical reaction-kinetics models (Karr, Sanghvi, Macklin, Gutschow, Jacobs, Bolival Jr., 

Assad-Garcia, Glass, and Covert 2012).

Most developers of tissue simulations employ general-purpose programming languages to 

couple sub-models, which requires developer to learn numerous domain-specific languages 

and general purpose programming languages and APIs for integrating appropriate numerical 

solvers. The resulting conglomerate models cannot readily be shared or exchanged, because 
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general-purpose programming languages do not retain the original biological and 

mathematical knowledge used to create the model. Sharing general-purpose language 

composite models is like taking a program written in a high-level programming language, 

compiling it for a specific processor architecture, distributing the binary, and expecting the 

user to decompile the binary and reverse-engineer the original source code. Interchange 

standards, like SBML for chemical networks, support sharing of select types of biological 

model sub-components, but no current language supports sharing tissue models or retains 

the biological knowledge embodied in these models. The CCOPM must provide natural 

tools that allow the simple composition of components and also the extraction of 

components from composite models.

3 RELATED WORK

We explored the suitability of many programming language paradigms, including 

functional-, procedural-, object-, actor-, logic- and equation-oriented approaches for agent-

based tissue modeling. No single approach meets the requirements discussed in § 2; though, 

each offers concepts which we incorporated into our methodology.

Alan Kay, a pioneer of object-oriented (OO) programing invoked cell-to-cell signaling to 

motivate the OO paradigm, “I thought of objects being like biological cells and/or individual 

computers on a network, only able to communicate with messages.” (Kay 2003). OO 

languages define two categories: objects and messages, and objects communicate with one 

another via discrete messages. However, cell communication and biological processes like 

chemical reactions, diffusion and cell motion are continuous, and easier to describe using 

mathematical relations than messages.

Actor oriented (AO) languages such as Erlang and Scala (Karmani and Agha 2011) are 

similar to OO languages, except that each object (actor) runs concurrently and 

communicates with other actors via messages. Actors may send messages, create or destroy 

actors, and modify their own states in response to messages. Unlike most OO languages, AO 

languages automatically handle concurrency issues (threading, locking, etc.) saving 

developers a significant burden. The AO approach is closer to Alan Kay’s concept of cell 

communication, with all communication via messages, and each actor (cell) only able to 

modify its own internal state. As in nature, AO objects and messages act asynchronously. 

AO are a natural implementation of biological discrete processes, but, as with OO languages, 

AO language messages do not naturally describe continuous processes.

Robin Milner (Milner 1982) devised process calculus (“π-calculus”) languages to help 

formalize models of communicating phenomena. π-calculi can visually represent and 

simulate biochemical reactions of molecules (Phillips and Cardelli 2007). π-calculus 

languages define computations as sequences of causally dependent events. E.g. π-calculus 

models of chemical reaction networks create “processes” to define the existence of 

molecules. Multiple copies of these processes run in parallel to simulate multiple molecules. 

Communication between processes models chemical reactions between molecules. 3π-

calculus (Cardelli and Gardner 2010) also includes an intrinsic notion of a containing space. 

All processes in 3π-calculus exist in a three-dimensional spatial domain, with 3D transforms 
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defining their locations relative their parent processes. π-calculus naturally describes 

discrete biological processes, but not continuous or spatially extended objects and processes.

Engineers employ equation-oriented (EO) (Morton 2003) languages, such as Modelica, 

LabVIEW or SBML, to model electrical circuits, drive trains, hydraulics, chemical 

reactions, etc. . . . EO languages specify relationships and dynamics of variables with 

mathematical equations. EO language compilers automatically determine independent/

dependent variables relationships and solve equations simultaneously using suitable 

numerical algorithms. EO languages support interconnecting sub-models to create 

composite models. Many EO languages also support visual model definition and 

composition. EO languages are ideal for specifying models with a fixed number of objects 

and connectivity, but lack dynamic object creation, deletion, and dynamic rearrangement. 

Most EO languages lack an intrinsic notion of space.

The Object Process Methodology (OPM) (Dori 2002) is a process modeling language for 

conceptual modeling and analysis. OPM processes can create, delete or transform objects. 

OPM defines a visual layout standard, which we adopt. Like an ontology, OPM does not 

define computations, only object-process relationships and annotations.

4 THE CONTINUOUS CONDITIONAL OBJECT PROCESS METHODOLOGY

The Continuous Conditional Object Process Methodology (CCOPM) is a programming 

language paradigm that augments existing strongly typed object-oriented programming 

languages, such as Reticulated Python (Kent, Baker, Vitousek, and Siek 2014), or TypeScript 

(http://typescriptlang.org) by adding a set of constructs to describe, in a unified way, features 

of agent-based models. Our approach combines concepts pioneered in equation- and actor-

oriented languages with the object-process dualism of the Cell Behavior Ontology (CBO) 

(Sluka, Shirinifard, Swat, Cosmanescu, Heiland, and Glazier 2014) and Dori’s Object 

Process Methodology (OPM).

Objects are nouns, the things being described. Objects have quantitative and qualitative 

properties such as amount, concentration, mass and volume, which define the object’s state. 

Objects extend standard programming language data structures. Objects may inherit from, 

extend, or contain other objects. Spatial objects have a coordinate transform to map their 

local coordinate system to their containing spatial object’s coordinate system.

Processes are verbs, the actions of objects. Processes can change the state of, create, destroy 

or transform objects. Processes form two basic types: Existential processes create or destroy 

objects, and transformational processes change the states of objects. Each basic process type 

may be either continuous or discrete. Continuous processes operate continuously in 

simulation time. A continuous process has an associated rate expression, which defines the 

rate at which the process creates, destroys or transforms objects. Discrete process are 

instantaneously create, destroy or transform objects. External processes and internal 

conditions can both trigger discrete processes.

Conditions can define when a continuous process is active, or a discrete process triggers. 

Conditions are Boolean expressions which can query the properties of the process 
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participants. The CCOPM runtime evaluates conditions at every time step, and when 

conditions change value, activates, terminates or triggers the appropriate processes. When a 

discrete process triggers, the CCOPM runtime creates a closure and inserts the process and 

closure into a priority queue so the next available thread will read and invoke it.

Rate processes are a subtype of transformation process which generalizes the concept of 

chemical reactions to any object type. They define a rate function which determines the rate 

of change of one or more properties of the process’ participants. E.g., force rate processes 

can move or deform spatial objects by altering their spatial properties. An object instance 

can participate in an unlimited number of rate processes simultaneously.

In the interests of numerical efficiency, the CCOPM runtime time evolves objects and 

processes by time slicing.

4.1 Visual Representation and Editing of Models

To support graphical display and editing of models, we creating an HTML5 widget to 

display CCOPM. This widget extends the algorithms Dr. Somogyi previously used to 

graphically render and edit MathML (Padovani 2003, Somogyi 2005). The widget parses the 

model source code into an abstract syntax tree (AST), which it treats as a live document. The 

widget allows editing and manipulation of the AST. The widget then translates the AST into 

an HTML DOM a web browser displays. The HTML contains SVG elements which 

correspond to model objects and process. The widget uses a standard Model-View-

Controller (MVC) approach, where the AST is the ‘model’, the SVG canvas is the ‘view’, 

and the controller responds to any user events that the SVG elements signal.

Figures (1, 2) show sample visual model representations. Graphical elements use standard 

Systems Biology Graphical Notation (SBGN) glyphs, where possible. Since CellDesigner 

(Funahashi, Morohashi, Kitano, and Tanimura 2003), a diagram editor for drawing gene 

regulatory and biochemical networks uses SBGN, users who are accustomed to creating 

biochemical networks can apply their experience to building tissue models. We use OPM 

graphical conventions for hierarchical containment and other concepts not present in SBGN.

5 RESULTS AND MOTIVATING EXAMPLES

We have implemented a prototype CCOPM as a new programming language derived from 

Microsoft TypeScript named Cayman. TypeScript is a strongly typed language that: 1) is 

open source, 2) has a simple and readily extensible grammar, 3) has a parser and source-to-

source translator written in TypeScript, which compiles TypeScript into other languages 

such as JavaScript. We have implemented a prototype source-to-source translator which 

compiles Cayman into a combination of conventional Python, SBML and XML executable 

in the CompuCell3D modeling environment. Future versions of Cayman will compile 

directly into machine executable code. CCOPM augments Cayman with a few new reserved 

keywords.

The text-based examples below demonstrate a few semantic aspects of CCOPM. Every 

element of CCOPM also has a visual representation which we do not discuss here.
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Conditional Processes have operational semantics and become active whenever process 

conditions are met. The CCOPM runtime continuously monitors changes in these conditions 

and activates, terminates or triggers processes accordingly. In our prototype CCOPM, the 

triggering clause compiles to an SBML expression, solver’s SBML engine monitors the 

status of this expression, and, when that status becomes true, calls and executes the body of 

the process, which CCOPM compiles into standard Python. The syntax for a sample 

conditional process is:

proc my_apoptosis(x:SomeType) when (x.health < 10) {x.die();}

Chemical Reactions are one of the fundamental phenomena in biology. A chemical reaction 

is a process which consumes a set of reactants and produces a set of products at a specified 

rate. Here, the reaction  can be specified as two processes:

proc p1(2 E, S) <-> (ES) {k1 * E**2 * S - k2 * ES;}

proc p2(ES) -> (E, P) {k3 * ES;}

Whenever two chemical objects of the proper type exist at the same location (or within the 

same containing object if they are non-spatial objects), they automatically participate in any 

appropriate reactions. If the chemical objects exit within a cell object, the compiler converts 

these process definitions into an appropriate SBML model, which it then attaches to the cell 

object.

Membrane Transport is critical for cell function. In the example, an amount of a spatial 

chemical object outside a cell diffuses across the cell object spatial boundary to become an 

amount of a nonspatial, internal chemical object.

proc my_trans(src:MyCellType.surface.glucose) -> (dst:MyCellType.glucose) {

       return 0.01 * (sum(src)/area(src) - dst/volume(dst));

}

The CCOPM compiler generates code which instructs the runtime to consume an amount of 

glucose at every location at which the spatially-extended cell object contacts the glucose 

spatial chemical field object, and add the consumed glucose to the glucose scalar chemical 

object which the cell object contains.

Cell Adhesion, Growth and Division are fundamental process to multicellular 

organization. Cells may adhere to other cells or to extracellular materials. Our example 

includes spatially extended spatial cell objects of two types, GreenCellType and 

BlueCellType, a chemical field spatial object of type Nutrient. Each cell object also contains 

a non-spatial scalar chemical object of type Protein. Both cell types inherit from the built-in 

Cell type, hence they inherit all of the properties and processes associated with the Cell type. 
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The Cell type in turn is a sub-type of the SpatialObject type. The SpatialObject type defines 

a number of functions, such as the distance between two object instances. The Nutrient 

object type inherits from the built-in ChemicalField type. ChemicalFields are a continuous 

object type that spans a SpatialRegion.

The model includes three processes: a transformative, continuous cell-adhesion process, a 

transformative, continuous transport process and an existential, discrete mitosis process. 

Figure (2) presents a graphical representation of these processes.

Two instances of a cell object can participate in an application of a cell-adhesion process, 

which is conditional on the types of the participating cells. The adhesion process is only 

active when the participating cell objects are within a certain distance of each other. As the 

cell objects are subtypes of the SpatialObject type, we use the ‘distance’ function to 

calculate the distance between their instances:

@adhesion(distance(a, b) < 1)

function green_adhesion(a:GreenCellType.surface, b:GreenCellType.surface) {

       return 1.5;

}

Cell objects, the nutrient chemical field object and the scalar intracellular protein object 

participate in an application of a transport process, which transfers an amount of 

extracellular nutrient in the nutrient object into an amount of intracellular protein in the 

protein object:

proc green_consumption(src:GreenCellType.surface.nutrient) ->

       (dst:GreenCellType.protein) {

       return 0.01 * (sum(src)/area(src) - dst/volume(dst))

}

The amount of protein in an intracellular protein object in an instance of a cell object 

reaching a threshold triggers a mitosis process, which destroys the participating cell instance 

and creates two new cell instances of the same type as the destroyed cell object instance:

trans mitosis(parent:GreenCellType) -> (d1:GreenCellType, d2:GreenCellType)

       when (parent.nutrient > 5) {

       d1 = parent;

       d2 = GreenCellType(parent);

       d1.protein = 0.5 * parent.protein;

       d2.protein = 0.5 * parent.protein;

       return (d1, d2);

}

Somogyi et al. Page 11

Proc Winter Simul Conf. Author manuscript; available in PMC 2017 December 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6 CONCLUSIONS

No current programming language can both model and simulate the complex multi-scale 

structure and interactions of biological tissues in a unified way. The CCOPM extends 

general purpose programming languages to support such modeling and simulation.
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Figure 1. 
Objects and Processes: following the SBGN standard, objects are circles and processes are 

squares. a) Types of process relationship: a.1) a process creates an object, a.2) a process 

destroys an object, a.3) a process destroys an object of type A and creates an object of type 

A′, a.4) application of a continuous transformation process with a participating object, the 

process modifies a property of the object, a.5) information flow from a participating object 

to a process, an object of type C modifies a process which destroys an object and creates an 

object. b) Multiple applications of processes 1 and 2 with three participating instances of 

objects of type A. Process 2 uses information from participating object B1 to influence how 

it changes the participating A object instances. Process 3 is a conditional process, only active 

when A.x > 5. c) A conditional adhesion process with two participating objects initially in 

close proximity. The adhesion process is only active when the distance between its two 

participating objects is less than 1. At a later time, the objects have moved apart, and the 

adhesion process is no longer active.
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Figure 2. 
Processes related to cell adhesion, growth and division. a) Cell objects participate in 

adhesion processes, A1, A2, A3, conditional on the cell object type. The nutrient chemical 

field spatial object and a protein non-spatial object contained in a cell object participate in a 

transfer process G_1 and G_2, conditional on the cell object type. The transformation 

process reduces the amounts of Nutrient in the chemical field object and increases the 

amount of Protein in the protein object (red object contained within the cell objects). b) Cell 

objects participate in mitosis processes M1, M2, conditional on cell type. The mitosis 

process destroys a cell object of a given type and creates two cell objects of the same type.
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