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A NOTE ON GROUPS WITH A FINITE NUMBER OF PAIRWISE

PERMUTABLE SEMINORMAL SUBGROUPS

ALEXANDER TROFIMUK

Abstract. A subgroup A of a group G is called seminormal in G, if there exists a subgroup B such

that G = AB and AX is a subgroup of G for every subgroup X of B. The group G = G1G2 · · ·Gn

with pairwise permutable subgroups G1, . . . , Gn such that Gi and Gj are seminormal in GiGj for any

i, j ∈ {1, . . . , n}, i ̸= j, is studied. In particular, we prove that if Gi ∈ F for all i, then GF ≤ (G′)N,

where F is a saturated formation and U ⊆ F. Here N and U are the formations of all nilpotent and

supersoluble groups respectively, the F-residual GF of G is the intersection of all those normal subgroups

N of G for which G/N ∈ F.

1. Introduction

Throughout this paper, all groups are finite and G always denotes a finite group. We use the

standard notations and terminology of [1, 2]. The monograph [3] contains the necessary information

of the theory of formations.

It is well known that AB is a subgroup of G if and only if AB = BA, that is, if the subgroups A

and B permute. Should it happen that AB coincides with the group G, then G is said to be factorized

by its subgroups A and B.

We say that two subgroups A and B of G are mutually permutable if A permutes with every

subgroup of B and B permutes with every subgroup of A. If G = AB and A and B are mutually
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permutable, then G is called the mutually permutable product of A and B, see [4]. The monograph [5]

contains detailed information on the structure of groups, which are mutually permutable products of

two subgroups. More generally, a group G = G1G2 · · ·Gn is said to be the product of the pairwise

mutually permutable subgroups G1, . . . , Gn if Gi and Gj are mutually permutable subgroups of G for

all i, j ∈ {1, . . . , n}, i ̸= j. The structure of groups factorized by finitely many pairwise mutually

permutable subgroups is obtained in [6, 7, 8] and also in [5, Chapters 4–5].

A subgroup A of G is called seminormal in G, if there exists a subgroup B such that G = AB

and AX is a subgroup of G for every subgroup X of B, see [9]. There are many papers devoted to

studying groups with seminormal subgroups, see, for example, [9]–[16]. It’s obvious that if G = AB

is the mutually permutable product of A and B, then A and B are seminormal in G. The converse is

not true. Let Zn be a cyclic group of order n. A group

G = Z7 ⋊AutZ7 = Z7 ⋊ (Z2 × Z3)

is the product of seminormal in G subgroups A ≃ Z2 × Z3 and B ≃ Z7 ⋊ Z2. But A and B are not

mutually permutable, since A is not permute with some subgroups of order 2 of B.

Recall that a formation F is said to be saturated if G/Φ(G) ∈ F implies G ∈ F. In present paper,

we develop the result [5, Theorem 5.2.21]: if G = G1G2 · · ·Gn is the product of the pairwise mutually

permutable subgroups G1, . . . , Gn such that Gi belongs to F for all i ∈ {1, . . . , n} and the derived

subgroup G′ is nilpotent, then G belongs to F. Here F be a saturated formation such that U ⊆ F.

Now we state our main result in the following.

Theorem 1.1. Let G = G1G2 · · ·Gn be the product of the pairwise permutable subgroup G1 . . . , Gn

such that Gi and Gj are seminormal in GiGj for any i, j ∈ {1, . . . , n}, i ̸= j. Let F be a saturated

formation such that U ⊆ F. Suppose that Gi belongs to F for all i ∈ {1 . . . , n}. Then GF ≤ (G′)N.

Corollary 1.2. Let G = G1G2 · · ·Gn be the product of the pairwise mutually permutable subgroups

G1, . . . , Gn. Let F be a saturated formation such that U ⊆ F. Then:

1) if Gi belongs to F for all i ∈ {1 . . . , n} and G′ is nilpotent, then G belongs to F, see [5, Theo-

rem 5.2.21];

2) if Gi belongs to U for all i ∈ {1 . . . , n} and G′ is nilpotent, then G belongs to U, see [5, Corol-

lary 4.1.39].

Since U ⊆ NA, it follows that G(NA) = (GA)N = (G′)N ≤ GU by [17, Proposition 2.2.8, Proposi-

tion 2.2.11]. Therefore for F = U, we obtain the following corollary.

Corollary 1.3. Let A and B be supersoluble subgroups of G and G = AB. Then:

1) if A and B are seminormal in G, then GU = (G′)N, see [16, Theorem 2.3];

2) if A and B are seminormal in G and G′ is nilpotent, then G is supersoluble, see [16, Theorem 2.2];

3) if A and B are mutually permutable and G′ is nilpotent, then G is supersoluble, see [18, Theo-

rem 3.8];

4) if A and B are mutually permutable, then GU = (G′)N, see [19, Theorem 2.1].

http://dx.doi.org/10.22108/ijgt.2021.119299.1575

http://dx.doi.org/10.22108/ijgt.2021.119299.1575


Int. J. Group Theory 11 no. 1 (2022) 1-6 A. Trofimuk 3

2. Preliminaries

In this section, we give some definitions and basic results which are essential in the sequel.

Recall that a p-closed group is a group with a normal Sylow p-subgroup.

Denote by Z(G), F (G) and Φ(G) the centre, Fitting and Frattini subgroups of G respectively, and

by Op(G) the greatest normal p-subgroup of G. Denote by π(G) the set of all prime divisors of order

of G. The semidirect product of a normal subgroup A and a subgroup B is written as follows: A⋊B.

If H is a subgroup of G, then HG =
∩

x∈GHx is called the core of H in G.

Let P be the set of all prime numbers. A formation function is a function f defined on P such that

f(p) is a (possibly empty) formation. A formation F is said to be local if there exists a formation

function f such that G ∈ F if and only if for any chief factor H/K of G and any p ∈ π(H/K), one has

G/CG(H/K) ∈ f(p). We write F = LF (f) and f is a local definition of F. By [3, Theorem IV.3.7],

among all possible local definitions of a local formation F there exists a unique f such that f is

integrated (i.e., f(p) ⊆ F for all p ∈ P) and full (i.e., f(p) = Npf(p) for all p ∈ P). Here Np is the

formation of all p-groups. Such local definition f is said to be canonical local definition of F. By [3,

Theorem IV.4.6], a formation is saturated if and only if it is local.

If G contains a maximal subgroup M with a trivial core, then G is said to be primitive and M is

its primitivator.

Lemma 2.1. (1) If H is seminormal in G and H ≤ X ≤ G, then H is seminormal in X.

(2) If H is seminormal in G and N is normal in G, then HN is seminormal in G and HN/N is

seminormal in G/N .

(3) Let H ≤ K ≤ G and N be a normal subgroup in G. If H is seminormal in K, then HN/N is

seminormal in KN/N .

Proof. The first two properties easily follow from the definition of a seminormal subgroup. We check

the third property. Since H is seminormal in K, it follows that there exists a subgroup Y such that

K = HY and HX is a subgroup for every subgroup X of Y . Hence KN/N = (HN/N)(Y N/N).

Let B/N be an arbitrary subgroup of Y N/N . Since N ≤ B ≤ Y N , we have by Dedekind’s identity,

B = B ∩ Y N = (B ∩ Y )N . Hence

(HN/N)(B/N) = H(B ∩ Y )N/N = (B ∩ Y )HN/N = (B/N)(HN/N),

because B ∩ Y ≤ Y . Therefore HN/N is seminormal in KN/N . □

The following Lemma is easily verified.

Lemma 2.2. Let F be a saturated formation. Assume that G /∈ F, but G/N ∈ F for all non-trivial

normal subgroups N of G. Then G is a primitive group.

Lemma 2.3. [13, Lemma 2.3] Let G be a soluble primitive group and M is a primitivator of G. Then

the following statements hold:

(1) Φ(G) = 1;
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(2) F (G) = CG(F (G)) = Op(G) and F (G) is an elementary abelian subgroup of order pn for some

prime p and some positive integer n;

(3) G contains a unique minimal normal subgroup N and moreover, N = F (G);

(4) G = F (G)⋊M and Op(M) = 1.

Lemma 2.4. Let G = G1G2 · · ·Gn be a group with pairwise permutable subgroups G1, . . . , Gn such

that Gi and Gj are seminormal in GiGj for any i, j ∈ {1, . . . , n}, i ̸= j. If a Sylow p-subgroup P of

G is normal in G and is abelian, then P ∩Gi is normal in G for every i.

Proof. We consider the following representation

G = (G1Gi) · · ·Gi · · · (GnGi).

Since Gi is seminormal in GiGj , there exists a subgroup Hj such that GiHj = GiGj . Let (Hj)p′

be a Hall p′-subgroup of Hj and (Hj)p is a Sylow p-subgroup of Hj . Then Gi(Hj)p′ is a subgroup

of G. It’s obvious that P ∩ Gi is a Sylow p-subgroup of Gi. Denote by (Gi)p = P ∩ Gi. Hence

P ∩ Gi(Hj)p′ = (Gi)p and (Gi)p is normal in Gi(Hj)p′ . Therefore (Hj)p′ ≤ NG((Gi)p). Since (Hj)p

and (Gi)p are contained in abelian subgroup P , we have (Hj)p ≤ CG((Gi)p). So (Gi)p is normal in

G = (G1Gi) · · ·Gi · · · (GnGi) = (H1Gi) · · ·Gi · · · (HnGi) =

= ((H1)p(H1)p′Gi) · · ·Gi · · · ((Hn)p(Hn)p′Gi).

□

3. Proof of Theorem

We consider the case when the derived subgroup G′ is nilpotent. Then G is soluble. Assume that

G ̸∈ F. Let N be a non-trivial normal subgroup of G. The quotients

G/N =
∏
i

(GiN/N), GiN/N ≃ Gi/Gi ∩N.

Hence the subgroups GiN/N ∈ F for all i and by Lemma 2.1 (3), GiN/N and GjN/N are seminormal

in GiGjN/N for any i ̸= j.

Since

(G/N)′ = G′N/N ≃ G′/G′ ∩N,

it follows that the derived subgroup (G/N)′ is nilpotent. Thus the hypotheses of the theorem hold

for G/N . By induction, G/N ∈ F. Since F is saturated, we have that G is primitive by Lemma 2.2.

Hence Φ(G) = 1, G = N⋊M and N = CG(N) = F (G) = Op(G) is a unique minimal normal subgroup

of G by Lemma 2.3. Because G′ is nilpotent, we have N = G′ and G/N is abelian. Let P be a Sylow

p-subgroup of G. Then PN/N = P/N is a Sylow p-subgroup of G/N . Hence P is normal in G, N = P

and M = Gp′ is abelian.
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Without loss of generality, we assume that p divides the order of G1. By Lemma 2.4, N ≤ G1.

Since G1 is normal in G, it follows that Φ(G1) = 1 and F (G1) = N . Hence N = Y1 × Y2 × · · · × Yk,

where Ys is a minimal normal subgroup of G1 for every s ∈ {1 . . . , k}. Furthermore,

CG1(N) = G1 ∩ CG(N) = N.

By [2, Appendix C, Theorem 2.5], we have

N = CG1(N) = F (G1) =
∩
s

CG1(Ys).

Since F is saturated, there exists the canonical local definition f . Hence F = LF (f), f(p) ⊆ F and

f(p) = Npf(p). By hypothesis, G1 ∈ F. Then by definition of formation function, G1/CG1(Ys) ∈ f(p)

for any s. Because f(p) is a formation, it follows that G1/N ∈ f(p).

Let K = G2G3 · · ·Gn and p divides the order of K. Hence p divides the order at least one of the

subgroups Gi, i ∈ {2 . . . , n}. By Lemma 2.4, N ≤ K. By induction, K ∈ F. Then, proving as above,

K/N ∈ f(p).

Suppose p does not divide the order of K. Since for every i ∈ {2 . . . , n} Gi is seminormal in GiG1,

it follows that there exists a subgroup T such that GiT = GiG1 and GiX is a subgroup of G for every

subgroup X of T . Because N ≤ T and G is p-closed, we have Gi ≤ NG(U) for every subgroup U of N .

Since N is an elementary abelian p-subgroup, it follows that N = N1 ×N2 × · · · ×Nt, where |Nr| = p

for every r ∈ {1 . . . , t}. Because K ≤ NG(Nr), we have KN/CKN (Nr) = NKN (Nr)/CKN (Nr) is a

cyclic group of order dividing p− 1. It is clear that

N = CKN (N) =
∩
r

CKN (Nr).

Hence K ≃ KN/N = KN/CKN (N) is abelian of exponent dividing p − 1. Then K ∈ g(p), where g

is the canonical local definition of U. Since U ⊆ F, we have by [3, Proposition IV.3.11], g(p) ⊆ f(p),

where f is the canonical local definition of F. Hence K ∈ f(p).

Thus G/N is the product of normal subgroups G1/N and KN/N such that each of them belongs to

f(p). We consider the direct product G1/N ×KN/N = {(aN, bN), a ∈ G1, b ∈ K}. Let φ : G1/N ×
KN/N → G/N = (G1/N)(KN/N) be a function from G1/N × KN/N to G/N and φ(aN, bN) =

(ab)N . Since G/N is abelian, then G1/N ≤ CG/N (KN/N). It is clear that φ is an epimorphism.

Then by fundamental homomorphism theorem

(G1/N ×KN/N)/Ker φ ≃ Im φ = G/N.

Since f(p) is a formation, it follows that G/N ∈ f(p). Because N ∈ Np, we have G ∈ Npf(p) =

f(p) ⊆ F. Hence the assumption is wrong.

Let (G′)N ̸= 1. We show that the quotient G/(G′)N belongs to F. Since

(G/(G′)N)′ = G′(G′)N/(G′)N = G′/(G′)N,
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we have the (G/(G′)N)′ is nilpotent. The quotients

G/(G′)N =
∏
i

(Gi(G
′)N/(G′)N)),

Gi(G
′)N/(G′)N ≃ Gi/Gi ∩ (G′)N,

hence the subgroups Gi(G
′)N/(G′)N for any i ∈ {1 . . . , n} belong to F and by Lemma 2.1 (3),

Gi(G
′)N/(G′)N and Gj(G

′)N/(G′)N are seminormal in GiGj(G
′)N/(G′)N. Arguing as above, we see

that G/(G′)N belongs to F. The theorem is proved.
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