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ABSTRACT

The objective of this study was to monitor the reclamation development and assess the LULC changes 
in a reclaimed area in Upper Egypt. GIS and remote sensing-based multi-temporal Landsat imageries 
(i.e., Landsat-5 and Landsat-8; 30m) were utilized for mapping and analyzing the spatiotemporal 
dynamics between 2005 to 2020. Both supervised-based maximum likelihood classifier (MLC) and 
normalized difference vegetation index (NDVI)-based thresholds were implemented. The results of 
both methods were cross-compared and showed that the agriculture activities started in 2004 with 
small and sparse agriculture patches. The bare land occupied more than 65.1% of the total area 
between 2005-2008. Overall, using the MLC and NDVI-based classification, the authors observed an 
increase of approximately 455.6% (17,027.7 ha) and 477.2% (16,973.5 ha) over 15 years (2005-2020), 
respectively. The results could be very useful for assessing the success of the Egyptian strategies to 
sustain the agricultural land areas and food production through horizontal expansion and investment 
in the desert areas.
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INTRODUCTION

Throughout the world’s progressive history and exponential population growth, agriculture has been 
associated with the cultivation of land to satisfy humans’ ample needs for food, fabrics, energy, and 
a source of income. It plays a fundamental role to sustain livelihood and economic system of any 
country. For instance, it composes approximately 27.2% of employment rate and contributed to ~ 
68% of the global added value reaching USD $3.4 trillion in 2018 (World Bank, 2020; FAO, 2020). 
Furthermore, in 2018 agriculture contributed to 4% of global gross domestic product (GDP) as well 
as ~25% for developing countries (World Bank, 2021).

Globally, in 2018, ~ 4.8 billion hectares (ha) was accounted as arable land and ~1.6 billion ha 
was used for cropland, with irrigated area of 340 million ha (FAO, 2020). Croplands render major 
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shares of the global food supply with approximately 99.7% of all human food calories as well as 80% 
of all food proteins and fats for human sustainability (Pimentel & Burgess, 2013). However, there is 
still a global concern on agricultural land and food security due to population growth, the declination 
in the cropland area per capita, and agricultural land degradation (Alfiky et al., 2012; FAO, 2020).

In these circumstances, about 10 billion ha is needed to sustain global food demands by 
2050 (Tilman et al., 2011; Gomiero, 2016). Due to the above situation, there is a pressing 
need to augment the agriculture production by reclaiming the arable lands and developing new 
technologies for food production. In this context, several studies (Table 1) analyzed the agricultural 
land areas and its expansion particularly in developing countries using geospatial technologies 
based on different approaches.

Egypt has a total land area of about one million square kilometers, with a total population of 
~95 million people in 2017 and an annual population growth rate of 2.56% during the period 2006 - 
2017(Central Agency for Public Mobilization and Statistics [CAPMAS], 2017, 2018). About ~95% 
of the total population lives on a small territory of the country (~ 4%) around the Nile Valley and its 
Delta (CAPMAS, 2019). The United Nations has estimated an increase in the population to be 123 
million people by 2030 and further to 174 million people by 2050 (United Nations, 2017). Arable and 
fertile lands are limited to less than 4% of the total area of the country and almost all of it is irrigated 
(~ 98%) (FAO, 2016). In 2017, the total cultivated area was approximately 3.8 million ha including 
the recently reclaimed areas account for 3.82% of Egypt’s area. In 2018, agricultural sector accounted 
for 11.5% of the GDP and absorbs about 21.6% of the labor force. Also, agricultural exports represent 
over 20% of the total commodity exports (CAPMAS, 2019).

Table 1. Examples of different methods appearing in the literature used for monitoring and mapping agricultural land areas and 
its expansion in some developing countries

Ref Approaches

Basnet & 
Vodacek, 2015

Utilized Landsat TM/ETM+ over Lake Kivu region in central Africa using RF algorithm to monitor 
land cover change and found agricultural land had expanded from 28,730 km2 in 1988 to 34,630 
km2 in 2011, with overall accuracies between 90.91- 94.52%.

Butt et al., 2015
Used TM and SPOT-5 HRG to detect LULC changes over Simly watershed, Pakistan. They applied 
MLC-based classification and found that the agricultural lands were increased from 1775 ha in 
1992 to 4681 ha in 2012.

Singh et al., 2016
Employed Landsat TM and ETM+ to assess the change in LULC in lower Assam, India. MLC and 
NDVI-based classification have been applied. The results showed that the area of the agricultural 
field has increased from 3065.2 km2 in 1990 to 3290.4 km2 in 2014.

Knauer et al., 
2017

Used Landsat (TM, ETM+, OLI) and MODIS data over Burkina Faso, West Africa. They 
developed an automated framework for delineating the agricultural areas using RF-based 
classification and found an expansion of agricultural area of 61,100 km2 in 2001 to 116,900 km2 in 
2014, with overall accuracies between 91- 92%.

She et al., 2017
Used TM and OLI for monitoring LULC change over Dongtai County, China. They applied MLC-
based classification. The results demonstrated that the agricultural fields increased from 95.7 km2 in 
1985 to 198.5 km2 in 2010.

Youssef et al., 
2019

Employed TM, ETM+ and OLI to assess the agriculture activities over Al-Jouf region, Saudi 
Arabia. They applied NDVI and MLC-based classification. The results showed that the agriculture 
land expanded from ~37.9 km2 in 1988 to 2734.6 km2 in 2017.

Alawamy et al., 
2020

Used TM, ETM+ and OLI to detect LULC changes over Al-Jabal Al-Akhdar, Libya by applying 
MLC-based classification. They found that the Orchards and rain-fed agriculture lands gained 4095 
ha, and the land under irrigated crops increased by 2266 ha with overall accuracy in between 81- 
83%.

Note: TM—Thematic Mapper; ETM+— Enhanced Thematic Mapper Plus; OLI—Operational Land Imager; SPOT-5 HRG— Satellite Pour l’Observation 
de la Terre 5 High Resolution Geometric; MODIS—Moderate Resolution Imaging Spectroradiometer; NDVI—Normalized Difference Vegetation Index. RF—
Random Forest; LULC—Land use/Land cover; MLC—Maximum Likelihood Classifier.



International Journal of Applied Geospatial Research
Volume 14 • Issue 1

3

The progressive increase of the population caused decreasing in the agriculture areas per capita 
to be 0.01 ha in 2013 compared to 0.12 ha in 1950, 0.06 ha in 1990, and 0.04 ha in 2009 (CAPMAS, 
2009). This sharp decline decreased crop production per capita which directly affected the food 
demand at the local and country levels. The accelerated rate of the population growth prompts a high 
demand for food, housing, and infrastructure. Egypt is one of the largest food importers (i.e., 37% 
of Egypt’s imports) (FAO, 2016).

Recently, the encroachment on agricultural land has become a challenging issue in Egypt and 
about 138,000 ha of its arable land has been lost between 1983 and 2018 due to urbanization (Ministry 
of Agriculture and Land Reclamation, 2018). For such challenges, Egypt has adopted a set of policies 
and strategies to sustain the agricultural land areas and food production through horizontal expansion 
and investment in land reclamation in the desert areas surrounding the green zone of the Nile Valley 
and its Delta. These lands have all the potential for being agriculture lands, which could effectively 
mitigate the conflict between land resources shortage and population needs (Abou-Hadid et al., 2010). 
For example, during the period 1932-1952, the reclaimed area was ~ 48,000 ha. Between 1952 and 
1970, large area of ~ 383, 115 ha was reclaimed (World Bank, 1990; Ghabour et al., 2018). Since the 
1990s, Egypt has established many agricultural development projects in different locations such as 
the Toshka project, East Owainat project, and Sinai development. In 2015, a land reclamation project 
of 630.000 ha in the desert was inaugurated by the Egyptian government in preparation for expected 
future population growth (Egypt Today, 2018; Iwasaki et al., 2021). Overall, governmental efforts 
successfully transformed ~1.2 million ha from desert areas to agricultural land (Bratly & Ghoneim, 
2018; Radwan, 2019; CAPMAS, 2019).

Accurate and up-to-date geospatial information on LULC dynamics is critical for the sustainable 
development of natural resources (Basnet & Vodacek, 2015). In this context, the conventional 
methods such as ground surveying can provide accurate information about LULC, however, they 
are less effective at larger scales due to several reasons including time consumption, date lags, high 
costs, tedious, probability of human error, and inability to estimate and map the spatial distribution 
of cropland change over space and time (Hereher, 2012; El-Hattab, 2016). To overcome these issues, 
remote sensing and GIS would be the best alternative to study, evaluate, and analyze the spatial and 
temporal dynamics of land cover changes, especially over large areas (Dewan & Yamaguchi, 2009; 
Alam et al., 2020).

Among the various remote sensing systems, Landsat TM, ETM+, and OLI provide historical 
and continual global coverage at moderate to high spatial resolutions since 1972. This is adequate 
for mapping and monitoring land cover changes over time and vast space (Roy et al., 2014). Wadi 
El-Noqra (study area) did not receive proper investigation for its reclamation activities though other 
studies have been conducted in other geographical locations in Egypt such as Abd El-Kawy et al. 
(2011) employed TM and ETM+ using supervised classification-based MLC to assess LULC in a 
new reclaimed area in the western Nile Delta. They found that the agricultural land expanded from 
11,988 ha in 1984 to 69,623 ha in 2009. In another study (Mohamed et al., 2017) OLI was utilized 
to monitor LULC changes in a new reclaimed area in the northwest of El-Mania Governorate. They 
applied MLC and NDVI analysis and found the agricultural land expanded from 3298 ha in 2014 to 
4037 ha in 2017. Radwan (2019) applied MLC classification of TM, ETM+, and OLI data to monitor 
LULC changes over Tiba district, western Nile Delta. They found that the agricultural land had 
expanded from zero (0) ha in 1988 to 10,510 ha in 2018. The objective of this study was to analyze 
the annual spatiotemporal dynamics in a newly reclaimed area (i.e., Wadi El-Noqra) in southeastern 
desert, Upper Egypt, using continuous Landsat time-series images from 2005 to 2020.

Study Area
Wadi El-Noqra is located between latitudes 24° 21′ and 24° 33′ N and longitudes 33° 07′ and 33° 
36′ E in the southeastern desert of Egypt within Aswan governorate (Figure 1). It covers 27874.35 
ha (~278 km2). It engulfs five villages, namely, El Manar, El Hakmah, El Amaal, El Barayem and Al 



International Journal of Applied Geospatial Research
Volume 14 • Issue 1

4

Karama. Climatically, the area is characterized by a desert climate with hot/dry summer and warm 
winter with rare precipitation. The mean monthly temperature varies from 17.2°C in January to 34.8°C 
in July. The mean monthly relative humidity ranges from 19% in June to 47% in December (Egyptian 
Meteorological Authority, 2020). Topographically, it has a gentle slope from east to west at about 
~155 m a.s.l. It depends on irrigation water through the Wadi El-Noqra main canal which has a length 
of 64 km and feeds 13 sub-canals supplied from the Nile River. Some of the reclaimed areas still use 
the surface irrigation and some others are irrigated with drip or pivot sprinkler irrigation systems. 
The reclamation process in the study area includes developing the irrigation and drainage systems, 
road networks, and urban facilities. The study area is cultivated with several crops in winter such as 
wheat, barley, beans, onion, and tomato. In summer cultivated crops include sesame, peanuts, corn, 
mint fennel seeds, parsley, and hibiscus.

MATERIALS AND METHODS

The study adopted an integrated methodology for analyzing the spatiotemporal dynamics of agricultural 
land in a newly reclaimed area from 2005 to 2020. The methodology integrated the remote sensing 
and GIS analysis with field observations as shown in Figure 2.

Satellite Data and Its Preprocessing
Fifteen Landsat images (i.e., seven Landsat-5 TM images for 2005 to 2011 and eight Landsat-8 OLI 
images for 2013 to 2020). The images were acquired during the same growing season to ensure the 
similarity of environmental, atmospheric, and plantation cycle. The images (Table 2) were 100% 

Figure 1. Geographical location of Wadi El-Noqra (the study area) in the Southeastern Desert, Upper Egypt
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Figure 2. General methodological framework for analyzing the spatiotemporal dynamics of agriculture in a newly reclaimed area 
in Wadi El-Noqra, Southeastern Desert, Upper Egypt from 2005 to 2020

Table 2. Characteristics of the Landsat images used for analyzing the spatiotemporal dynamics of a new reclaimed area in 
southeastern desert, Upper Egypt (i.e., Wadi El-Noqra) during the period 2005 – 2020

Feature Landsat TM Landsat OLI

Spectral region and 
spatial resolution VNIR 1, 2, 3, 4 (30 m) SWIR 5, 7 (30 m) VNIR 1, 2, 3, 4, 5 (30 m) SWIR 6, 7 (30 m)

Band wavelengths (µm)

Blue: 0.45–0.52 µm 
Green: 0.52–0.60 µm 
Red: 0.63–0.69 µm 
NIR: 0.76–0.90 µm 
SWIR1: 1.55–1.75 µm 
SWIR2: 2.08–2.35 µm

Blue: 0.45–0.51 µm 
Green: 0.53–0.59 µm 
Red: 0.64–0.67 µm 
NIR: 0.85–0.88 µm 
SWIR1: 1.57–1.65 µm 
SWIR2: 2.11–2.29 µm

Acquisition dates 
Path: 174 
Row: 43

19 November 2005 
8 December 2006 
22 September 2007 
13 December 2008 
16 December 2009 
19 December 2010 
3 October 2011

11 December 2013 
14 December 2014 
17 December 2015 
19 December 2016 
4 November 2017 
9 December 2018 
28 December 2019 
14 December 2020
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cloud free and were freely obtained from Google Earth Engine portal. Then subset operation has 
been performed using the administrative boundary of the study area. Other ancillary data were used 
to support the analysis such as topographic sheets (scale; 1:50,000) and field surveys for collecting 
the training and references samples for classification and accuracy assessment.

A spectral band composite was made for seven Landsat TM bands for each year (i.e., bands 1 
through 5 and 7) and eight Landsat-8 bands (bands 1 through 7). Then, several band combinations 
were visually tested to select the best combination to differentiate between the LULC types. In the 
current study, false color combinations of SWIR, NIR, and Blue spectral bands (Figure 3) were used 
for visual interpretation and the selection of training sample patches to perform the MLC-classification. 
For the current study, LULC features were categorized into two main classes i.e., agricultural and bare 
lands. Agriculture lands mainly represents the cultivated field crops, vegetables, and fruit trees. Bare 
lands include those land surface features devoid of any type of vegetation cover including the desert 
areas, irrigation canals, road, and the five villages which have been constructed in the beginning of 
the reclamation process.

LULC Classification
Supervised Classification-Based MLC
The spatial and quantitative information in the current study was retrieved using the supervised 
classification-based MLC method. It was selected because of its robustness and does not require an 
extended training process. It relies on pixel spectral information for accurate and precise assessment 
of the LULC classification (Lillesand & Kiefer, 1994; Koko et al., 2021; Youssef et al., 2019). The 
basis of the MLC is the Likelihood of each group of pixels with similar spectral signatures to be 
grouped into one LULC class (Jensen, 2015). It uses a parametric statistical approach to prepare the 
probability density distribution functions (PDF) for each individual class (ERDAS, 1999). In this 
study, MLC was executed following a specific protocol of four steps: (i) the training samples for each 
of the LULC classes were selected from the color combination image by on-screen digitization of 
polygons of representative sites; (ii) the pixels with similar spectral signatures enclosed within these 
polygons were grouped together into one land cover class and saved; (iii) once the spectral signature 

Figure 3. Landsat images RGB combination bands using the SWIR, NIR, and Blue spectral bands for the TM scenes for 2005 and 
2010; and for the OLI scenes in 2015 and 2020 for Wadi El-Noqra (Path/174 and Row/43)
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was deemed satisfactory, these spectral signature were input into the MLC without prior probability; 
and (iv) thematic raster layer were generated representing LULC in the study area for years 2005 to 
2020. It is worthwhile to mention that a spectral signature is satisfactory when confusion in clustering 
of pixels among the land covers to be mapped is minimal (Geo & Liu, 2010; Butt et al., 2015).

NDVI-Based Classification
In this study, NDVI (equation 1, Rouse et al., 1974) was calculated for the 15 images from 2005 to 
2020 using NIR and Red spectral bands 3 (Red, 0.63–0.69 µm) and band 4 (NIR, 0.76–0.90 µm) for 
Landsat TM and band 4 (Red, 0.64–0.67 µm) and band 5 (NIR, 0.85–0.88 µm) for Landsat-8 OLI. 
It was selected as it was successfully use for monitoring vegetation activities through utilizing the 
NIR and red spectral bands which are sensitive to the vegetation structure and chlorophyll activity 
(Wen et al., 2017; Mohamed et al., 2017). It has been shown to be highly correlated with plant health, 
vegetation density and cover (Ormsby et al., 1987). Also, it was used for analysis of change detection 
in many studies (Huang & Siegert, 2006; Xu & Guo, 2014; Singh et al., 2016; Youssef el.al., 2019) 
When NDVI is used to perform LULC classification is critical to define the appropriate threshold 
values to derive land cover classes. In doing so, each NDVI image was visually inspected to come up 
with specific threshold values that accurately distinguishes between land cover classes in the study 
area. Many points, particularly at the boundaries of agricultural lands, bare soil and built-up areas 
were investigated for that purpose (Figure 3):

NDVI
NIR R

NIR R
=

+
ρ ρ
ρ ρ

– 	 (1)

where, ρ  NIR is the near infrared (NIR) band and ρ  R is red (R) band. NDVI is a dimensionless 
indicator with a range between –1 to +1, where a high NDVI value represent the density/and healthy 
vegetation, and a lower NDVI value means sparse vegetation or no vegetation.

Due to the variation in the spectral and the radiometric resolutions between Landsat-5 and 
Landsat-8 OLI, we opted to use different NDVI threshold values for each sensor to classify the 
NDVI images. For instance, as Landsat-8 OLI has a narrower red and NIR spectral bands and higher 
radiometric resolution (Table 2), it produces higher NDVI values. Several studies showed that the 
differences between NDVI values of different satellites sensors are directly related to the differences 
in their spectral bandwidths and their radiometric resolution (Abuzar et al., 2014; Xu & Guo, 2014; 
Mancion et al., 2020).

Here, three NDVI threshold values were applied on Landsat-5 TM and Landsat-8 OLI images 
to classify the images from 2005 to 2020. The values of NDVI thresholds are shown in Table 3. The 
adequate NDVI threshold values were identified based on (i) a detailed investigation of the NDVI 
images corresponding to the LULC categories (ii) interpretation of the Google Earth images; (iii) 
checking ground truth data (points) using sites of known change and stability; (iv) verify the values 
for cultivated and bare land areas; and (v) knowledge of the study area characteristics. Finally, the 

Table 3. Distribution of LULC classified by thresholds-based NDVI values using Landsat TM-5 and Landsat-8 (OLI)

Class Cover Thresholds (NDVI Values-Based TM-5 Thresholds (NDVI Values-Based 
Landsat-8 OLI

Water [NDVI < 0] [NDVI < 0]

Bare land [NDVI >0 and <=950] [NDVI >0 and <=1200]

Agricultural land [NDVI >950] [NDVI >1200]
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results were used to calculate the area of each class for each image and then compared to MLC-
based classification result. Note that the NDVI-based classification approach complements the MLC 
approach as it relayed on a mathematical combination of the original spectral bands (i.e., NIR and 
red) which would provide more information about LULC types (Jensen, 2015).

Accuracy Assessment of MLC- and NDVI-Based Classifications
In this study, classification accuracy was empirically identified using randomly selected reference 
sample points which were compared against the classified images. The percentage of the correctly/ 
erroneously labeled pixels from each class in the image was estimated. This comparison produced error 
matrices which represent the base of accuracy assessment process and provides detailed information of 
the agreement between the classification results and reference information (Congalton & Green, 2009). 
For each image, overall accuracy, producer’s accuracy, user’s accuracy, and kappa coefficient were 
calculated. The overall accuracy and kappa coefficient were determined using equations (2) and (3):

Overall accuracy
x

x
i

r

ii
 = =∑ 1 	 (2)

where, xii is the diagonal elements in the error matrix, x is the total number of samples in error matrix:

K
N x x x

N x x

i

r

ii i

r

i i

i

r

i i

=
−

−

( )
( )

= = + +

= + +

∑ ∑
∑

1 1

2

1

*

*
	 (3)

where, k is Kappa coefficient; r is the number of rows in the error matrix; xii is the number of 
observations in row i and column i; xi+ and x+i are the marginal totals of row i and column i respectively; 
and N is the total number of observations (pixels) (Jensen, 2005). Kappa value of 1 indicates perfect 
agreement and values less than 1 imply less than perfect agreement. Values lower than 0.4 represent 
poor agreement, values from 0.4 to 0.55 represent fair agreement, values from 0.55 to 0.7 represent 
good agreement, values from 0.7 to 0.85 represent very good agreement, and values higher than 
0.85 represent excellent agreement (Monserud & Leemans, 1992) . The accuracy assessment was 
performed using 203 reference points calculated based on binomial probability theory using equation 
(4) and spatially distributed using a stratified random scheme to represent the land cover classes of 
the study area:

N
z p q

E
=

2

2

* * 	 (4)

where, N is the sample size, p is the expected percent accuracy of the entire map, q=100-p, E is the 
allowable error, and Z = 2.

RESULTS AND DISCUSSION

MLC and NDVI-Based Classifications
Analysis of Landsat images for each date indicated that the most observed land cover in the current 
study area are agriculture land and bare land. Figures 4 and 5 show the spatiotemporal dynamics in 
land cover using supervised classification-based MLC and NDVI-based classifications respectively. 
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Table 4 summarizes the individual class area and change percentages for selected years between 
2005-2020 for Wadi El-Noqra area.

Bare land was the dominant land cover type practically in 2005, 2006, 2007, and 2008, though, 
high reclamation activities were made. For the MLC method, the area of the bare land in these years 
were 86.6% (24136.65 ha), 80.9% (22556.791 ha), 76.4% (21297.33 ha), and 65.1% (18147.06 ha), 
respectively. After 2008, the development in agricultural activities continued gradually to reach 
approximately 66.2% (18464.6 ha) of the total area in 2015. Similar trends of agricultural land 

Figure 4. Time series thematic maps of the spatiotemporal dynamics of land reclamation for selected years between 2005 and 
2020 in Wadi El-Noqra, Upper Egypt using the MLC-based classification

Figure 5. Time series thematic maps of the spatiotemporal dynamics of land reclamation for selected years between 2005 and 
2020 in Wadi El-Noqra, Upper Egypt using the NDVI-based classification
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development were observed until 2020 where the agricultural land had increased to cover 74.5% 
(20765.4 ha) of the total area. The net percentage of changes during the whole period of study 
(i.e., 2005-2020) indicated that the total increase in the geographic extent of agricultural lands was 
approximately 455.6% (17027.7 ha) in the study area. The analysis of NDVI-based classification 
showed similar results, however, the MLC-based classification revealed higher values in the areas 
of agriculture class in all 15 images.

Classification Accuracy Assessment
Tables 5 and 6 summarize the accuracy measures of the MLC and NDVI-based classifications, 
respectively. The overall accuracies of MLC ranged between 95% to 97%, while the overall accuracies 
of the NDVI-based classification ranged between 94% to 97%. Thus, MLC provided slightly improved 
overall accuracies in comparison to NDVI-based classification.

The overall accuracy was greater than 85% which is satisfactory classification accuracy level of 
remotely sensed data for LULC mapping using Landsat imageries (Manandhar et al., 2009). Kappa 
Coefficient values were found between 0.88 to 0.92 for MLC and in the range of 0.86 to 0.89 for 
the classified images produced from NDVI-based classification. The Kappa Coefficient values were 
found satisfactory and falls within the range of very good to excellent agreement between images. 
The producer’s and user’s accuracies of both MLC and NDVI-based classifications showed high 
percentages (in the range of 86% to 98%) in the agriculture land and bare land classes. These highly 
accurate values might be due to several reasons including the spectral separability between the newly 
reclaimed lands and bare land, thus, there were minimal effects of mixed pixels between the classes. 
However, some errors were found in the classification results of both methods. This might be referred 
to several reasons including the quality of pre-processing, calibration, the type of Landsat images, 
and radiometric correction of the images (Phiri & Morgenroth, 2017).

Analysis of the Stages of Land Reclamation in the Study Area
The analysis of the spatiotemporal dynamics in agricultural land using both classification methods 
revealed three stages of agricultural developments (Figure 6) such as (i) fast and high growth rate 
(i.e., > 20%) between the years 2006, 2007, and 2008. This stage was characterized by fast growth 
rate of the agriculture activities in the study area where people and investors were assigned their land 
properties for agriculture investment and received the required supplies and incentives for agriculture 
activities; (ii) medium growth rate during the years 2009 to 2013. This stage showed less growth rates 
(i.e., 5-20%) compared to the first stage, however, the reclamation process tends to continue toward 
developing new agricultural lands according to reclamation plan; and (iii) slow and stable growth 
rate during the years 2014 to 2020, this stage demonstrated stable growth rate at approximately 3%. 
In this stage, there were some problems facing the agricultural development and productivity aspects 
in the study area. To determine these problems in achieving positive economic and social returns in 

Table 4. The area coverage in hectares and percentage for agriculture and bare land for selected years between 2005 to 2020 
using MLC- and NDVI-based classifications for the study area

Year

Land Cover Classes-Based MLC and NDVI Methods

TotalAgriculture/ha % Bare land/ha %

MLC NDVI MLC NDVI MLC NDVI MLC NDVI

2005 3737.7 3556.81 13.4 12.8 24136.65 24317.54 86.6 87.2 27874.35

2010 12249.1 12233.8 43.9 43.9 15625.25 15640.55 56.1 56.1 27874.35

2015 18464.6 18014.8 66.2 64.6 9409.75 9859.55 33.8 35.4 27874.35

2020 20765.4 20530.3 74.5 73.7 7108.95 7344.05 25.5 26.3 27874.35
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that newly reclaimed area, several field visits were paid to the study area to enumerate these problems. 
An in-depth personal interview and questionnaires were specially conducted on a sample of farmers 
and beneficiaries in Wadi El-Noqra area during the season 2019-2020. Based on the perspective 
of the respondents, the main-problems are: (i) lack of surface water and insufficient water-raising 
pumps; (ii) high prices of fertilizers, pesticides, and seeds; (iii) high fuel and transportation costs; 
(iv) soil salinization; and (v) some lands left unused (idle). These reasons limited the achievement 

Table 5. Error matrices for supervised-based MLC classified images in the study area for selected years between 2005-2020

LULC 
Classes

Reference Data Producer’s 
Accuracy 

(%)

User’s 
Accuracy 

(%)

Overall 
Accuracy

Kappa 
ValueAgriculture Bare 

Land

2005 
Classified data

Agriculture 26 3 0.90 0.90

Bare Land 3 171 0.98 0.98

97 0.88

2010 
Classified data

Agriculture 61 5 0.94 0.92

Bare Land 4 133 0.96 0.97

96 0.90

2015 
Classified data

Agriculture 90 5 0.97 0.95

Bare Land 3 105 0.95 0.97

96 0.92

2020 
Classified data

Agriculture 101 6 0.96 0.94

Bare Land 4 92 0.94 0.96

95 0.90

Table 6. Error matrices for NDVI-based classified images in the study area for selected years between 2005-2020

LULC 
Classes

Reference Data Producer’s 
Accuracy 

(%)

User’s 
Accuracy 

(%)

Overall 
Accuracy

Kappa 
ValueAgriculture Bare 

Land

2005 
Classified data

Agriculture 25 3 0.86 0.89

Bare Land 4 171 0.98 0.98

97 0.86

2010 
Classified data

Agriculture 61 5 0.91 0.92

Bare Land 6 131 0.96 0.95

95 0.88

2015 
Classified data

Agriculture 89 6 0.95 0.94

Bare Land 5 103 0.94 0.95

95 0.89

2020 
Classified data

Agriculture 100 7 0.95 0.93

Bare Land 5 91 0.93 0.95

94 0.88
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of the initial full reclamation plan which aimed to develop 27874/ha by 2020; however, only 20765/
ha was reclaimed. This represents approximately 74.5% of the initial plan.

CONCLUSION AND RECOMMENDATIONS

In the present study, remotely sensed data in combination with GIS have been used for monitoring 
and mapping the spatiotemporal dynamics of the land reclamation activities in Wadi El-Noqra, 
Upper Egypt. Multi-date remotely sensed data could be of the utmost importance in combination 
with scheduled field visits. Both MLC and NDVI-based classification were implemented to monitor 
the annual land cover changes during the period of 2005 to 2020. The findings showed significant 
increase in the spatial extent of agriculture land to cover approximately 74.5% of the total area of 
Wadi El-Noqra by 2020. The LULC map using the developed methodology fulfils two important 
requirements: first, it differentiated and identified the LULC classes in sufficient details; second, it 
fulfils accuracy requirements, with most of the classes showing overall accuracy more than 94%, and 
user’s and producer’s accuracy of more than 86%, with Kappa value of more than 0.86.

Three reclamation stages were observed during the study period i.e., fast/high reclamation during 
the first three years (2005-2008), medium reclamation (2009-2012), and low/stable reclamation (2013-
2020). During the last stage, several issues were reported and hindered the achievement of the overall 
goal of the reclamation plan in the study area. These included water supply, technical, cost, and land 
quality degradation related issues. This requires intensive and continuous revisions and monitoring 

Figure 6. Graphs showing the growth rate and area of annual reclaimed land between 2005 and 2020 in Wadi El-Noqra, Upper 
Egypt using the MLC and NDVI
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of the reclamation activities and plan in the study area. Meanwhile, the reclamation activities in the 
study area have several implications on the local ecosystem and the people as they changed the land 
cover from desert bare land into agricultural land, also they have changed the activates of the people 
to agriculture as owners of land which contributed to their income and quality of life.

Based on the findings, the following recommendation can be concluded (i) implementing 
appropriate LUCL management strategies to avoid any possible misuse by anthropogenic activities; 
(ii) evaluating the soil status such as soil salinity and fertility; (iii) performing a proper environmental 
impact assessment in the study area prior to any further development projects; (vi) monitoring 
groundwater management system to reduce the water consummation and accelerate agriculture 
development; (v) providing social services and empowerment activities to local communities to the 
best practices of land reclamation activities; and (iv) establishing powerful irrigation management 
system to sustain the water usage for future expansion in the agricultural activities. Conclusively, 
the results of this study would provide useful information to policy makers for further planning, 
developing, and monitoring the sustainable agricultural plans.
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