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1. Introduction   
Western Anatolia is a tectonically complex, seismically 
active, lithospheric extension and thinning region. 
The mainly E-W trending Büyük Menderes and Gediz 
grabens are the most specific structures of the region. The 
active tectonics in western Anatolia are controlled by the 
synergic movement of the Eurasian, African, and Arabian 
plates (Figure 1). The age and origin of this extension 
mechanism are debatable and have been explained by the 
following different models: (a) the tectonic escape model 
(Dewey and Şengör, 1979; Şengör et al., 1985); (b) the 
back-arc spreading model (McKenzie, 1972; Le Pichon 
and Angelier, 1979); (c) the orogenic collapse model 
(Seyitoğlu et al., 1992; Seyitoğlu and Scott, 1996); (d) the 
episodic model (Koçyiğit et al., 1999; Bozkurt and Sözbilir, 
2004, 2006). 

Mainly the E-W and the NE-SW trending Neogene 
to Quaternary continental basins occurred in the region 
under a N-S directional extension regime (Şengör et al., 
1985; Yılmaz et al., 2000). The Gediz and Büyük Menderes 
grabens are characterized by Miocene detachment faulting 
and core-complex formation, and high angle normal 
faulting controlled the Plio-Quaternary graben floor 
fillings with 140 km in length and 2.5–14 km in width, 
localized to the north and the south by the Menderes 
Massif metamorphic complex (Yilmaz et al., 2000; Sözbilir, 

2001; Bozkurt and Sözbilir, 2004, 2006; Çiftçi and Bozkurt, 
2009).

Many geophysical studies carried out by various 
authors (Sarı and Şalk, 2002, 2006; Göktürkler et al., 2003; 
Pamukçu and Yurdakul, 2008; Işık and Şenel, 2009; Çifçi 
et. al., 2011; Akay et al., 2013; Altınoğlu and Aydın, 2015; 
Bayrak et al., 2017; Çubuk-Sabuncu et al., 2017) were 
conducted on western Anatolia, including the Büyük 
Menderes graben region. Many of them revealed the 2D 
or 3D basement depths (Sarı and Şalk, 2002, 2006; Işık and 
Şenel, 2009), and Göktürkler et al. (2003) revealed the 2D 
crust model for a profile including important grabens of 
western Anatolia, as well as the Büyük Menderes graben. 
However, to the best of our knowledge, to determine 
the detailed structural features, mapping in the whole 
graben has not been studied in detail yet. Differently from 
previous studies, we have estimated both the basement 
and upper/lower crust boundaries and explored a new 
lineament map of the Büyük Menderes graben area by 
using gravity data. Determination of tectonic structures 
of a region is of importance since it provides information 
for researchers on seismicity, industrial material searches, 
and geothermal potentiality of that region. In this respect, 
this study aims to produce updated structural features of 
the Büyük Menderes basin (Figure 1) and its shallow crust 
interface topographies. Thus, some new lineaments in the 
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Büyük Menderes graben were discovered by using edge 
detection methods. Some of these methods were also used 
by the authors to investigate the Denizli graben, located at 
the westward continuation of the Büyük Menderes graben 
in western Anatolia (Altınoğlu et al., 2015). 

2. Gravity surveys
Gravity anomalies have been used as a powerful tool for 
geological mapping (Nabighian et al., 2005; Gout et al., 
2010; Uieda and Barbosa, 2012; Guo et al., 2014; Wang et 
al., 2014; Chen et al., 2015; Ali et al., 2017; Wang, 2017). 
To define the linear features and the crustal structure of 
the basin, the Bouguer gravity anomaly data provided by a 
joint study of the General Directorate of Mineral Research 
and Exploration of Turkey (MTA) and the Turkish 
Petroleum Corporation (TPAO) were used. The data were 
taken at station spacing of 250–500 m with accuracy of 0.1 
mGal and then the data were gridded over areas of 1 km2. 

The contour interval of the map shown in Figure 2 is 2 
mGal. The gravity anomaly values range from –35 to 75 
mGal with an increasing regional tendency from the east 
to the west and the minimum values emerged as a result of 
the crust thinning and thickening of sedimentary basins. 
Sedimentary basins are generally related to low gravity 
values based on the low-density sediments in them (Sarı 
and Şalk, 2002). Positive gravity anomalies monitored at 
the west of the graben are interpreted as a positive anomaly 
belt attendance of a concave side of island arc related to the 
uplifted mantle (Rabinowitz and Ryan, 1970; Özelçi 1973).

To obtain the lineament map of the study area, some 
edge detection filters were applied to Bouguer gravity 
anomaly data by using the computer code given by Arısoy 
and Dikmen (2011). New detailed basement and upper-
lower crust boundaries were produced with the use of a 
computer code presented by Gómez-Ortiz and Agarwal 
(2005). To present the seismic activity of the faults or to 

Figure 1. Simplified tectonic map of Anatolian region and study area. NAF: North Anatolian Fault, EAF: East Anatolian Fault, NEAF: 
North East Anatolian Fault, BMGDF: Büyük Menderes Graben Detachment Fault, EF: Efes Fault, KSFZ: Kuşadası Fault Zone, SKF: Söke 
Fault, BDF: Bozdoğan Fault, KRCF: Karacasu Fault, CF: Çine Fault.
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see if the probable detected new lineament was seismically 
active, the epicentral distribution of the earthquakes that 
occurred in the region was produced in terms of the data 
from 2000 to 2017 (http://www.koeri.boun.edu.tr/sismo/
zeqdb/).

3.  Methods
The power spectrum method developed by Spector and 
Grant (1970), which also utilizes 2D Fourier transform of 
potential field data, was used to detect the average depths 
of the crust layers. 

Many studies in the literature (Hahn et al., 1976; 
Connard et al., 1983; Bosum et al., 1989; Garcia-Abdeslem 
and Ness, 1994) used the power spectrum method applied 
in the current study. Figure 3 clearly reveals that three 
distinct layers were discovered in the study area.

The Parker–Oldenburg algorithm, based on the 
relationship between the Fourier transform of the gravity 
data and the sum of the interface topography’s transform 
(Parker, 1972; Oldenburg, 1974), was used to enhance 
the three-dimensional interface topography. The Fourier 
transform given in Eq. (1) is used to calculate the gravity 
anomaly of an uneven homogeneous layer.

	 (1)
Here, f [∆ g (x)], G, k, g, z1 (x), and z0 indicate the 

Fourier transform of the gravity anomaly, gravitational 
constant, wave number, density of the layer, depth to 
interface, and average depth of horizontal interface, 
respectively. In the equation, density interface topography 
is calculated from ∆ g (x) and z0 in the iteration process. In 
the iteration algorithm, either z1=0 or an appropriate value 
is designated for the right part of the formula. The first 
estimation of the topographical conditions was enhanced 
by inverse Fourier transform. This topography parameter 
is considered to determine the right-hand side of the 
formula. The result obtained from the first prediction 

is used to reach the second topography approach. The 
iteration process continues until the convergence criterion 
is reached. To investigate the features of the study region, 
some edge detection techniques were also considered here 
more closely. 

Edge detection of a source body is a useful tool in the 
interpretation of gravity anomalies, which were widely 
used in exploration technologies for mineral resources 
(Mickus, 2008; Chen et al., 2015), geothermal exploration 
(Saibi et al., 2006; Ali et al., 2015; Nishijima and Naritomi, 
2015), and mapping geological boundaries such as 
faults, buried faults, and lineaments (Rapolla et al., 2002; 
Ardestani, 2005; Ardestani and Motavalli, 2007; Kumar et 
al., 2009; Oruç, 2010; Cheyney et al., 2011; Naouali et al., 
2011; Ma and Li, 2012; Ekinci et al., 2013; Hoseini et al., 
2013; Alvandi and Rasoul, 2014; Wang et al., 2015; Zuo 
and Hu, 2015; Alvandi and Babaei, 2017; Elmas et al., 
2018). 
3.1. Horizontal gradient magnitude
The horizontal gradient magnitude (HGM) method is 
a useful tool in determining the surface or buried faults 
(Cordell and Grauch, 1985; Hornby et al., 1999; Phillips, 
2000; Rapolla et al., 2002; Lyngsie et al., 2006; Saibi et al., 
2006). HGM was first given by Cordell and Grauch (1985): 
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 are the first-order derivatives of the 
gravity field in the orthogonal directions.

HGM is very effective in highlighting both shallow and 
deep geological bodies. The maximum values of the HGM 
are located at abrupt changes of density and indicate the 
source edges (Cordell, 1979; Cordell and Grauch, 1985, 
Cooper and Cowan, 2004). 
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3.2. Analytic signal
The analytic signal tool was first applied to potential field 
data by Nabighian (1972). The approach is utilized to 
define the magnitude of the total gradient of the magnetic 
anomaly and mathematically given as:
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Here, f is the first vertical derivative ( ) of the 
gravity field. Similar to the horizontal gradient, it generates 
maximum values over source edges (Nabighian, 1972, 
1984; Roest et al., 1992). 
3.3. Tilt angle 
The tilt angle technique, first proposed by Miller and Singh 
(1994), was applied to the gravity data. The following ratio 
constitutes the zero values of the tilt angle map, which 
show the boundary of the bodies. The equation was given 
by Miller and Singh (1994) as follows:
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Here,  indicates the tilt angle parameter.
The tilt angle is positive over a source and zero values 

reflect the source edges (Miller and Singh, 1994). This 
method is useful in enhancing edges of anomalies for both 
shallow and deep sources. The tilt angle of the first vertical 
gradient of the gravity data provides a new tilt angle. It was 
first used by Oruç (2010) and is given as:

	

	

HG =
∂g
∂x

!

+  
∂g
∂y

!

 

 

 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 

 

𝐴𝐴 𝑥𝑥, 𝑦𝑦 =  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

!

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

!

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

!

 

 

∅ = tan!!
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

!
+ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
!

 

 

∅ = tan!!
𝜕𝜕!𝑔𝑔
𝜕𝜕𝑧𝑧!

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 

!
+ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
!

 

 

𝑇𝑇𝑇𝑇 =  
𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

!

+ 
𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

!

 

 

cos 𝜃𝜃 =

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

!
+ 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

!

𝐴𝐴
 

 

𝐻𝐻𝐻𝐻𝐻𝐻 = tanh!!
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

!
+ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
!

 

 

 

 

	 (5)

The tilt angle is thus obtained from the second vertical 
gradient ( ) and the HGM. Oruç (2010) remarked 
that the practical utility of the technique is demonstrated to 
improve the gravity resolution and emphasized the effects 
of the geological boundaries for the structural framework.
3.4. Tilt derivative
First, Verduzco et al. (2004) calculated the HGM of the tilt 
angle (TA), given by:
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The maximum values of the total horizontal derivative 

of the tilt angle represent the source body edges (Cooper 
and Cowan, 2006).
3.5. Theta map 
The theta map is a combination of the HGM and the 
analytic signal, described by Wijns et al. (2005) to use for 
edge detection. It is given as:  
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Here, |A| is the analytic signal amplitude. The 

maximum values are observed within the structure even 
as minimum values are seen along the source body edges 
in the theta map.
3.6. Hyperbolic tilt angle
The hyperbolic tangent (HTA) function was expressed by 
Cooper and Cowan (2006) as: 
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The maximum value of the HTA generates the location 

of the source body edges. 

4. Results and discussion
By using the Bouguer gravity anomaly data, the linear 
features and the 3D subsurface undulation of the Büyük 
Menderes graben and surroundings were carefully studied 
in the present work. The Büyük Menderes graben has E-W 
trending negative gravity anomalies. The gravity anomaly 
values of western Anatolia get higher from the east to the 
west (Sarı and Şalk 2002). It is understood, as pointed out 
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Figure 3. The power spectrum of the Bouguer gravity anomaly 
of the study area.
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by Sarı and Şalk (2002), that the decreasing of the anomaly 
values from west to east is related to low density and the 
crust thinning in the western Anatolian region. 

Three subsurface levels have been determined as 3 km, 
9 km, and 28 km by the slopes of the power spectrum-
wave number graph of the gravity data as clearly seen in 
Figure 3, representing the sediment thickness, the upper-
lower crust boundary, and the Moho depth, respectively.

To analyze the shallow crust structure of graben 
area, the sediment and the upper-lower crust boundary 
topographies were computed using a computer code 
produced in MATLAB based on the Parker–Oldenburg 
algorithm (Parker, 1972; Oldenburg, 1974). 

To produce the sediment topography, the initial depth 
in the iteration process is taken to be 3 km. The average 
density contrast is considered to be 0.3 g/cm3 between 
Neogene sediments until the crystalline basement level 
(~2.4 g/cm3) and metamorphic complex (~2.7 g/cm3). The 

obtained sediment topography map is provided in Figure 4. 
The maximum depth of the sedimentary basin is 

observed to be 4.1 km between Sultanhisar and Nazilli 
and the sediment thickness is seen to be decreasing from 
east to west and from south to north. The maximum 
sediment thickness of the Büyük graben was determined 
as 1.5–2 km by Sarı and Şalk (2002), 2.5 km by Göktürkler 
et al. (2003), and 3.9 km by Işık and Şenel (2009) in the 
literature. The sediment thickness was determined as 1.5 
km at Aydın by Cohen et al. (1995), and between Aydın 
and Sultanhisar as 2.0–2.2 km by Işık (1997) and 2.0 km 
by Sarı and Şalk (2006). The sediment thickness between 
Sultanhisar and Nazilli was determined as 2.2–2.3 km by 
Işık (1997) and 2.5 km by Şenel (1997). The differences in 
thickness are believed to stem from the consideration of 
different density contrast values. The graben structure in 
the region deepens from north to south and from west to 
east as mentioned in the work of Işık and Şenel (2009). 
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To produce the upper-lower crust boundary topography, 
the initial depth in the iteration process is taken to be 9 km. 
The average density contrast is considered to be 0.4 g/cm3 
between average crust density (~2.7 g/cm3) and the material 
below the assumed flexed elastic plate (~3.1 g/cm3). The 
obtained upper-lower crust boundary topography ranges 
from 4.50 to 12.50 km and shallows from east to west, as 
seen in Figure 5. These results reveal that the anomalies of 
the study area are compatible with the upper-lower crust 
topography. It is noticeable that the upper-lower crust 
boundary takes the maximum depth of 12.50 km in Nazilli, 
where the gravity anomaly values are about –35 mGal. The 
upper-lower crust boundary ranges from 8.50 km to 11.50 
km between Ortaklar and Sultanhisar and from 11.50 km 
to 12.50 km at the Sultanhisar-Nazilli line. The depths are 

seen to be 10–11 km and 7–9 km at the Bozdoğan graben 
and at the Söke basin, respectively. It is important to point 
out that a new basin structure was detected in the N-S 
direction in the south of the Büyük Menderes graben (see 
Figure 5). It can be readily seen from both Figure 4 and 
Figure 5 that the basement topographies improved under 
the same tectonism with the lineaments bounding the 
Büyük Menderes graben. Both basement topographies are 
seen to have the same behavior that shows minimum and 
maximum values in the same area. Our observations are 
supported by the work of Çifçi et al. (2011).

To discover the linear features of the study area, the 
horizontal gradient, analytic signal, first vertical gradient, 
tilt angle, tilt angle of vertical gradient, tilt derivative, theta 
map, and hyperbolic tilt angle edge detection methods 
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were applied to the Bouguer gravity anomaly data. In 
general, faults are expected to be situated at or near the 
steepest gradient of the anomaly. As pointed out by Gout 
et al. (2010), this characteristic is particularly helpful 
in areas where the fault zone is concealed by younger 
sedimentary deposits. The maximum value of the HGM 
and analytic signal indicate the source edge, and maximum 
values indicate the boundary faults of the graben mainly 
on the E-W and the SW-NE trends (see Figures 6a and 
6b). The first vertical gradient map is given in Figure 6c. 
The zero values of the tilt angle map show the boundary 
of the source edge, so in the tilt angle map zero values are 
pointed out by red lines in Figure 6d. The zero values of the 
tilt angle of the vertical gradient map show the boundary 
of the source edge, and zero values of the tilt angle of the 
vertical gradient are pointed out by red lines in Figure 6e. 

The resolution of this map is good. The maximum values 
are monitored within the source in the theta map given 
in Figure 6f. Its maximum values are in agreement with 
the horizontal gradient and analytic signal maximum 
values, but it is more sensitive to detecting probable new 
shallow faults than deep boundary faults. The tilt derivative 
produces maximum values vertically above the edges of 
source bodies, so it is easy to delineate vertical faults with 
its maximum as seen in Figure 6g. The maximum value 
of the hyperbolic tilt angle points out the location of the 
source body edges. As seen in Figure 6h, the minimum 
values of the hyperbolic tilt angle show the boundary of the 
basin and the maximum values of the hyperbolic tilt angle 
give the faults. 

The enhanced maps of the lineaments based on the 
edge detection methods are presented in Figures 6a–6h. 
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For comparison purposes, different methods were used to 
reach the results. The obtained results are seen to usually 
be in good agreement (see Figures 6a–6h). The lineaments 
that come out in the four methods are assumed to be 
lineaments in a general sense. The results show that almost 
all methods distinguished the E-W and NE-SW structural 
trends and all filters delineated edges of the graben 
successfully. The obtained lineaments are seen to be in 
agreement with the lineaments given by the MTA (Duman 
et al., 2011; Emre et al., 2011). Most of the lineaments 
identified are the boundary faults of the Büyük Menderes, 
Karacasu, and Bozdoğan grabens. Note that many newly 
discovered faults have been presented in the western, 
northern, and southern parts of the considered area. 

The obtained structural map is consistent with many 
faults already recognized, and it highlights many new 
linear features. In order to underpin the current findings 
about the faults, the study region of interest was also 
interpreted with the aspect of earthquake activity. As seen 
from Figure 7, the region has high seismic activity; the 
western part of the area is the most active part and most of 
the earthquakes took place on the northern boundary of 
the Büyük Menderes graben.

In the study area, except for the main faults bounding 
the basins, many lineaments that were not previously 
discovered in the active fault map have been determined. 
High seismic activity has been observed in the areas where 
these new lineaments were identified. 

In the basement undulation map, lineaments have been 
determined near the Selçuk, Nazilli, and Söke districts of 
the study, shaping the topography and extending to the 
bottom of the basement. The upper-lower crust undulation 
map in the basin of the south of the study area is noticeable. 
Thus, as seen in Figure 7, the newly determined lineaments 

in the bottom topography extend to the depth of the base 
between Bozdoğan and Çine.

5. Conclusions and recommendations
The present study, carried out based on edge detection 
techniques and a 3D inversion approach to gravity data, 
has mainly produced the following conclusions:

1) The maximum depth of the sedimentary basin of 
the Büyük Menderes graben is observed to be 4 km. The 
sedimentary thickness is seen to be decreasing from east 
to west and from south to north. The thicknesses of the 
other basins in the study area, the Karacasu and Bozdoğan 
grabens, have been determined to be 2 km.

2) The obtained upper-lower crust boundary 
undulation is ranging from 4.50 to 12.50 km.

3) Both topographies, presented for the first time 
in the whole Büyük Menderes graben area, are seen to 
be correlated with each other. The depth level increases 
from east to west and from north to south in the region 
of interest.

4) As is the case in the literature, it is understood 
from our results that faults in the E-W direction of the 
Büyük Menderes graben separate horsts and grabens. It is 
concluded that the currently obtained topographies and 
the faults bounding the Büyük Menderes graben have been 
improved due to the same tectonic effect. 

5) In terms of seismicity of the region, the newly 
determined sediment and upper-lower crust boundary 
topographies and the lineaments revealed that the basin 
is controlled by deep faults under the joint effect of the 
Cyprus Island Arc, Ölüdeniz Fault Zone, and Isparta 
Angle.  

With this study, layer topographies of the Büyük 
Menderes were detected and the Büyük Menderes’s 
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crust structure as well as basin geometry were revealed. 
The results obtained from the study provide valuable 
information for geologists to delineate the faults and other 
tectonic features. 

In future studies, the focus may be on the newly 
detected faults and special interest may be given to 
seismological events.
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