

International Journal of Group Theory ISSN (print): 2251-7650, ISSN (on-line): 2251-7669 Vol. 11 No. 1 (2022), pp. 1-6. $©$ 2021 University of Isfahan

A NOTE ON GROUPS WITH A FINITE NUMBER OF PAIRWISE PERMUTABLE SEMINORMAL SUBGROUPS

ALEXANDER TROFIMUK

ABSTRACT. A subgroup *A* of a group *G* is called *seminormal* in *G*, if there exists a subgroup *B* such that $G = AB$ and AX is a subgroup of *G* for every subgroup *X* of *B*. The group $G = G_1 G_2 \cdots G_n$ with pairwise permutable subgroups G_1, \ldots, G_n such that G_i and G_j are seminormal in G_iG_j for any $i, j \in \{1, \ldots, n\}, i \neq j$, is studied. In particular, we prove that if $G_i \in \mathfrak{F}$ for all *i*, then $G^{\mathfrak{F}} \leq (G')^{\mathfrak{N}}$, where \mathfrak{F} is a saturated formation and $\mathfrak{U} \subseteq \mathfrak{F}$. Here \mathfrak{N} and \mathfrak{U} are the formations of all nilpotent and supersoluble groups respectively, the $\mathfrak{F}\text{-}$ residual $G^{\mathfrak{F}}$ of G is the intersection of all those normal subgroups *N* of *G* for which $G/N \in \mathfrak{F}$.

1. **Introduction**

Throughout this paper, all groups are finite and *G* always denotes a finite group. We use the standard notations and terminology of $[1, 2]$ $[1, 2]$ $[1, 2]$ $[1, 2]$. The monograph $[3]$ contains the necessary information of the theory of formations.

It is well known that *AB* is a subgroup of *G* if and only if *AB* = *BA*, that is, if the subgroups *A* and *B* permute. Should it happen that *AB* coincides with the group *G*, then *G* is said to be *factorized* by its subgroups *A* and *B*.

We say that two subgroups *A* and *B* of *G* are *mutually permutable* if *A* permutes with every subgroup of *B* and *B* permutes with every subgroup of *A*. If $G = AB$ and *A* and *B* are mutually

.

<http://dx.doi.org/10.22108/ijgt.2021.119299.1575>

Communicated by Evgeny Vdovin.

MSC(2010): Primary: 20D10; Secondary: 20D40.

Keywords: finite group, residual, seminormal subgroups, product of subgroups, derived subgroup.

Received: 22 September 2019, Accepted: 11 January 2021.

Article Type: Research Paper.

permutable, then *G* is called the *mutually permutable product* of *A* and *B*, see [[4](#page-5-3)]. The monograph [[5](#page-5-4)] contains detailed information on the structure of groups, which are mutually permutable products of two subgroups. More generally, a group $G = G_1 G_2 \cdots G_n$ is said to be the *product of the pairwise mutually permutable subgroups* G_1, \ldots, G_n if G_i and G_j are mutually permutable subgroups of G for all $i, j \in \{1, \ldots, n\}, i \neq j$. The structure of groups factorized by finitely many pairwise mutually permutable subgroups is obtained in $[6, 7, 8]$ $[6, 7, 8]$ $[6, 7, 8]$ $[6, 7, 8]$ $[6, 7, 8]$ $[6, 7, 8]$ and also in $[5,$ $[5,$ $[5,$ Chapters 4–5].

A subgroup *A* of *G* is called *seminormal* in *G*, if there exists a subgroup *B* such that *G* = *AB* and *AX* is a subgroup of *G* for every subgroup *X* of *B*, see [\[9\]](#page-5-8). There are many papers devoted to studying groups with seminormal subgroups, see, for example, [\[9\]](#page-5-8)–[\[16](#page-5-9)]. It's obvious that if $G = AB$ is the mutually permutable product of *A* and *B*, then *A* and *B* are seminormal in *G*. The converse is not true. Let Z_n be a cyclic group of order *n*. A group

$$
G = Z_7 \rtimes \text{Aut } Z_7 = Z_7 \rtimes (Z_2 \times Z_3)
$$

is the product of seminormal in *G* subgroups $A \simeq Z_2 \times Z_3$ and $B \simeq Z_7 \rtimes Z_2$. But *A* and *B* are not mutually permutable, since *A* is not permute with some subgroups of order 2 of *B*.

Recall that a formation \mathfrak{F} is said to be *saturated* if $G/\Phi(G) \in \mathfrak{F}$ implies $G \in \mathfrak{F}$. In present paper, we develop the result [[5](#page-5-4), Theorem 5.2.21]: *if* $G = G_1 G_2 \cdots G_n$ *is the product of the pairwise mutually permutable subgroups* G_1, \ldots, G_n *such that* G_i *belongs to* \mathfrak{F} *for all* $i \in \{1, \ldots, n\}$ *and the derived subgroup G' is nilpotent, then G belongs to* \mathfrak{F} *. Here* \mathfrak{F} *be a saturated formation such that* $\mathfrak{U} \subseteq \mathfrak{F}$ *.*

Now we state our main result in the following.

Theorem 1.1. Let $G = G_1 G_2 \cdots G_n$ be the product of the pairwise permutable subgroup $G_1 \ldots, G_n$ such that G_i and G_j are seminormal in G_iG_j for any $i, j \in \{1, ..., n\}$, $i \neq j$. Let $\mathfrak F$ be a saturated *formation such that* $\mathfrak{U} \subseteq \mathfrak{F}$ *. Suppose that* G_i *belongs to* \mathfrak{F} *for all* $i \in \{1, ..., n\}$ *. Then* $G^{\mathfrak{F}} \leq (G')^{\mathfrak{N}}$ *.*

Corollary 1.2. Let $G = G_1 G_2 \cdots G_n$ be the product of the pairwise mutually permutable subgroups G_1, \ldots, G_n . Let \mathfrak{F} *be a saturated formation such that* $\mathfrak{U} \subseteq \mathfrak{F}$ *. Then:*

1) *if* G_i belongs to \mathfrak{F} for all $i \in \{1 \ldots, n\}$ and G' is nilpotent, then G belongs to \mathfrak{F} , see [[5](#page-5-4), Theorem 5.2.21]*;*

 $2)$ *if* G_i belongs to \mathfrak{U} for all $i \in \{1 \ldots, n\}$ and G' is nilpotent, then G belongs to \mathfrak{U} , see $[5,$ Corollary 4.1.39]*.*

Since $\mathfrak{U} \subseteq \mathfrak{N}\mathfrak{A}$, it follows that $G^{(\mathfrak{N}\mathfrak{A})} = (G^{\mathfrak{A}})^{\mathfrak{N}} = (G')^{\mathfrak{A}} \leq G^{\mathfrak{U}}$ by [[17,](#page-5-10) Proposition 2.2.8, Proposition 2.2.11. Therefore for $\mathfrak{F} = \mathfrak{U}$, we obtain the following corollary.

Corollary 1.3. Let A and B be supersoluble subgroups of G and $G = AB$. Then:

1) *if A* and *B* are seminormal in *G*, then $G^{\mathfrak{U}} = (G')^{\mathfrak{N}},$ see [[16](#page-5-9), Theorem 2.3];

2) if A and B are seminormal in G and G' is nilpotent, then G is supersoluble, see [\[16](#page-5-9), Theorem 2.2];

3) *if A and B are mutually permutable and G′ is nilpotent, then G is supersoluble, see* [[18](#page-5-11), Theorem 3.8]*;*

4) *if A* and *B* are mutually permutable, then $G^{\mathfrak{U}} = (G')^{\mathfrak{N}}$, see [[19,](#page-5-12) Theorem 2.1].

2. **Preliminaries**

In this section, we give some definitions and basic results which are essential in the sequel.

Recall that a *p-closed* group is a group with a normal Sylow *p*-subgroup.

Denote by $Z(G)$, $F(G)$ and $\Phi(G)$ the centre, Fitting and Frattini subgroups of *G* respectively, and by $O_p(G)$ the greatest normal *p*-subgroup of *G*. Denote by $\pi(G)$ the set of all prime divisors of order of *G*. The semidirect product of a normal subgroup *A* and a subgroup *B* is written as follows: $A \rtimes B$. If *H* is a subgroup of *G*, then $H_G = \bigcap_{x \in G} H^x$ is called the core of *H* in *G*.

Let $\mathbb P$ be the set of all prime numbers. A *formation function* is a function f defined on $\mathbb P$ such that $f(p)$ is a (possibly empty) formation. A formation $\mathfrak F$ is said to be *local* if there exists a formation function *f* such that $G \in \mathfrak{F}$ if and only if for any chief factor H/K of *G* and any $p \in \pi(H/K)$, one has $G/C_G(H/K) \in f(p)$. We write $\mathfrak{F} = LF(f)$ and f is a local definition of \mathfrak{F} . By [\[3,](#page-5-2) Theorem IV.3.7], among all possible local definitions of a local formation $\mathfrak F$ there exists a unique f such that f is *integrated* (i.e., $f(p) \subseteq \mathfrak{F}$ for all $p \in \mathbb{P}$) and *full* (i.e., $f(p) = \mathfrak{N}_p f(p)$ for all $p \in \mathbb{P}$). Here \mathfrak{N}_p is the formation of all *p*-groups. Such local definition *f* is said to be *canonical local definition* of \mathfrak{F} . By [[3](#page-5-2), Theorem IV.4.6], a formation is saturated if and only if it is local.

If *G* contains a maximal subgroup *M* with a trivial core, then *G* is said to be *primitive* and *M* is its *primitivator*.

Lemma 2.1. (1) If *H* is seminormal in *G* and $H \leq X \leq G$, then *H* is seminormal in *X*.

(2) *If H is seminormal in G and N is normal in G, then HN is seminormal in G and HN/N is seminormal in G/N.*

(3) Let $H \leq K \leq G$ and N be a normal subgroup in G. If H is seminormal in K, then $H N/N$ is *seminormal in KN/N.*

Proof. The first two properties easily follow from the definition of a seminormal subgroup. We check the third property. Since H is seminormal in K , it follows that there exists a subgroup Y such that $K = HY$ and *HX* is a subgroup for every subgroup *X* of *Y*. Hence $KN/N = (HN/N)(YN/N)$. Let B/N be an arbitrary subgroup of YN/N . Since $N \leq B \leq YN$, we have by Dedekind's identity, $B = B \cap YN = (B \cap Y)N$. Hence

$$
(HN/N)(B/N) = H(B \cap Y)N/N = (B \cap Y)HN/N = (B/N)(HN/N),
$$

because $B \cap Y \leq Y$. Therefore HN/N is seminormal in KN/N .

The following Lemma is easily verified.

Lemma 2.2. Let \mathfrak{F} be a saturated formation. Assume that $G \notin \mathfrak{F}$, but $G/N \in \mathfrak{F}$ for all non-trivial *normal subgroups N of G. Then G is a primitive group.*

Lemma 2.3. [[13,](#page-5-13) Lemma 2.3] *Let G be a soluble primitive group and M is a primitivator of G. Then the following statements hold:*

 $(1) \Phi(G) = 1;$

(2) $F(G) = C_G(F(G)) = O_p(G)$ and $F(G)$ is an elementary abelian subgroup of order p^n for some *prime p and some positive integer n;*

- (3) *G contains a unique minimal normal subgroup N and moreover*, $N = F(G)$;
- (4) $G = F(G) \rtimes M$ and $O_p(M) = 1$.

Lemma 2.4. Let $G = G_1 G_2 \cdots G_n$ be a group with pairwise permutable subgroups G_1, \ldots, G_n such that G_i and G_j are seminormal in G_iG_j for any $i, j \in \{1, ..., n\}$, $i \neq j$. If a Sylow p-subgroup P of *G is normal in G and is abelian, then* $P \cap G_i$ *is normal in G for every i*.

Proof. We consider the following representation

$$
G=(G_1G_i)\cdots G_i\cdots (G_nG_i).
$$

Since G_i is seminormal in G_iG_j , there exists a subgroup H_j such that $G_iH_j = G_iG_j$. Let $(H_j)_{p'}$ be a Hall p'-subgroup of H_j and $(H_j)_p$ is a Sylow p-subgroup of H_j . Then $G_i(H_j)_{p'}$ is a subgroup of *G*. It's obvious that $P \cap G_i$ is a Sylow *p*-subgroup of G_i . Denote by $(G_i)_p = P \cap G_i$. Hence $P \cap G_i(H_j)_{p'} = (G_i)_p$ and $(G_i)_p$ is normal in $G_i(H_j)_{p'}$. Therefore $(H_j)_{p'} \leq N_G((G_i)_p)$. Since $(H_j)_p$ and $(G_i)_p$ are contained in abelian subgroup *P*, we have $(H_j)_p \leq C_G((G_i)_p)$. So $(G_i)_p$ is normal in

$$
G = (G_1G_i) \cdots G_i \cdots (G_nG_i) = (H_1G_i) \cdots G_i \cdots (H_nG_i) =
$$

$$
= ((H_1)_p(H_1)_{p'}G_i) \cdots G_i \cdots ((H_n)_p(H_n)_{p'}G_i).
$$

3. **Proof of Theorem**

We consider the case when the derived subgroup G' is nilpotent. Then G is soluble. Assume that $G \notin \mathfrak{F}$. Let *N* be a non-trivial normal subgroup of *G*. The quotients

$$
G/N = \prod_i (G_i N/N), \ G_i N/N \simeq G_i/G_i \cap N.
$$

Hence the subgroups $G_iN/N \in \mathfrak{F}$ for all *i* and by Lemma [2.1](#page-2-0) (3), G_iN/N and G_jN/N are seminormal in G_iG_jN/N for any $i \neq j$.

Since

$$
(G/N)' = G'N/N \simeq G'/G' \cap N,
$$

it follows that the derived subgroup $(G/N)'$ is nilpotent. Thus the hypotheses of the theorem hold for G/N . By induction, $G/N \in \mathfrak{F}$. Since \mathfrak{F} is saturated, we have that G is primitive by Lemma [2.2](#page-2-1). Hence $\Phi(G) = 1, G = N \rtimes M$ and $N = C_G(N) = F(G) = O_p(G)$ is a unique minimal normal subgroup of *G* by Lemma [2.3.](#page-2-2) Because *G'* is nilpotent, we have $N = G'$ and G/N is abelian. Let *P* be a Sylow *p*-subgroup of *G*. Then $PN/N = P/N$ is a Sylow *p*-subgroup of G/N . Hence *P* is normal in $G, N = P$ and $M = G_{p'}$ is abelian.

Without loss of generality, we assume that *p* divides the order of G_1 . By Lemma [2.4,](#page-3-0) $N \leq G_1$. Since G_1 is normal in G , it follows that $\Phi(G_1) = 1$ and $F(G_1) = N$. Hence $N = Y_1 \times Y_2 \times \cdots \times Y_k$, where Y_s is a minimal normal subgroup of G_1 for every $s \in \{1, \ldots, k\}$. Furthermore,

$$
C_{G_1}(N) = G_1 \cap C_G(N) = N.
$$

By [[2](#page-5-1), Appendix C, Theorem 2.5], we have

$$
N = C_{G_1}(N) = F(G_1) = \bigcap_s C_{G_1}(Y_s).
$$

Since \mathfrak{F} is saturated, there exists the canonical local definition *f*. Hence $\mathfrak{F} = LF(f)$, $f(p) \subseteq \mathfrak{F}$ and $f(p) = \mathfrak{N}_p f(p)$. By hypothesis, $G_1 \in \mathfrak{F}$. Then by definition of formation function, $G_1/C_{G_1}(Y_s) \in f(p)$ for any *s*. Because $f(p)$ is a formation, it follows that $G_1/N \in f(p)$.

Let $K = G_2 G_3 \cdots G_n$ and p divides the order of K. Hence p divides the order at least one of the subgroups G_i , $i \in \{2 \ldots, n\}$. By Lemma [2.4,](#page-3-0) $N \leq K$. By induction, $K \in \mathfrak{F}$. Then, proving as above, $K/N \in f(p)$.

Suppose *p* does not divide the order of *K*. Since for every $i \in \{2 \ldots, n\}$ *G*_{*i*} is seminormal in *G*_{*i*}*G*₁, it follows that there exists a subgroup *T* such that $G_iT = G_iG_1$ and G_iX is a subgroup of *G* for every subgroup *X* of *T*. Because $N \leq T$ and *G* is *p*-closed, we have $G_i \leq N_G(U)$ for every subgroup *U* of *N*. Since *N* is an elementary abelian *p*-subgroup, it follows that $N = N_1 \times N_2 \times \cdots \times N_t$, where $|N_r| = p$ for every $r \in \{1, ..., t\}$. Because $K \leq N_G(N_r)$, we have $KN/C_{KN}(N_r) = N_{KN}(N_r)/C_{KN}(N_r)$ is a cyclic group of order dividing $p-1$. It is clear that

$$
N = C_{KN}(N) = \bigcap_r C_{KN}(N_r).
$$

Hence $K \simeq KN/N = KN/C_{KN}(N)$ is abelian of exponent dividing $p-1$. Then $K \in g(p)$, where g is the canonical local definition of \mathfrak{U} . Since $\mathfrak{U} \subseteq \mathfrak{F}$, we have by [[3](#page-5-2), Proposition IV.3.11], $g(p) \subseteq f(p)$, where *f* is the canonical local definition of \mathfrak{F} . Hence $K \in f(p)$.

Thus *G/N* is the product of normal subgroups *G*1*/N* and *KN/N* such that each of them belongs to $f(p)$. We consider the direct product $G_1/N \times KN/N = \{(aN, bN), a \in G_1, b \in K\}$. Let $\varphi : G_1/N \times$ $KN/N \rightarrow G/N = (G_1/N)(KN/N)$ be a function from $G_1/N \times KN/N$ to G/N and $\varphi(aN, bN) =$ $(a\bar{b})N$. Since G/N is abelian, then $G_1/N \leq C_{G/N}(KN/N)$. It is clear that φ is an epimorphism. Then by fundamental homomorphism theorem

$$
(G_1/N \times KN/N)/\text{Ker }\varphi \simeq \text{Im }\varphi = G/N.
$$

Since $f(p)$ is a formation, it follows that $G/N \in f(p)$. Because $N \in \mathfrak{N}_p$, we have $G \in \mathfrak{N}_p f(p) =$ $f(p) \subseteq \mathfrak{F}$. Hence the assumption is wrong.

Let $(G')^{\mathfrak{N}} \neq 1$. We show that the quotient $G/(G')^{\mathfrak{N}}$ belongs to \mathfrak{F} . Since

$$
(G/(G')^{\mathfrak{N}})' = G'(G')^{\mathfrak{N}}/(G')^{\mathfrak{N}} = G'/(G')^{\mathfrak{N}},
$$

<http://dx.doi.org/10.22108/ijgt.2021.119299.1575>

we have the $(G/(G')^{\mathfrak{N}})'$ is nilpotent. The quotients

$$
G/(G')^{\mathfrak{N}} = \prod_i (G_i(G')^{\mathfrak{N}}/(G')^{\mathfrak{N}})),
$$

$$
G_i(G')^{\mathfrak{N}}/(G')^{\mathfrak{N}} \simeq G_i/G_i \cap (G')^{\mathfrak{N}},
$$

hence the subgroups $G_i(G')^{\mathfrak{N}}/(G')^{\mathfrak{N}}$ for any $i \in \{1, ..., n\}$ belong to \mathfrak{F} and by Lemma [2.1](#page-2-0)(3), $G_i(G')^{\mathfrak{N}}/(G')^{\mathfrak{N}}$ and $G_j(G')^{\mathfrak{N}}/(G')^{\mathfrak{N}}$ are seminormal in $G_iG_j(G')^{\mathfrak{N}}/(G')^{\mathfrak{N}}$. Arguing as above, we see that $G/(G')^{\mathfrak{N}}$ belongs to \mathfrak{F} . The theorem is proved.

REFERENCES

- [1] B. Huppert, *Endliche Gruppen I*, Springer, Berlin, Heidelberg, New York, 1967.
- [2] H. G. Bray and et al., *Between Nilpotent and Soluble*, Polygonal Publishing House, Passaic, 1982.
- [3] K. Doerk and T. Hawkes, *Finite soluble groups*, Walter de Gruyter, Berlin, New York, 1992.
- [4] A. Carocca, *p*-supersolvability of factorized finite groups, *Hokkaido Math. J.*, **21** (1992) 395–403.
- [5] A. Ballester-Bolinches, R. Esteban-Romero and M. Asaad, *Products of finite groups*, de Gruyter Expositions in Mathematics, **53**, Walter de Gruyter GmbH & Co. KG, Berlin, 2010.
- [6] A. Ballester-Bolinches, J. C. Beidleman, H. Heineken and M. C. Pedraza-Aguilera, A survey on pairwise mutually permutable products of finite groups, *Algebra Discrete Math.*, **4** (2009) 1–9.
- [7] A. Ballester-Bolinches, J. C. Beidleman, H. Heineken and M. C. Pedraza-Aguilera, On pairwise mutually permutable products, *Forum Math.*, **21** (2009) 1081–1090
- [8] A. Carocca, R. Maier, Theorems of Kegel-Wielandt type, Groups St. Andrews 1997 in Bath I, London Math. Soc. Lecture Note Ser, **260**, Cambridge University Press, Cambridge, 1999 195–201.
- [9] X. Su, On semi-normal subgroups of finite group, *J. Math. (Wuhan)*, **8** (1988) 7–9.
- [10] A. Carocca and H. Matos, Some solvability criteria for finite groups, *Hokkaido Math. J.*, **26** (1997) 157–161.
- [11] V. S. Monakhov, Finite groups with a seminormal Hall subgroup, *Math. Notes*, **80** (2006) 542–549.
- [12] V. N. Knyagina and V. S. Monakhov, Finite groups with seminormal Schmidt subgroups, *Algebra and Logic*, **46** (2007) 244–249.
- [13] V. S. Monakhov and A. A. Trofimuk, Finite groups with two supersoluble subgroups, *J. Group Theory*, **22** (2019) 297–312.
- [14] V. V. Podgornaya, Seminormal subgroups and supersolubility of finite groups, *Vesti Akad. Navuk Belarusi Ser. Fiz.-Mat. Navuk*, **4** (2000) 22–25.
- [15] W. Guo, Finite groups with seminormal Sylow subgroups, *Acta Mathematica Sinica*, **24** (2008) 1751–1758.
- [16] V. S. Monakhov and A. A. Trofimuk, On the supersolubility of a group with seminormal subgroups, *Siberian Math. J.*, **61** (2020) 118–126.
- [17] A. Ballester-Bolinches and L. M. Ezquerro, *Classes of Finite Groups*, Dordrecht, Springer, 2006.
- [18] M. Asaad and A. Shaalan, On the supersolubility of finite groups, *Arch. Math.*, **53** (1989) 318–326.
- [19] V. S. Monakhov, On the supersoluble residual of mutually permutable products, *PFMT*, **34** (2018) 69–70.

Alexander Trofimuk

Department of Mathematics and Programming Technologies, Francisk Skorina Gomel State University, Gomel, Belarus Email: alexander.trofimuk@gmail.com