OCCASIONAL PAPERS

OF THE

California Academy of Sciences

No. 110,37 pages, 8 figures, 6 tables.

DESCRIPTIONS OF FIVE NEW SPECIES OF MYCTOPHID FISHES FROM THE
PACIFIC, INDIAN, AND ATLANTIC OCEANS

By
Robert L, Wisner
Scripps Institution of Oceanography, La Jolla, California 92037

ABSTRACT: Five new species of myctophid fishes are described and are compared with closely related forms. Three of the new species, two in the genus Diaphus and one in the genus Lampanyctus, occur in warm waters of the eastern and central North Pacific Ocean; of the remaining two species, both in the genus Lampanyctus, one occurs in the eastern tropical Atlantic Ocean, and one in both the western tropical Pacific and the Indian oceans.

Introduction

The five new species described below are referable to three distinct species groups and are treated under three sections; related species are discussed.

In the first section, two of the new species, Diaphus trachops and D. similis, are referred to a small group of Diaphus, formerly comprised of six nominal species, characterized in part by having the preorbital organs, Dn and Vn,
small and widely separated. Most specimens of these two new species from the central and eastern tropical Pacific Ocean have been erroneously identified as the infrequently reported species Diaphus termophilus.

In the second section, two other new species, Lampanyctus basili and L. isaacsi, are referred to a group of the genus characterized by having the VO_{2} photophore highly elevated and displaced forward to a position approximately above VO_{1}. This group has also been defined in part by having the pectoral fin long and broad-based, but in L. isaacsi this fin is short and narrow-based. The species to be described as Lampanyctus basili has been previously recognized as probably new and briefly described and figured, but not named, on the basis of a single young specimen from the western Indian Ocean (Nafpaktitis and Nafpaktitis, 1969); specimens of L. isaacsi have not before been recognized.

In the third section, the fifth new species, Lampanyctus acanthurus, is compared with the closely related species complex comprising L. tenuiformis and L. festivus; it has been variously misidentified as each of these species. This new species differs strikingly from all other species currently recognized in the genus in having a notably increased number of procurrent caudal rays.

Holotypes of the five new species, and paratypes bearing SIO collection numbers, are deposited in the Marine Vertebrate Collection of the Scripps Institution of Oceanography. Paratypes to be deposited in other museums bear numbers assigned by those museums.

Acknowledgments

I am deeply indebted to the following persons and agencies for their kindness in making specimens available to me. Thomas A. Clarke, University of Hawaii, donated specimens of Diaphus trachops to the Scripps Institution collection. Basil Nafpaktitis, University of Southern California, and John E. Fitch, California Department of Fish and Game, kindly permitted me to report a far eastern occurrence, off California, of D. trachops. E. H. Ahlstrom, National Marine Fisheries Service, Southwest Fisheries Center, provided the Scripps collection with specimens of Diaphus similis taken during the joint Eastropac Expedition. M. Boeseman, Reijksmuseum, Leiden, and H. Nijssen, Zoological Museum, Amsterdam, provided specimens on which the original description of Diaphus suborbitalis was based. Paratypes of Diaphus glandulifer were provided by the U. S. National Museum of Natural History, and additional material of that species was loaned by the Field Museum of Natural History.

Material of Lampanyctus basili and L. macropterus was taken primarily on the Scripps Antipode, Circe, Naga, and

Monsoon expeditions to the western Pacific and Indian oceans. Further material of these species was made available from the Galathea collection by Jørgen Nielsen, Copenhagen, and by Basil Nafpaktitis from the International Indian Ocean Expedition, Cruises 3 and 6 of the R/V Anton Bruun. Specimens of Lampanyctus isaacsi were taken on the Lusiad Expedition of Scripps Institution. In addition, five paratypes taken on the Guinean Trawling Survey were made available by Bruce B. Collette of the National Marine Fisheries Service.

Specimens of Lampanyctus acanthurus were mostly taken by the Scripps expeditions Aries-9, Climax I, and Cato I in the North Central Gyre of the Pacific Ocean, north of Hawaii. Two other specimens were taken farther east, during the 1961 - 1963 survey of pelagic fishes of the California Current area conducted by the National Marine Fisheries Service.
E. Bertelsen kindly provided counts of procurrent caudal rays of the holotype of L. festivus.

Carl L. Hubbs of Scripps Institution of Oceanography has critically read the manuscript.

Methods

The conventional names and the approximate locations of the photophores of myctophids are shown schematically (fig. 1). In the dorsal and anal fins all rays were counted, including the anteriormost rudimentary rays, and the last ray was treated as being bifurcate through the base. In counting the gill rakers on the outer arch, the raker at the angle was included in the count for the lower limb. The urostyle was included in the count for vertebrae. Body proportions, unless otherwise stated, are expressed as thousandths of standard length (SL). Usually the maximum depth of trawls was estimated from meters of wire out, and the nets were fished open.

The holotypes of Lampanyctus basili and L. isaacsi are portrayed by drawings only, because their photophores did not register satisfactorily on film. The other species are illustrated both by photographs and diagrams showing particularly the position of the photophores.

Abbreviations for collections are as follows: USNM-United States National Museum of Natural History; CAS--California Academy of Sciences; LACM--Los Angeles County Museum of Natural History; BPBM--Bernice P. Bishop Museum.

SECTION I, Diaphus trachops and D. similis
These two new species belong to a small group of the genus Diaphus characterized principally by having only two small and widely separated principal luminous organs of the
head, the Dn and Vn . Dn is located close above the nasal apparatus and before the orbital rim, and Vn is well back on the ventral rim of the orbit under the posterior half of the pupil. Most species of this group also have the first SAO on or very slightly above level of last Vo. Six nominal species have been described as having Dn and Vn widely separated: D. suborbitalis Weber, 1913; D. glandulifer Gilbert, 1913 (as discussed below, D. glandulifer is a synonym of D. suborbitalis); D. termophilus Tåning, 1928; D. dumerili (Bleeker, 1856); D. Zutkeni (Brauer, 1904); and D. diadematus Tåning, 1932. The two new species are less closely related to the last three named above than to the others. They differ from the first three named above primarily in the shape of $V n$. D. dumerili is readily separable by the very minute size of Vn and its location on the anterior portion of the ventral margin of orbit; also, this is the only species of the group having the first SAO well above the level of the last two VO. In D. Zutkeni (both sexes) and D. diadematus (males only) the Vn is much elongated, and occupies most of the ventral margin of the orbit. The Vn of D. diadematus is highly sexually dimorphic in that the Vn of females is small and oblong and somewhat similar in position to the Vn of each of the new species being described and of the first three species named above, whereas the Vn of males is greatly enlarged and broadened posteriorly, filling most of the space between orbital rim and upper jaw. The patterns of photophores of these two species are similar, but the gill rakers of D. Zutkeni are more numerous, 6-7+1+14 (13-15), total $22(20-23)$ versus $5(4)+1+(9) 10$, total (15)16, for D. diadematus. The $V n$ of D. Zutkeni is less sexually dimorphic than that of D. diadematus; that of the male is more robust than that of the female and extends vertically to approach, or contact, the upper jaw.

Direct comparison of syntypes of Diaphus suborbitalis with the holotype and paratypes of D. glandulifer discloses no differences that warrant their separation. As Weber's description predates that of Gilbert by about three months (May and August, respectively), I hereby synonymize Diaphus glandulifer Gilbert (1913, p. 90, pl. ll, fig. 2) with Diaphus suborbitalis Weber (1913, p. 30, fig. 31). Study material of D. suborbitalis included two syntypes from Bali Sea, Siboga Station 38 ($07^{\circ} 35.4^{\prime}$ S., $117^{\circ} 28.6^{\prime}$ E.). Accompanying one syntype was the following pencilled note: "This specimen selected as the LECTOTYPE. Rolf L. Bolin, 10/31/47." As Bolin's action has not been published, I hereby designate this specimen, deposited in the Zoologisch Museum, Amsterdam, ZMA 109.968, a male, 68.0 mm . standard length, as the lectotype of Diaphus suborbitalis Weber, 1913. Also, I designate as paralectotype of D. suborbitalis the other syntype from Siboga Station 38, deposited in the Rijksmuseum, Leiden, reg. no. 9942, 71.5 mm . standard length, sex indeterminate (body cavity open and empty).

Diaphus trachops Wisner, new species.
(Figures 2, 3A; tables 1, 2.)
MATERIAL EXAMINED. The holotype and the paratypes, except as otherwise stated, were taken near the island of Oahu, Hawaii, with a l0-foot Isaacs-Kidd midwater trawl, by Thomas A. Clarke in his work at the Institute of Marine Biology, University of Hawaii. Holotype: SIO 71-172, a male, 63.5 mm . in standard length, taken between 200 and 225 m . on 11 November 1969, 2050 to 0020 hours. Paratypes: SIO 71-172 (l specimen, 55.5 mm . in standar length), taken with the holotype. SIO 71-175 (1, 55.1), $220 \mathrm{~m} ., 12$ November 1969, 0453-0745 hrs. SIO 71-176 (2, 15-20), $100 \mathrm{~m} ., 28$ October 1969, 2020-2340 hrs. USNM 208457 (1, 38.7 mm .), R/V Townsend Cromwe I2, Cruise 7, Station 25, off Kailua, Kona, Hawaii, 0-686 m., 22 August 1968, 0912-1203 hrs. USNM 208458 (5, 41.5-53.3), R/V Hugh M. Smith, Cruise 35, Station l, $21^{\circ} 21.5^{\prime} \mathrm{N} ., 158^{\circ} 15.0^{\prime} \mathrm{W} ., 0-176 \mathrm{~m} ., 1$ August 1955 , start of tow 1930 hr . CAS 15988 (2, $43.1-45.8 \mathrm{~mm}.), 180-200 \mathrm{~m}$. , 30 October 1969, 0050-0415 hrs. (formerly SIO 71-174). LACM 6880-4 (1, 58.0 mm .) , $36^{\circ} 40^{\prime} \mathrm{N} ., 122^{\circ} 06^{\prime} \mathrm{W} .$, about $360 \mathrm{~m} .$, 23 November 1965, l853-1923 hrs., taken by California Department of Fish and Game. BPBM 14310 ($2,50.7-53.6 \mathrm{~mm}$.$) ,$ 0-180 m., 12 November 1969, 0052-0400 hrs. (formerly SIO 71-173).

DESCRIPTION. Body elongate, moderately slender and laterally compressed, deepest at pectoral origin; greatest depth 4.5 in standard length, greatest width about 1.6 in depth. Head long, 3 in standard length; depth 1.4 in length. Upper jaw long, 1.4 in head length; orbit large, 3.3 in head, 2.4 in upper jaw. Snout short, 2 in orbit. Bases of dorsal and anal fins equal in length. Origin of anal base slightly behind a vertical from end of dorsal base; end of adipose base slightly before a vertical from end of anal base. Pelvic fin reaches to about fourth anal ray; pectoral fin reaches slightly past pelvic base. Gill rakers long and slender; the longest about 1.4 in orbit and about 3.6 in upper jaw.

Dorsal rays 14 , anal rays 15 (14-16), pectoral rays 12 (11-13). AO $6(5+7)+5(6)$, total ll $(10-12)$. Gill rakers $8(7-9)+1+15-16(14-17)$, total $24(22-26)$. Vertebrae 34-35. Numbers of anal photophores (AO) and of gill rakers (table l) and body proportions (table 2) are compared with similar data for related species. Counts of AO and gill rakers for the holotype of D. trachops are indicated by an asterisk in table 1.

Dentition. The small cardiform teeth of the jaws form a rounded band. In the upper jaw a median row of somewhat elongate and curved teeth, somewhat more widely spaced than the rest, project downward. The tooth band of the lower jaw is twice as wide as that of the upper jaw. Palatines
and mesopterygoids are thickly beset with minute teeth. The vomer heads bear a very few minute teeth posteriorly.

Luminous organs. Dn is small and round, is located slightly below level of upper margin of pupil, and is deeply recessed; the recess is filled with a transparent substance that extends forward to ethmoidal crest and forms a smooth, rounded rostral contour. Vn is prominent, triangular, and about twice as large as Dn, and protrudes into ventral margin of orbit under posterior third of pupil; the luminous tissue is vertically striated. Vn of males is slightly larger and more robust than that of females. Anterior to Vn , and embedded in a band of dark tissue, are five minute dots of whitish tissue (probably luminous); the pigmented tissue above these dots bulges upward in small domes that protrude slightly above orbital rim (fig. 3A), and are evident in specimens as small as 22 mm ., but not in one 15 mm . in standard length. These protrusions, although much less prominent, resemble those that project notably from the Vn into the orbital rim of Diaphus lutkeni.
OP_{1} is minute, directly behind end of upper jaw. OP_{2} is slightly larger than body photophores, and is located about on level of lower margin of orbit with its rear edge approximately on a vertical from front of OP_{1}. PLO lies directly over pectoral origin and slightly below midway between that point and lateral line. Luminous scale at PLO (missing on right side of holotype) is roughly ovoid; its length equals or slightly exceeds half the pupil diameter; the luminous tissue is finely convoluted. $\mathrm{PO}_{1}, \mathrm{PVO}_{1}$, and PVO_{2} are equally spaced in an oblique straight line; PVO_{2} lies close before lowest pectoral rays. Five PO; PO_{1-2} interspace is about twice that of $\mathrm{PO}_{2}-3$ and of PO_{3-5}; the PO_{2-3} and PO_{3-5} interspaces are about equal; PO_{4} is elevated to about level of lower end of pectoral base, and is on (seldom behind) vertical from center of PO_{3}. The PO series gradually diverges posteriorly, with PO_{5} abruptly raised to about one diameter below and before outer pelvic ray. VLO is slightly behind pelvic origin and above a midpoint between there and lateral line. First three of the five Vo are equally spaced in an oblique line; VO_{3} lies two of its diameters before vertical from VO_{4} and about on a line through SAO_{2} and $\mathrm{AO} a_{1}$. The three SAO form a steeply ascending, nearly straight line; SAO_{3} may be on, or close before or behind, a line through the first two. SAO_{1} is located about two of its diameters behind and one above $\mathrm{VO}_{5} . \mathrm{SAO}_{2-3}$ interspace is twice that of $\mathrm{SAO}_{1-2} . \mathrm{SAO}_{3}$ located its diameter below lateral line and over or slightly before anal-fin origin. Five AOa; the first and last are markedly elevated, so that a straight line through them passes through SAO_{1} and $\mathrm{VO}_{3}\left(\mathrm{AOa}_{1}\right.$ is rarely slightly below this line). Pol is about its diameter below lateral line, forms a straight or very slightly curved line with last two AOa, and lies over midpoint between penultimate AOa and first AOp. Of the four Prc, the
first three are evenly spaced in a gentle curve, and the last one is abruptly elevated to about three of its diameters below lateral line and is separated from the nearest Prc by a space about equal to that between the first and the third. The AOp-Prc and the AOa-AOp interspaces are about equal.

In addition to the large scale of luminous tissue at PLO, similar but much smaller scales occur posteroventrally to VLO, $\mathrm{SAO}_{3}, \mathrm{Pol}$, and upper Prc. These scales vary in size (in preserved material) but are generally two to four times the size of adjacent photophores. Caudal luminous glands are absent.

DISTRIBUTION. All but one of the study specimens of D. trachops is from near Hawaii. The single exception, paratype LACM 6880-4, a male with moderately developed testes, was taken about 8 miles west-northwest of Point Pinos, Monterey County, California. This specimen may be regarded as a stray, for a moderate amount of collecting effort in waters adjacent to Monterey and between there and Hawaii has yielded no material of the species. No other has been taken away from the Hawaiian area.

ETYMOLOGY. The name 'trachops', from the latinized Greek words trachos (rough) plus ops (eye), refers to the uneven surface of the lower orbital margin caused by the small domed intrusions of pigmented tissue covering the minute, probably luminous, dots anterior to Vn.

Diaphus similis Wisner, new species.
(Figures 4, 3b; tables l, 2.)
MATERIAL EXAMINED. The holotype and paratypes, SIO 71-177 through 71-180, were taken with a 5-ft. nekton net during the Eastropac Expedition and were made available to the Scripps Institution of Oceanography by E. H. Ahlstrom. Holotype: SIO 71-177, a ripe female, 72.2 mm . in standard length. It was taken between the surface and 200 m . on 14 August 1967, start of tow at $0030 \mathrm{hrs}$. Paratypes: SIO 71-179 (3 specimens, $36.8-39.3 \mathrm{~mm}$. in standard length), $08^{\circ} 22.0^{\prime} \mathrm{N} ., 97^{\circ} 52.0^{\prime} \mathrm{W} ., 0-200 \mathrm{m},. 26-27$ January 1968 , start of tow $2203 \mathrm{hrs.;} \mathrm{SIO} \mathrm{71-180(4}, \mathrm{36.5-63.4)}, \mathrm{08}^{\circ} 53.0^{\prime}$ N., $119^{\circ} 00.0^{\prime}$ W., 0-200 m., 2 February 1967, start of tow 2228 hrs.; SIO 63-841 (2, 33.0-44.0), 0555.5' N., 87º16.0' W., 450 meters wire out, 15 May 1958, 0013-0122 hrs. USNM 208459 ($3,22.0-53.0 \mathrm{~mm}$.$) , R/V Hugh M. Smith Cruise 31,$ Station 64, $07^{\circ} 06.0^{\prime} \mathrm{N} ., 108^{\circ} 36.0^{\prime} \mathrm{W} ., 0-337 \mathrm{~m} ., 27$ October 1955, start of tow 2025 hr . USNM 208460 (1, 68.4), R/V Hugh M. Smith Cruise 31, Station 67, 04³9.0' N., $109^{\circ} 24.0^{\prime}$ W., 0-631 m., 28 October 1955, start of tow 2002 hr . CAS $15989(2,51.1-68.4), 08^{\circ} 01.0^{\prime} \mathrm{N} ., 119^{\circ} 02.0^{\prime} \mathrm{W} ., 0-200 \mathrm{~m} .$,

24 October 1967, start of tow 2230 hr . (formerly SIO 71-178). Remaining nontype study material, rather badly damaged: SIO 63-838 (6, 32-48), $07^{\circ} 22.0^{\prime} \mathrm{N} ., 92^{\circ} 47.0^{\prime} \mathrm{W} . ;$ SIO 63-840 $(2,42-46), 09^{\circ} 48.5^{\prime} \mathrm{N} ., 89^{\circ} 14.5^{\prime} \mathrm{W}$.

DESCRIPTION. Dorsal rays 14 , anal rays $15-16$, pectoral rays $12-13(14)$. AO $6(5-7)+(4) 5$, total $11(10-12)$. Gill rakers $7(6-8)+1+14(13-15)$, total 22 (21-23). Vertebrae $35(34-36)$. Numbers of anal photophores (AO) and of gill rakers (table l) and body proportions (table 2) are compared with similar data for the related species D. trachops, D. suborbitalis, and D. termophilus. Counts of AO photophores and gill rakers for the holotype of D. similis are indicated by an asterisk in table 1.

DISCUSSION. Diaphus similis is closely related and superficially similar to D. trachops. The photophore pattern is essentially similar, differing slightly in that the elevated AOa_{1} of D. similis is most often slightly below level of SAO_{2} rather than almost always on that level as in D. trachops. Similarities are also evident in both the counts (table l), D. similis averaging about two fewer total rakers, and in body proportions (table 2). The two species are most readily separable by the differences in structure of Vn. In D. similis, this organ is usually more rounded or vertically elliptical, and the luminous tissue is vertically ovoid or pear shaped (fig. 3B) and usually does not fill the entire organ; it is bordered by a silvery, probably reflective area. This contrasts with the rather triangular luminous tissue that nearly fills the Vn of D. trachops (fig. 3A) and D. suborbitalis (fig. 3C). This structural difference of Vn is evident in the smallest specimens examined, 15 to 20 mm . long. Also, in D. similis, the small protuberances over the tiny luminous dots anterior to Vn are lacking or are extremely minute, at least very difficult to perceive, whereas they are very easily seen in D. trachops. Another difference is that in D. similis the small scales of luminous tissue are absent at photophores other than PLO, even on specimens in excellent condition, whereas they are evident in D. trachops, even on rather badly eroded specimens, posteroventrally to $\mathrm{VLO}, \mathrm{SAO}_{3}, \mathrm{Pol}$, and upper Prc. Also, the anterior margin of PO_{4} is on or slightly behind a vertical from posterior margin of PO_{3}.

Diaphus trachops and D. similis may be confused with D. suborbitalis and D. termophilus because of very similar arrangements of Dn and Vn , and of many other body photophores. Also, all four species have from three to four minute luminous dots embedded in, or covered by, a streak of dark tissue overlying the ventral rim of the orbit, but only in D. trachops does this overlying pigment bulge upward significantly as a small dome over each tiny dot.

This streak of dark tissue is considerably less well developed in D. termophilus and the minute dots are more readily visible than in the other three species. Another point of similarity and confusion in these four species is the very low position of SAO_{1}, on or slightly above the level of the last VO. On the basis of photophores, D. termophilus is usually separable from the other three species in that PLO is much nearer to the pectoral origin than to the lateral line, rather than slightly nearer the latter or midway between. Also, in D. termophilus the SAO spacing is more nearly equal, with the SAO_{1-2} interspace only slightly smaller than that between SAO_{2-3}; in the other three species the $\mathrm{SAO}_{2}-3$ interspace is from 1.5 to 2 times greater than that of $\mathrm{SAO}_{1}-2$.

Body proportions (table 2) of the four species are also very similar, although D. termophilus differs in having a longer and deeper head, a longer upper jaw, a greater predorsal length, and a greater distance between origins of dorsal and pelvic fins. The numbers of AO photophores, fin rays, and vertebrae of the four species are very similar, but the more numerous gill rakers (table l), especially in total count, appear to be useful in separating D. suborbitalis.

The most useful additional characters appear to be the small patches (scales) of luminous tissue at certain photophores in addition to that at PLO. Although subject to erosion, these luminous scales are quite persistent and are evident on specimens that have lost all body scales and most scale pockets. Diaphus trachops is separable from D. similis by having luminous scales at VLO, $\mathrm{SAO}_{3}, \mathrm{Pol}$, and Prc4; D. similis has only one such scale (at PLO). D. suborbitalis is readily separable from the others by having luminous scales at many more photophores.

In D. suborbitalis, these luminous scales appear to be erratic in occurrence. In six paratypes of D. glandulifer in good condition (USNM 74501, Suruga Bay, Japan) these scales were present on all specimens at $\mathrm{PO}_{4}, \mathrm{VLO}, \mathrm{VO}_{2}, \mathrm{VO}_{3}$, SAO_{3}, Pol and Prc4; in addition, on from 20 to 83 percent of the specimens, scales were variously present at $\mathrm{PVO}_{1}, \mathrm{PVO}_{2}$, $\mathrm{PO}_{3}, \mathrm{VO}_{1}, 3,4$ and $5, \mathrm{SAO}_{2}$, first and last AOa, last AOp, and Prci'. On two syntypes of D. suborbitalis, from Bali Sea, these scales were present at $\mathrm{PO}_{4}, \mathrm{VO}_{2}, \mathrm{SAO}_{3}, \mathrm{AO} a_{1}$, Pol, PrC_{3}, and Prc4. The rather poor condition of these two specimens prevents conjecture as to the presence of luminous scales at most other photophores as found in the paratypes of D. glandulifer.

DISTRIBUTION. Diaphus similis is thus far known only from a rather small area of the northeastern tropical Pacific Ocean bounded by about $04^{\circ}-10^{\circ} \mathrm{N} ., 87^{\circ}-119^{\circ} \mathrm{W}$.

ETYMOLOGY. The name similis refers to its similarity
to D. trachops and, to a lesser degree, to D. suborbitalis.

Section II, Lampanyctus basili and L. isaacsi
These two new species are referable to a group within the genus Lampanyctus that is characterized principally by having the VO_{2} photophore elevated and displaced forward to a position very near VO_{1}, and the AOa series more or less curved. Lampanyctus basili has the AOa series of photophores strongly curved, the pectoral fins long, strong, and broad-based, and the base of the anal fin overlapping about 38 percent of the length of the dorsal base. Lampanyctus isaacsi differs from L. basili principally in that the AOa series is very slightly curved, the pectoral fins are short and weak, and the base of the anal fin overlaps nearly 60 percent of the length of the dorsal base.

Nafpaktitis and Nafpaktitis (1969, p. 52, figs. 63, 64) illustrated and briefly diagnosed two small specimens from the western Indian Ocean, each having the VO_{2} elevated and displaced forward to near VO_{1}, one having a Prc configuration similar to that of L. hubbsi, an unusual arrangement in that Prc_{2} is offset behind a straight line through Prcl, Prc3, and Prc4. With only one specimen of each form available, these authors designated them only as Lampanyctus "A" and "B." However, enough specimens of each form have now become available to permit adequate characterization. Species "A" is referable to L. macropterus, but species "B" represents the new species, Lampanyctus basili, described below.

Only four species within the genus Lampanyctus, as presently constituted, have been known to have the VO_{2} both elevated and displaced forward to near VO_{1}. These species are L. macropterus Brauer (1904, 1906), as defined by Nafpaktitis and Nafpaktitis (1969), L. hubbsi Wisner (1963), L. omostigma Gilbert (1908), and L. parvicauda Parr (1931). The last three species have been discussed by Wisner (1963).

The following key to identification will serve to separate these four species and the two new ones being described.

Key to Species of Lampanyctus That Have VO_{2} Both Elevated and Displaced Forward to Near VO_{1}
la. Pectoral fin short and weak, with basal width less than distance between orbit and ventral margin of upper jaw. AOa series very slightly curved. Origin of anal base somewhat before a vertical from beginning of last third of dorsal base. VLO very near lateral line. VO_{2} before vertical from VO_{1}. . isaacsi, new species.
lb. Pectoral fin long and strong, with basal width greater than distance between orbit and ventral margins of upper jaw 2

2a. VO_{2} distinctly before vertical from $\mathrm{VO}_{1} \ldots \ldots$.
2b. VO_{2} distinctly behind vertical from $\mathrm{VO}_{1} \ldots$.
3a. VLO several diameters below lateral line. Prce, Prc_{3}, and Prc_{4} form a straight, steeply oblique line. $\mathrm{PLO}, \mathrm{PVO}_{1-2}$, and PO_{2} form a straight, somewhat posteriorly slanting line..... L. omostigma
3b. VLO in contact with lateral line (or very nearly so).. 4
4a. Prc2 about under PrC_{3}, forming with Prc_{4} a pronounced curve, the concavity facing posteriorly. AO $4(3-5)+9(7-10)$, total $13(12-14)$. 2 AOp over anal base. PO_{2} in line with $\mathrm{PVO}-2$. Gill rakers $3(2-4)+9(7-10)$, total $13(11-15)$. ...
4b. Prce 2 well behind a vertical from Prc3; Prcl, Prc3, and Prc4 forming a straight, steeply oblique line. AO $5(4-6)+11(9-12)$, total 15-16 (14-17). 4 (3) AOp over anal base. PO_{2} behind a line through PVO_{1-2}. Gill rakers $4+1+11$

5a. PVO_{1} well before a vertical from PVO_{2}; the two usually forming a straight line with $\mathrm{PO}_{1} . \mathrm{Prc}_{2}$, Prc3, and Prc4 forming a straight, steeply oblique line that passes far behind Prcl........

5b. PVO_{1} about under PVO_{2}, a line through them passing far behind PO_{1}. $\mathrm{Prc}_{2}, \mathrm{Prc}_{3}$, and Prc_{4} forming a variably pronounced curve, the last two Prc forming a nearly straight line with Prcl
\qquad

Lampanyctus basizi Wisner, new species.
(Figures 5, 6; tables 3, 4, 5.)
MATERIAL EXAMINED. Holotype: SIO 69-20, sex undetermined, 55.7 mm . in standard length, taken with an IsaacsKidd 10 -foot midwater trawl at $06^{\circ} 325^{\prime} 5^{\prime} \mathrm{N} ., 114^{\circ} 16.0^{\prime} \mathrm{E} .$, between surface and 1100 m . (estimated depth), 24 April 1968, 1605-2105 hours, by the Scripps Circe Expedition. Paratypes: SIO 69-20 (9 specimens, $16-45 \mathrm{~mm}$. in standard length, taken with the holotype); SIO 70-341 (21, 17-54), $18^{\circ} 14.4^{\prime} \mathrm{N} ., 119^{\circ} 45.2 \mathrm{E} ., 0-1850 \mathrm{~m} ., 17$ November 1970 , $0455-$ 1240 hrs. SIO $70-343(78,18-51), 18^{\circ} 06.2^{\prime} \mathrm{N} ., 119^{\circ} 07.9^{\prime}$ E., $0-1850 \mathrm{~m} ., 17-18$ November $1970,1600-0045 \mathrm{hrs}$. SIO 70-346 (78, 18-55), $14^{\circ} 48.9^{\prime} \mathrm{N} ., 119^{\circ} 32.2^{\prime} \mathrm{E} ., 0-1500 \mathrm{~m} .$,

19 November 1970, 0525-1410 hrs. SIO 70-347 (34, 27-54), $14^{\circ} 19.0^{\prime} \mathrm{N} ., 119^{\circ} 35.0^{\prime} \mathrm{E} ., \mathrm{O}-1750 \mathrm{~m} ., 19$ November 1970, $1505-2320 \mathrm{hrs} . \operatorname{USNM} 208461(1,54.0), 05^{\circ} 1^{\prime} \mathrm{S} ., 153^{\circ} 41^{\prime}$ E., 6 March 1965, time and depth of tow unknown to me (formerly Te Vega IIOE Station 239). USNM 208462 (1, 36.0), $17^{\circ} 34^{\prime} \mathrm{S} ., 42^{\circ} 43^{\prime} \mathrm{E} ., 0- \pm 70 \mathrm{~m} ., 13$ October 1964, 0359-0402 hrs. (formerly R/V Anton Bruun, IIOE Cruise 8, station 407B). USNM $208463(5,24-56), 10^{\circ} 26^{\prime} \mathrm{S} ., 115^{\circ} 16^{\prime} \mathrm{E} .$, $0-1500 \mathrm{~m} ., 3$ November 1960 , $0121-0451 \mathrm{hrs}$. (formerly SIO 61-32). CAS 15990 (11, 20-24), $06^{\circ} 00.5^{\prime} \mathrm{N} ., 122^{\circ} 35.6^{\prime} \mathrm{E} .$, $0-1120 \mathrm{~m} ., 2$ April 1968 , $1200-1655 \mathrm{hrs}$. (formerly SIO 69-19). CAS 15991 (5, 36-49), selected from SIO 70-347 (see above). LACM 31396-7 (1, 45.0), 0957' S., 64오' E., 200-525 m., 2 June 1964, 1755-2250 hrs. LACM 33362-1 (1, $55.0), 19^{\circ} 08^{\prime} \mathrm{N} ., 126^{\circ} 29^{\prime} \mathrm{E} ., \mathrm{O}-2000 \mathrm{~m} ., 13$ September 1970 , 0645-1535 hrs. (formerly SIO 70-333). LACM 33363-1 (5, 4253), selected from SIO 70-346 (see above). BPBM 14311 (5, 17-43), $16^{\circ} 51^{\prime} \mathrm{N} ., 119^{\circ} 24^{\prime} \mathrm{E} ., \mathrm{O}-1550 \mathrm{~m} ., 18$ September 1970, 1030-1830 hrs. (formerly SIO 70-345). BPBM 14312 (5, 1836), $08^{\circ} 33^{\prime}$ N., $111^{\circ} 45^{\prime}$ E., $0-800 \mathrm{~m} ., 7$ March 1960, 2205$2250 \mathrm{hrs}$. (formerly SIO 6l-588). BPBM 14313 (5, 39-50), selected from SIO 70-343 (see above).

DESCRIPTION. Body elongate, slender, moderately compressed. Head long, about 3.4 in standard length, its depth 1.7 (1.6-1.8) in its length. Upper jaw long, 1.5 (1.4-1.6) in head; eye small, $3.0(2.5-3.5)$ in upper jaw. Snout long, 1.3 in orbit; mouth terminal. Dorsal origin well behind that of pelvic; dorsal base 1.5 (1.4-1.6) in anal base. Origin of anal base under about beginning of last fourth of dorsal base. Pelvic fin short, usually reaching slightly beyond anus but seldom to anal origin. Pectoral fins long, reaching to Pol, filamentous at tips; pectoral base considerably longer than distance from orbit to ventral margin of upper jaw.

Numbers of fin rays, anal photophores (AO), gill rakers, and vertebrae (table 3) are compared with similar counts for related species. Counts for the holotype of L. basili are indicated by an asterisk. Body proportions for holotype and paratypes of L. basili are compared with similar data for related species (table 4).

Dentition. The small, villiform teeth of upper jaw form a narrow rounded band, with none enlarged; similar teeth on lower jaw form a more broadly rounded band, in which a few of the posteriormost inner teeth are somewhat enlarged and flattened, and slant forward. Tiny rounded teeth are thickly set on the slender palatines and the broad, oval mesopterygoids. There is a small patch of minute teeth on the posterior face of each vomer head.

Luminous organs. Dn is absent. The small but prominent Vn is located at anterior margin of orbit, well above ventral margin of pupil. A prominent $C e$, as large as body
photophores, lies just above dorsal insertion of opercle and slightly before a vertical from end of upper jaw. OP_{2} is notably larger than other body photophores and is about on a line from lower margin of orbit to middle of pectoral base. PLO lies about two of its diameters below lateral line, before a vertical from pectoral origin. PVO_{2} is located its diameter below and before pectoral origin; PVO_{1}, very slightly behind a vertical from PVO_{2}. Of the five PO, the fourth is elevated nearly to level of pectoral origin (to middle of base in some paratypes). The PO_{1-2} interspace is about 1.5 times those of PO_{2-3} and PO_{3-5}, which are about equal. PO_{5} lies its diameter before and slightly below level of outer pelvic ray. VLO nearly touches lateral line (does touch in some paratypes) about over a midpoint between base of inner pelvic ray and $\mathrm{VO}_{1} . \mathrm{VO}_{2}$ is highly elevated (often to slightly below level of PO_{4}), and is displaced forward to at least its diameter before a vertical from $\mathrm{VO}_{1} ; \mathrm{VO}_{3}$ is also elevated by at least its diameter above a line through dorsal margins of VO_{1} and VO_{4}; the VO_{1-3} and VO_{3-4} interspaces are about equal.

SAO series is markedly angulate; SAO_{1} lies slightly above level of $\mathrm{SAO}_{2} ; \mathrm{SAO}_{1-2}$ interspace slightly greater than that of $\mathrm{SAO}_{2}-3 ; \mathrm{SAO}_{1}$ is about midway between lateral line and ventral profile and is usually nearer VO_{3} than VO_{4}; SAO_{2} is about over anal origin; SAO_{3} touches lateral line slightly before a vertical from anterior margin of first AOa. The four AOa form a notably curved series; AOa 2 is much elevated; the succeeding ones descend toward anal base; the AOal-2 interspace is usually somewhat greater than the space between any remaining adjacent AOa. The two Pol form with the last AOa a notably oblique line, in which the spacing is equal; the upper POl is at lateral line. There are nine AOp, of which the first two lie over end of anal base; the first is always, the second is usually, depressed below level of the others; the series is evenly spaced and continuous with Prcl. The AOa-AOp interspace is about threefourths the least depth of caudal peduncle.

The number of Prc is herein interpreted as four; however, the series could reasonably be assumed to contain only three, because PrC_{1} is much nearer to the last AOp than to PrC2, so that the last three Prc are well isolated as a group (fig. 5). The Prcl_{1-2} interspace is at least a photophore diameter greater than the PrC_{2-3} and Prc3-4 interspaces, and twice the interspace between photophores of the AOp series and between last AOp and PrC_{1}. PrC_{2} is offset posteriorly to approximately below, or slightly before, a vertical from PrC_{3}, and forms a marked curve with Prc3 and Prc_{4}. A line through PrCl_{1} and PrC_{4} forms an angle of from 50 to 55 degrees from the vertical; Prc_{3} lies at least its diameter below this line.

Supra- and infracaudal luminous glands respectively with 3 to 4 and 7 to 9 overlapping, seemingly coalesced scales,
not margined with dark pigment.
DISTRIBUTION. Lampanyctus basili is known from below South Africa, across the tropical Indian Ocean, into the Indo-Pacific region, and eastward to the Bismarck Archipelago (fig. 6). In the South China Sea area it appears to be common and gregarious (encircled area, fig. 6); two hauls took 78 specimens each, and two other hauls 21 and 34 respectively. In comparable hauls from other localities throughout the range, no more than 9 (usually 1 to 5) were taken in any one.

ETYMOLOGY. I am pleased to name this species for Basil G. Nafpaktitis in recognition of his extensive work on myctophid fishes of the North Atlantic and western Indian oceans.

Lampanyctus isaacsi Wisner, new species. (Figures 6, 7; tables 3, 4, 5, 6.)

MATERIAL EXAMINED. Lampanyctus isaacsi is represented by 8 specimens from two collections: one of 3 specimens from the eastern Atlantic Ocean off Freetown, Sierra Leone, and one of 5 specimens from the Guinea Basin, south of Liberia. The new species is of considerable interest in that its characters are those considered to be diagnostic of rather widely divergent species groups of the genus; these relationships are discussed below. Holotype: SIO 63-560, sex unknown, 52.0 mm . in standard length, taken by a lo-ft. Isaacs-Kidd midwater trawl at $01^{\circ} 10^{\prime} \mathrm{N} ., 11^{\circ} 36.0^{\prime} \mathrm{W} .$, between surface and $2300 \mathrm{~m} ., 6$ July $1963,0250-0745 \mathrm{hrs}$. Paratypes: SIO 63-560 (3 specimens, 27-64 mm. in standard length), taken with the holotype. USNM 206795 (5, 79-126), taken at $09^{\circ} 10^{\prime} \mathrm{N} ., 15^{\circ} 39^{\prime} \mathrm{W} .$, in a bottom trawl fished to 600-610 m., 28 November 1963, 0648 hr . Galathea Expedition Station $99(1,51.2), 08^{\circ} 40^{\prime} \mathrm{S} ., 11^{\circ} 10^{\prime}$ E., 5200 meters of wire out, 11 December 1950, start of tow $1110 \mathrm{hrs}$.

DESCRIPTION. Body slender, elongate, somewhat flaccid and laterally compressed. Head long, 3.5 in standard length, its depth about 1.8 in its length. Upper jaw about 1.4 in head, 5.6 in standard length. Orbit small, 5.5 in head, 3.5 in upper jaw. Snout about as long as orbit. The lens is very small, about half the diameter of pupil. The mouth is essentially terminal; tip of lower jaw protruding very slightly. Dorsal origin well before midpoint of body; pelvic origin well before a vertical from that of dorsal. Anal origin a little before midpoint of body and somewhat before a vertical from middle of dorsal base. Anal and dorsal bases long, the anal 4, the dorsal 5 times in standard length; dorsal base 1.2 in anal base. Base of adipose fin slightly behind a vertical from end of anal base.

Frequency distributions of fin rays, vertebrae (table $3)$, anal photophores, and gill rakers (table 4), and body proportions (table 5), are compared with similar data for related species. Counts for the holotype of L. isaacsi are indicated by an asterisk in tables 3 and 4.

Dentition. Teeth of both jaws are cardiform, with none enlarged. Those of upper jaw form a narrow, flatly rounded band along outer margin of premaxillary; those of the lower jaw are in a more rounded band, about twice the width of the upper band. A few teeth at the extreme posterior end of the dentary are broadened and somewhat enlarged. Teeth on palatines and mesopterygoids and in a small patch on the posterior surfaces of vomer heads are conical, sharp, and much smaller than those of jaws.

Luminous organs. The following description of photophores is taken primarily from the holotype, which is in rather good condition, because all paratypes are partially denuded and lack some photophores. Pits in the flesh and traces of missing photophores indicate patterns that agree well with those of the holotype.

The body photophores are not notably small, but are flattened ventrally to a somewhat semilunate configuration. Dn is absent. The small but prominent Vn lies a little below center of anterior border of orbital rim, level with ventral margin of nasal rosette. OP_{1}, nearly as large as body photophores, lies well below end of upper jaw; OP_{2}, about twice larger than body photophores, is a little behind a vertical from OP_{1} and about level with ventral margin of orbit. The smalf Ce is just above dorsal insertion of opercle and about vertically over end of upper jaw. PLO nearly touches lateral line, well before the PVO group. $P O_{1}$ lies almost directly below $\mathrm{PVO}_{2} ; \mathrm{PVO}_{2}$ is close to, and one diameter below, pectoral origin. The five PO are unequally spaced: the PO_{1-2} interspace is 1.5 to 2.0 times that of PO_{2-3}; the PO_{3-5} interspace about equals, or sometimes slightly exceeds, the PO_{2-3} interval. PO_{4} lies one diameter behind a vertical from PO_{3}, and is elevated to about level of pectoral origin. PO_{5} is located just above outer ray of pelvic fin. VLO nearly touches lateral line about over base of inner pelvic ray and before a vertical from $V O_{1}$. The second of the four Vo organs is elevated nearly to level of PO_{4} and is displaced one diameter forward of VO_{1}; the first, third, and fourth are about equally spaced.

The SAO series is broadly angulate, with SAO_{1} slightly below level of SAO_{2} and somewhat nearer ventral profile than lateral line, and much nearer VO_{4} than VO_{3}. The SAO_{1-2} interspace is a photophore diameter or more greater than that of $\mathrm{SAO}_{2}-3 . \mathrm{SAO}_{2}$ lies behind a vertical from anal origin and a little more than one-third nearer lateral line than anal origin. SAO_{3} touches lateral line about over AOA. AO $6+7-8$; the AOa series is slightly but distinctly
curved; the AOal-2 interspace is usually somewhat greater than the space between any adjacent AOa. The two Pol form a flatly oblique line with the last AOa and front of base of adipose fin. AOp is continuous with Prc; not more than one AOp overlies anal base. AOa-AOp interspace is about 75 percent of least depth of caudal peduncle. Upper Prc is level with and just behind end of lateral line. The last three Prc form a straight, strongly oblique line; the three Prc and the last AOp are equally spaced.

The short supracaudal luminous gland comprises three or four small, weakly developed, overlapping scales. The long infracaudal gland comprises eight or nine similar scales, which reach to about the third or fourth AOp.

DISCUSSION. The placement of Lampanyctus isaacsi within the genus is necessarily somewhat arbitrary and dependent upon the phylogenetic importance accredited to several characters. Because of the elevated and far-forward position of VO_{2}, L. isaacsi is referable to that group discussed above in relation to L. basili -- a group further characterized by having long, broad-based pectoral fins and markedly curved AOa series of photophores. However, the position of VO_{2}, and the slightly curved AOa series appear to be the only characters linking L. isaacsi to that group. In most other respects, particularly the narrow-based and weak pectoral fins, and the considerable overlap of the dorsal and anal fin bases, L. isaacsi appears to be more closely allied to other species of the genus having similar characters: the species complex of L. niger (Günther, 1887), L. ater Tåning, 1928, and L. achirus Andriashev, 1962, and two additional species, L. lineatus and L. cuprarius, both described by Tåning, 1928. The first three species are separable from the last two primarily in having SAO_{1} over the VO_{2-3} interspace; in the last two species, and in L. isaacsi, SAOl lies over the VO_{3-4} interspace. L. isaacsi is separable from L. lineatus and L. cuprarius principally by reason of the elevated and far-forward position of VO_{2}. Additional characters (table 6) distinguish these three species.

It should be noted that the configuration of the vo series in L. Zineatus and L. cuprarius has been variously presented. Nafpaktitis and Nafpaktitis (1969, pp. 41-42, figs. 49-50) described and figured the Vo series as curved, with VO_{2} elevated but not displaced forward, for the holotype of L. cuprarius (63.0 mm .) and for a specimen (97.0 mm .) of L. Iineatus. These authors also stated that the $S A O 1^{l}$ is over the VO_{3-4} interspace in each species and so figured L. lineatus; however, perhaps by error, SAO_{1} was shown to be behind VO_{4} for L. cuprarius. Rolf L. Bolin has kindly provided me with an unpublished drawing of a specimen of L. cuprarius (49.2 mm .), from the northwestern Atlantic Ocean, in which the Vo series is shown to be level and SAO_{1} to be nearer VO_{3} than VO_{4}. Bolin (1959) did not describe the

Vo series for either L. Zineatus or L. cuprarius. Parr (1928, p. 107, fig. 18) described and figured the vo series as level and SAO_{1} over the VO_{3-4} interspace for both these species.

DISTRIBUTION. Lampanyctus isaacsi is known only from the eastern tropical Atlantic Ocean at the western boundary of the Gulf of Guinea (fig. 6).

ETYMOLOGY. I take pleasure in dedicating this interesting species to Professor John D. Isaacs, in honor of his development of the Isaacs-Kidd midwater trawl and his many other contributions to the marine sciences.

Section III, Lampanyctus acanthurus

Lampanyctus acanthurus Wisner, new species.
(Figure 8.)
MATERIAL EXAMINED. Holotype: SIO 71-305, a male, 93.3 mm . in standard length, taken at $27^{\circ} 25^{\prime} \mathrm{N} ., 155^{\circ} 32^{\prime} \mathrm{W}$. , on l October 1971, in an Isaacs-Kidd midwater trawl fished open from surface to estimated depth of 560 m . during 0430-0616 hours. Paratypes: SIO 71-309 (3 specimens, 79-94 mm. in standard length), $27^{\circ} 27^{\prime} \mathrm{N} ., 155^{\circ} 38^{\prime} \mathrm{W} ., 0-1100 \mathrm{~m} ., 29-30$ July 1972, $2229-0335 \mathrm{hrs}$. SIO $72-373(6,26-31), 30^{\circ} 39^{\prime} \mathrm{N} .$, $155^{\circ} 20^{\prime} \mathrm{W} ., 0-1100 \mathrm{~m} ., 24$ June 1972, $1805-2136 \mathrm{hrs}$. SIO 70102 (1, 33), $27^{\circ} 52^{\prime}$ N., $155^{\circ} 14^{\prime}$ W., $0-1620 \mathrm{~m} ., 31$ August 1969, 1824-2040 hrs. SIO 63-405 (1, 50), $34^{\circ} 57^{\prime} \mathrm{N} ., 129^{\circ} 1^{\prime}$ W., 0-1863 m., 29 March 1962, l022-15ll hrs. SIO 63-406 (l, 75), $34^{\circ} 16^{\prime}$ N., $130^{\circ} 41^{\prime}$ W., $0-800$ m., 29-30 March 1962, 2330-0110 hrs. USNM $208465(2,69-112), 27^{\circ} 26^{\prime} \mathrm{N} ., 155^{\circ} 25^{\prime}$ W., 0-1100 m., l October 1971, 1047-1547 hrs. (formerly SIO 71-307). CAS $15992(1,94), 27^{\circ} 17^{\prime} \mathrm{N} ., 155^{\circ} 02^{\prime}$ W., 0-1350 m., 24 September 1971, 1917-2230 hrs. (formerly SIO 72-11). CAS $15993(2,30-38), 31^{\circ} 06^{\prime} \mathrm{N} ., 155^{\circ} 20^{\prime} \mathrm{W} ., 0-1350 \mathrm{~m} ., 21-$ 22 June 1972, 2342-0325 hrs. (formerly SIO 72-372). LACM $33364-1(1,93), 27^{\circ} 27^{\prime} \mathrm{N} ., 155^{\circ} 25^{\prime} \mathrm{W} ., 0-1350 \mathrm{~m} ., 30$ October 1971, $1853-2230 \mathrm{hrs}$. (formerly SIO 71-303). LACM 33365-1 (1, 92), $27^{\circ} 36^{\prime} \mathrm{N} ., 155^{\circ} 27^{\prime} \mathrm{W} ., 0-1800 \mathrm{~m} ., 5-6$ October 1971, 2335-0505 hrs. (formerly SIO 72-25). BPBM: 14314 (1, 94), $27^{\circ} 23^{\prime}$ N., $155^{\circ} 25^{\prime}$ W., 0-1350 m., 23 September 1971, 2050-2345 hrs. (formerly SIO 72-9). All specimens known to me are designated as types.

DESCRIPTION. Body elongate, moderately robust, its greatest depth about 20 percent of its length. Head long, about 30 percent of standard length, and deep, about 63 percent of its length. Mouth terminal, both jaws slightly curved upward near symphysis. Upper jaw long, 74 (72-76 percent of head length. Orbit moderately large, about 3 in
length of upper jaw. Gill rakers of outer arch long and slender, those at the angle slightly shorter than orbit. Origin of base of anal fin directly below end of dorsal base. Origin of pelvic fin well before that of dorsal. Pectoral fin very long, reaching to third AOa in holotype (to fifth AOa in one paratype). Base of adipose fin over or very slightly behind a vertical from end of anal base. Caudal peduncle moderately deep, about 2.2 (2.0-2.4) in length of peduncle.

Teeth of both jaws villiform, none enlarged. Minute teeth are thickly set on palatines and on the broadly ovate mesopterygoids. The posterior faces of vomer heads bear a few very small teeth.

Dorsal rays 13 (14); anal rays 17 (16-18); pectoral rays 14-15. AO (5) $6+7(8)$, total 13 (12-14); gill rakers 5 $(6)+1+10$ (9-11), total 16 (15-18); vertebrae 36 (12 specimens). Particularly diagnostic is the high number of procurrent caudal rays: $9(8-10)$ above and 10 (ll) below. In this unusually high number of procurrent caudal rays L. acanthurus lines up with species of certain other myctophid genera: Lampanyctodes, Gymnoscopelus, Notoscopelus, Lampichthys, Hintonia, and Scopelopsis.

Body proportions. Data are given for the holotype first and are followed by the average and range for paratypes (11, unless otherwise noted). Head length 291, 294 (284-306); head depth 182, 185 (174-196); upper-jaw length 214, 215 (209-229); orbit length 67, 63 (55-69); prepectoral length 304, 310 (303-326); prepelvic length 422, 430 (423-440); predorsal length 467, 463 (457-478); preanal length 587, 586 (575-600); preadipose length 802, 803 (790-812); dorsal to anal origins 234, 245 (232-255); dorsal to pelvic origins 212, 203 (191-214); dorsal-base length 155, 160 (153-170); anal-base length 210, 209 (202-217); caudal-peduncle length 231, 220 (211-228); caudal-peduncle depth 103, 99 (90-109); pectoral-fin length 394, 387 (340-414 in 10 specimens); pel-vic-fin length 171,168 (160-184 in 6 specimens); infracau-dal-gland length 151, 163 (147-199).

Luminous organs. All photophores are reniform and are bordered dorsally and laterally with dark pigment; ventrally, a rather narrow downwardly directed channel is unpigmented. There is no evidence of minute secondary photophores on head or back. Dn is absent. Vn is small, is heavily masked dorsally by a thick streak of dark pigment that covers anteroventral margin of orbit, and is located just below confluence of orbital rim and posterodorsal aspect of nasal apparatus. Cheek and Bu photophores are absent. A prominent Ce lies at dorsal margin of opercle, well before a vertical from end of upper jaw. OP_{1}, somewhat larger than other photophores, is about on level of middle of base of pectoral fin; OP_{2} lies directly below OP_{1}, about in line with the gape. PLO is located about two of its diameters below lateral line and about three diameters before
origin of pectoral fin. PVO_{1} is about its diameter before bases of fourth or fifth pectoral ray; PVO_{2}, about three diameters below and two before base of lower pectoral ray. PLO, PVO_{1-2}, and PO_{2} form a nearly straight, posteriorly slanting line.

Five $\mathrm{PO} ; \mathrm{PO}_{4}$ highly elevated to on or slightly above level of middle of base of pectoral fin and lies just behind a vertical from PO_{3}. PO_{2-3} interspace slightly less than those between PO_{1-2} and between PO_{3-5}, which are about equal. VLO lies about its diameter nearer to lateral line than to base of pelvic fin, and about over base of inner ray of that fin, and on or very near a line from PLO to SAO_{1}. The four Vo form a curved line, along which VO_{2} is elevated by at least its diameter above VO_{1} and VO_{3} is on a descending line between VO_{2} and VO_{4}, which is close to vent.

SAO series forms an angle of about $110^{\circ}-115^{\circ}$. SAO $1-2$ interspace slightly exceeds that of SAO_{2-3}. SAO_{1} lies about its diameter before a vertical from VO_{3}, on or slightly above level of $\mathrm{SAO}_{2} . \mathrm{SAO}_{3}$ touches lateral line; a line through SAO_{2-3} passes through or slightly behind VO_{4}. The AO series, numbering $6+7$, is slightly curved, with AO_{1} depressed about its diameter below AO_{2}. All AOp lie behind end of anal base. AOa-AOp interspace equals about half the least depth of caudal peduncle. The two Pol lie on a line from last AOa to end of adipose base. The AOp and Prc series are continuous. First three of the four Prc are closely spaced, near bases of procurrent caudal rays; Prc4 is widely distant, at lateral line about one or two of its diameters behind a vertical from PrC_{3}.

The very short supracaudal luminous gland apparently comprises only two coalesced scales. The long infracaudal gland is formed by seven overlapping scales that extend to base of last anal ray.

COMPARISONS. Lampanyctus acanthurus is closely related to the poorly understood nominal species L. tenuiformis Brauer, 1906, and L. festivus Tåning, 1928, which may be conspecific. They were considered as distinct in the brief discussion by Nafpaktitis and Nafpaktitis (1969, p. 46, figs. 57, 58). These authors stated that L. tenuiformis has 6 infracaudal luminous scales that occupy about fourfifths of the ventral surface of the caudal peduncle and that L. festivus has 8 scales that fill the entire surface. Other differences indicated were, respectively, 18 versus 20 anal rays, 14 versus 17 pectoral rays, and $6+7$ versus $7+8$ AO photophores. The AO_{2} series of photophores was illustrated as being straight in L. tenuiformis, but curved in L. festivus. The gill rakers were stated to number $4+1+9$ for L. tenuiformis; no count was given for L. festivus, but for that species Bolin (1959) listed $4+1+$ 9 (8-9) rakers. Nafpaktitis and Nafpaktitis (1969) also stated: "In addition, the Vo series in L. festivus formed
a pronounced arc, with the second vo well above the level of the first Vo. The same organs were on the same or almost the same level in L. tenuiformis. The SAO_{1} was on the same level with the SAO_{2} and distinctly in advance of the VO_{3} in L. festivus, whereas in L. tenuiformis this organ was somewhat lower than the SAO_{2} and directly above the $\mathrm{VO}_{3} . "$ These authors did not mention cheek photophores, but Bolin (1959) stated that a poorly developed Bu was detectable over the posterior part of the maxillary in good specimens of L. festivus.

Based on the above criteria, L. acanthurus is most closely related to L. festivus in that it has a long infracaudal gland and a distinctly curved VO and AO series of photophores. The sharpest distinction seems to lie in the higher number of procurrent caudal rays (a character heretofore largely ignored). Dr. E. Bertelsen (personal communication, 1972) has found that the holotype of L. festivus has six procurrent rays in each lobe of the caudal fin.

DISTRIBUTION. Lampanyctus acanthurus is known only from two areas of the North Pacific Ocean, as indicated by the capture data listed for the study material (all known specimens). Most specimens were taken about 600 miles north of Hawaii (about $27-31^{\circ} \mathrm{N} ., 155^{\circ} \mathrm{W}$.). Two specimens were taken about 350 miles west of Pt. Conception, California.

ETYMOLOGY. The name acanthurus is based on the latinized Greek words acanthos, spiny, and ura, tail, in reference to the unusually high number of spiny procurrent rays in the caudal fin.

Literature Cited

ANDRIASHEV, A. P.
1962. Batipelagicheskie ryby Antarktiki. l. Semeistvo Myctophidae (Bathypelagic Fishes of the Antarctic. 1. Family Myctophidae). Issledovaniya Fauny Morei, vol. 1, no. 9, pp. 216-294. Moskva, Leningrad. Bibliogra. 116 refs. with illustr. (Translation No. 29, Bureau of Commercial Fisheries Laboratory, United States National Museum, Washington, D.C.)
BLEEKER, P.
1856. Beschrijvingen nieuwe of weinig bekende vischsoorten van Manado en Makassar--. Acta Societatis Regiae Scientiarum Indo-Nederlandicae, Batavia, vol. 1, 80 pp .
BOLIN, R. L.
1959. Iniomi: Myctophidae from the "Michael Sars" North Atlantic Deep-sea Expedition 1910.

Report on the Scientific Results of the "Michael Sars" North Atlantic Deep-sea Expedition 1910, vol. 4, pt. 2, no. 7, 45 pp., 7 figs. University of Bergen, Norway.
BRAUER, A.
1904. Die Gattung Myctophum. Zoologischer Anzeiger, vol. 28, no. 10, pp. 377-404, figs. 1-9.
1906. Die Tiefsee-Fische. I. Systematischer Teil. In Chun, C., Wissenshaftliche Ergebnisse der Deutschen Tiefsee Expedition, Valdivia, 189899. G. Fischer, Jena, vol. 15, part l, 431 pp., 176 figs., 18 pls.
GILBERT, C. H.
1908. The lantern fishes. In Reports on the scientific results of the expedition to the tropical Pacific, in charge of Alexander Agassiz, by the U. S. Fish Commission steamer "Albatross," from August, 1899, to March, 1900, Commander Jefferson F. Moser, USN, commanding. X. Memoirs of the Museum of Comparative Zoology at Harvard College, vol. 26, no. 6, pp. 217-237, pls. l-6.
1913. The lantern-fishes of Japan. Memoirs of the Carnegie Museum, vol. 6, no. 2, pp. 67-107, pls. 11-14.
GÜNTHER, A.
1887. Report on the deep-sea fishes collected by H.M.S. Challenger during the years 1873-76. In The Voyage of H.M.S. Challenger. Zoology, vol. 22, lxv +335 pp .
NAFPAKTITIS, B. G., and M. NAFPAKTITIS
1969. Lanternfishes (family Myctophidae) collected during cruises 3 and 6 of the R / V Anton Bruun in the Indian Ocean. Bulletin of the Los Angeles County Museum of Natural History, Science, no. 5, 79 pp., 82 figs.
PARR, A. E.
1928. Deepsea fishes of the order Iniomi from the waters around the Bahama and Bermuda islands, with annotated keys to the Sudidae, Myctophidae, Scopelarchidae, Evermannellidae, Omosudidae, Cetomimidae and Rondeletidae of the world. Scientific Results of the Third Oceanographic Expedition of the "Pawnee" 1927. Bulletin of the Bingham Oceanographic Collection, Peabody Museum of Natural History, Yale University, vol. 3, art. 3, 193 pp., 43 figs.
1931. Deepsea fishes from off the western coast of North and Central America, with keys to the genera Stomias, Diplophos, Melamphaes and Bregmaceros, and a revision of the macropterus group of the genus Lampanyctus. Scientific

Results of the Second Oceanographic Expedition of the "Pawnee," 1926. Bulletin of the Bingham Oceanographic Collection, Peabody Museum of Natural History, Yale University, vol. 2, art. 4, 53 pp., 18 figs.
TÅNING, $\AA . \mathrm{V}$.
1928. Synopsis of the scopelids in the North Atlantic. Videnskabelige Meddelelser fra Dansk naturhistorisk Forening i København, vol. 86, pp. 49-69, figs. l-2.
1932. Notes on scopelids from the Dana expeditions. I. Videnskabelige Meddelelser fra Dansk naturhistorisk Forening i København, vol. 94, pp. 125-146, figs. 1-16.
WEBER, M.
1913. Die Fische der Siboga-Expedition. Siboga-Expeditie LVII. Leiden, xii +710 pp., 123 figs., 12 pls.
WISNER, R. L.
1963. Lampanyctus hubbsi, a new myctophid fish from the east-central tropical Pacific Ocean, with notes on the related, sympatric eastern Pacific species, L. omostigma and L. parvicauda. Copeia, 1963, no. l, pp. 16-23, figs. 1-4.

TABLE 1. (Continued)

	D. trachops		D. similis		D. suborbitalis D. termophilus			
	16(32.1-63.5 m		17(36.6-72.2 mm.		9(52.5-71.5 mm.) 11 ($30.2-48.2 \mathrm{~mm}$.			
	Avg.	Range	Avg.	Range	Avg.	Range	Avg.	Range
Head length	314	304-320	329	317-340	299	286-312	351	341-361
Head depth	220	210-233	218	208-233	201	193-207	245	227-266
Upper-jaw length	240	230-248	233	223-243	226	220-235	262	252-271
Orbit length	94	88-100	86	79-92	83	80-91	95	90-100
Prepectoral length	313	301-328	333	320-346	302	289-312	337	323-352
Prepelvic length	447	428-464	450	439-463	446	435-462	475	450-495
Preanal length	644	625-660	638	627-653	640	622-663	655	641-671
Predorsal length	464	450-477	461	451-469	453	446-465	513	504-528
Preadipose length	829	813-846	823	810-839	817	800-849	844	827-866
Dorsal to pelvic origins	212	198-223	207	191-222	198	187-207	246	227-266
Dorsal to anal origins	293	280-308	297	288-308	278	268-291	288	276-301
Caudal-peduncle length	200 93	$181-208$ $86-100$	185	$170-202$ $86-108$	197	183-215	182	173-192
Caudal-peduncle depth Dorsal-base length	93 186	$86-100$ $181-197$	96 192	$86-108$ $181-206$	96 198	92-100	102	93-112
Anal-base length	185	174-197	192	$181-206$ $182-209$	198 176	$193-211$ $179-181$	179 188	$166-187$ $182-203$

TABLE 3. Numbers of fin rays and vertebrae for species of Lampanyctus having the VO_{2} elevated and displaced forward to near VO_{1}.
photophore markedly

1 Asterisks indicate the counts for the holotypes of Lampanyctus basili and L. $i s a a c s i$.
TABLE 4. Numbers of gill rakers and anal photophores for species of Lampanyctus having forward to near V_{1}.
Lower Rakers (including central raker)
$13 \quad 14$
2
$\cdot ? s o 00 s ? \cdot$ T pu

- I pue

$$
76 * \quad 5 \quad--\quad--
$$

$$
\begin{array}{rl}
-- & -- \\
7 & -- \\
-- & -- \\
6 & -- \\
-- & -- \\
2 & 10 *
\end{array}
$$

TABLE 4. (Continued)

[^0]
Paratypes $(90-125 \mathrm{~mm}$

Avg．Range
Holotype
52.0 mm.
Avg. Range

 MウN MボルボがいいN HN

m m N N NNH

 Head length
Head depth
Upper－jaw length
Orbit length
Prepectoral length
Prepelvic length
Preanal length
Predorsal length
Preadipose length
Dorsal to pelvic origins
Dorsal to anal origins
Caudal－peduncle length
Caudal－peduncle depth
Dorsal－base length
Anal－base length
Supracaudal－gland length
Infracaudal－gland length
> （29－57 mm．）

əбuey $\cdot 6 \wedge \forall$
TABLE 6. Characters other than position of $V O_{2}$ useful in separating Lampanyctus isaacsi,

FIGURE 1. General distribution of photophores of body and luminous organs of head of a hypothetical myctophid fish and their abbreviated terminology.

FIGURE 2. Diaphus trachops. Holotype, SIO 7l-172, male, 63.5 mm . S.L., photograph and schematic drawing, the latter to show particularly the photophore patterns.

FIGURE 3. Vn and associated ventral margin of orbit of Diaphus trachops (A), D. similis (B), and D. termophilus (C).

FIGURE 4. Diaphus similis. Holotype, SIO 71-177, female, 72.2 mm . S.L., photograph and schematic drawing, the latter to show particularly the photophore patterns.

FIGURE 5. Lampanyctus basili. Holotype, SIO 69-20, 55.7 mm . S.L.

FIGURE 6. Distribution of Lampanyctus basili (solid circles and outlined area), and of L. isaacsi (solid squares).

FIGURE 7. Lampanyctus isaacsi. Holotype, SIO 63-560, 52.0 mm . S.L.

FIGURE 8. Lampanyctus acanthurus. Holotype, SIO 71-305, male, $93.3 \mathrm{~mm} . S . L ., ~ p h o t o g r a p h ~ a n d ~ s c h e m a t i c ~ d r a w i n g, ~ t h e ~$ latter to show particularly the photophore patterns.

Biodiversity Heritage Library

Wisner, Robert L. 1974. "Descriptions of five new species of myctophid fishes from the Pacific, Indian, and Atlantic Oceans." Occasional papers of the California Academy of Sciences 110, 1-37.
https://doi.org/10.5962/bhl.part.11914.

View This Item Online: https://www.biodiversitylibrary.org/item/23796
DOI: https://doi.org/10.5962/bhl.part. 11914
Permalink: https://www.biodiversitylibrary.org/partpdf/11914

Holding Institution

MBLWHOI Library

Sponsored by
MBLWHOI Library

Copyright \& Reuse

Copyright Status: In copyright. Digitized with the permission of the rights holder.
License: http://creativecommons.org/licenses/by-nc-sa/3.0/
Rights: https://biodiversitylibrary.org/permissions

This document was created from content at the Biodiversity Heritage Library, the world's largest open access digital library for biodiversity literature and archives. Visit BHL at https://www.biodiversitylibrary.org.

[^0]: 1 Asterisks indicate the counts for the holotypes of Lampanyctus basili and L. isaacsi.

