
DyRecMul: Fast and Low-Cost Approximate Multiplier for FPGAs

using Dynamic Reconfiguration

SHERVIN VAKILI, Institut national de la recherche scientiique, Energie Materiaux Telecommunications

Centre, Montreal, Canada

MOBIN VAZIRI, Polytechnique Montréal, Montreal, Canada

AMIRHOSSEIN ZAREI, Institut national de la recherche scientiique, Energie Materiaux Telecommunications

Centre, Montreal, Canada

J.M. PIERRE LANGLOIS, Polytechnique Montréal, Montreal, Canada

Multipliers are widely-used arithmetic operators in digital signal processing and machine learning circuits. Due to their

relatively high complexity, they can have high latency and be a signiicant source of power consumption. One strategy to

alleviate these limitations is to use approximate computing. This paper thus introduces an original FPGA-based approximate

multiplier speciically optimized for machine learning computations. It utilizes dynamically reconigurable lookup table

(LUT) primitives in AMD-Xilinx technology to realize the core part of the computations. The paper provides an in-depth

analysis of the hardware architecture, implementation outcomes, and accuracy evaluations of the multiplier proposed in

INT8 precision. The paper also facilitates the generalization of the proposed approximate multiplier idea to other datatypes,

providing analysis and estimations for hardware cost and accuracy as a function of multiplier parameters. Implementation

results on an AMD-Xilinx Kintex Ultrascale+ FPGA demonstrate remarkable savings of 64% and 67% in LUT utilization for

signed multiplication and multiply-and-accumulation conigurations, respectively when compared to the standard Xilinx

multiplier core. Accuracy measurements on four popular deep learning (DL) benchmarks indicate a minimal average accuracy

decrease of less than 0.29% during post-training deployment, with the maximum reduction staying less than 0.33%. The source

code of this work is available on GitHub.

CCS Concepts: · Hardware → Arithmetic and datapath circuits; Reconigurable logic applications; Hardware

accelerators.

Additional Key Words and Phrases: approximate multiplier, ield-programmable gate array, dynamic reconiguration, artiicial

intelligence hardware

1 INTRODUCTION

Computational circuits may become a bottleneck in wireless communications, digital signal processing, multime-

dia, image processing, machine learning (ML), etc., due to their high energy consumption, long delay, and large

circuit area utilization. Applications such as neural networks have inherent error resilience, which presents an

opportunity to use approximation techniques for enhancing their eiciency [7, 18]. Multiplication is a fundamen-

tal operation in computations, and, to enhance its eiciency, various approximate multipliers have been proposed.

Authors’ Contact Information: Shervin Vakili, Institut national de la recherche scientiique, Energie Materiaux Telecommunications Centre,

Montreal, Quebec, Canada, shervin.vakili@inrs.ca; Mobin Vaziri, Polytechnique Montréal, Montreal, Quebec, Canada, mobin.vaziri@polymtl.

ca; Amirhossein Zarei, Institut national de la recherche scientiique, Energie Materiaux Telecommunications Centre, Montreal, Quebec,

Canada, 94.amir.zarei@gmail.com; J.M. Pierre Langlois, Polytechnique Montréal, Montreal, Quebec, Canada, pierre.langlois@polymtl.ca.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1936-7406/2024/5-ART

https://doi.org/10.1145/3663480

ACM Trans. Reconig. Technol. Syst.

HTTPS://ORCID.ORG/0000-0002-4791-9298
HTTPS://ORCID.ORG/0000-0001-6870-2189
HTTPS://ORCID.ORG/0009-0007-9845-9627
HTTPS://ORCID.ORG/0000-0003-1721-2520
https://orcid.org/0000-0002-4791-9298
https://orcid.org/0000-0001-6870-2189
https://orcid.org/0009-0007-9845-9627
https://orcid.org/0000-0003-1721-2520
https://doi.org/10.1145/3663480
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3663480&domain=pdf&date_stamp=2024-05-01

2 • Vakili, et al.

These multipliers aim to reduce delay, energy consumption, and area [45]. In 1962, Mitchell [30] introduced

the irst logarithm-based multiplier. This multiplier converted multiplications into addition operations, and it

deployed approximation methods to calculate logarithmic expressions. Since then, there have been signiicant

advancements in logarithm-based approximate multipliers [3, 4, 27, 33]. Liu et al. used approximate adders to

enhance accuracy and reduce power consumption in logarithm-based multipliers [27]. Given that multiplication

is a nonlinear operation, several works proposed methods to use linearization for approximate multiplication

[6, 16]. An approximate linearization algorithm, called ApproxLP [16], utilized comparators to separate diferent

sub-domains and allocate a proper linear function to each one instead of a nonlinear multiplication. This method,

however, requires additional comparators to increase accuracy and reduce sub-domain size, which can result

in longer delays and increased area [45]. Chen et al. introduced an optimally approximate multiplier (OAM)

[6] to improve linearization and minimize the number of comparators, resulting in lower delay and improved

performance. Other studies suggest utilizing a combination of accurate and approximate multipliers with varying

precision levels to achieve the necessary accuracy, but this may come at the cost of higher energy consumption

and circuit area [14, 15].

In non-logarithmic multiplication, the approximation can be introduced at four distinct stages: data input,

partial product generation, accumulation, and Booth encoding [45]. Truncating input data is often used to reduce

bitwidth, and it can be done through methods such as the dynamic segment method (DSM) and static segment

method (SSM) [13, 32, 38, 39]. DSM keeps a speciied number of bits from the most signiicant ’1’ in an �-bit

operand but requires more hardware resources than SSM. SSM has limited and pre-determined options for

truncating input data, resulting in more redundant bits [32, 45]. Some papers have introduced approximations in

the partial product generation stage [21, 42, 46, 47]. However, the most beneicial stage to introduce approximation

is during partial product accumulation, which typically requires the largest circuit area and computation time.

Compressors can be used for counting ones in tree-based partial product accumulations [45], such as the

Wallace tree [43] and Dadda tree [8]. Instead of exact compressors, a variety of approximate compressors have

been introduced to decrease circuit area and delay [1, 2, 10, 11, 23, 28, 29, 31, 34, 35, 42, 44, 47, 48]. These include

the approximate 1-bit half adder, approximate 1-bit full adder, and approximate 4-2 compressors [2, 31, 34, 48].

To further decrease energy consumption, delay, and hardware utilization, high-order approximate compressors

with more than ive inputs have been proposed [1, 10, 29, 35]. Mahdiani et al. proposed a technique that removes

the least signiicant partial products from the partial product matrix to decrease circuit area and delay, although

it comes with some degree of error which can be adjusted by modifying the truncation level [28].

The existing approximate methods, which have been mainly designed to reduce energy consumption and area

utilization in ASIC implementations, may not be as efective in FPGAs. This is because FPGA reconigurable

logic fabrics are typically based on ixed-size look-up tables (LUTs). Modern AMD-Xilinx and Intel FPGAs have

hardwired DSP multipliers that ofer faster and more energy-eicient multiplication than soft implementation

on general-purpose LUT fabrics. The DSP-based multipliers are valuable resources that are situated in speciic

locations, which can result in long routing delays. On the other hand, LUTs are spread out across the chip, making

them more easily routable. Moreover, there is a limitation on the number of DSP-based multipliers available. One

solution is to deploy approximation methods to enhance the eiciency of LUT-based multiplication, in terms of

speed, energy/power consumption, and hardware utilization. Ullah et al. [36, 37] implemented an optimization

technique by truncating the least signiicant partial product of a 4 × 2 multiplier to reduce LUT utilization. Van

Toan et al. [40] designed compact 3-2 and 4-2 compressors for use in diferent approximate multipliers with

varying levels of accuracy. Kumm et al. [22] proposed dynamically reconigurable FIR ilters in Xilinx FPGAs

using conigurable look-up tables (CFGLUT5s).

This paper introduces DyRecMul, a cost-efective dynamically reconigurable approximate multiplier for

FPGAs. It is optimized for machine learning computation, has a short critical path, and uses a small number of

LUTs. DyRecMul utilizes AMD-Xilinx technology’s reconigurable LUT primitives to approximate multiplication

ACM Trans. Reconig. Technol. Syst.

DyRecMul: Dynamically Reconfigurable Approximate Multiplier • 3

without signiicant accuracy degradation, even in post-training inference. To preserve dynamic range, DyRecMul

utilizes a cost-efective encoder that transforms a ixed-point operand into an 8-bit loating-point format, and a

decoder to revert the result back to ixed-point. The paper presents the design details and evaluation results of

an INT8 version of DyRecMul since INT8 is a popular datatype in cost-efective machine learning computing.

The multiplier introduces negligible accuracy loss while reducing signiicantly the number of required LUTs in

FPGAs compared to the standard exact multiplier. Additionally, DyRecMul boasts very low latency, which allows

for a faster clock frequency than that of typical AMD-Xilinx multiplier cores. The key contributions of this paper

are summarized below.

• Utilization of dynamically reconigurable LUTs (CFGLUT5s) in AMD-Xilinx FPGAs to make a low-cost and

fast short-bitwidth multiplier.

• Internal conversion of ixed-point to a loating-point format to preserve dynamic range that is beneicial

for machine learning and deep learning (DL) applications.

• For an INT8 case study, illustration of the design detail of a highly optimized encoder circuit to convert

INT8 to 8-bit loating point format and a low-cost decoder to convert 8-bit loating point format to INT8.

The paper is organized as follows. Section 2 presents the analytical foundation of the proposed approach

and illustrates the microarchitectural design detail of DyRecMul for the INT8 case study. Section 3 discusses

generalized DyRecMul design considerations and guidelines, along with presenting hardware cost estimation

functions. In Section 4, the reconiguration time issue is discussed, and a rapidly reconigurable variant of

DyRecMul is introduced. Section 5 highlights the target applications where DyRecMul demonstrates its utility

and eicacy, and Section 6 presents evaluation results, including error analysis, hardware evaluations, and

accuracy measurements for DL applications. Finally, Section 7 concludes the paper. The source code of this work

is available on https://github.com/INRS-ECCoLe/DyRecMul.

2 PROPOSED APPROXIMATE MULTIPLIER

This section provides an overview of the analytical basis of DyRecMul, followed by a detailed description of an

INT8 DyRecMul design which also provides insight into the design decisions and considerations behind them.

2.1 Analytical Description

A precise N -bit signed integer multiplication of two operands, X andW, can be represented by:

� = �� .

2�−2︁

�=0

�� .2
�
= �� .

�−2︁

�=0

�� .2
� × �� .

�−2︁

�=0

�� .2
� (1)

where �� ,�� and �� denote the �
�ℎ bit of operand � and� and the result � , respectively. �� takes the value of -1

when � is negative, and 0 otherwise. The same logic applies to �� and �� . In INT8 representation, � = 8. When

using multipliers in a computing system that only supports a single datatype, the output � must be expressed in

the same format as the input operands. This can be done using techniques like truncation.

The proposed approach utilizes an encoder to convert the irst operand, � , to a loating-point representation,

�̂� ���� , of format:

� ����
(
������ , ����� ,�����

)
,

sign�� ∈ {0, 1}, ����� > 0, ����� < � − 1
(2)

where ������ , ����� , and����� denote the bitwidth of the sign, exponent, and mantissa elements, respectively.

In this section, centered on signed multiplication, a single bit is designated to represent the sign, i.e., ������ = 1.

ACM Trans. Reconig. Technol. Syst.

https://github.com/INRS-ECCoLe/DyRecMul

4 • Vakili, et al.

To enable covering the entire dynamic range of � , ����� and����� must fulill the following:

2����� +����� > � − 1. (3)

The mantissa is a segment of����� bits from |� |, with the leftmost bit in |� | that contains ’1’ being the

most signiicant bit. Since the mantissa is shorter than the magnitude bits of � , this conversion involves an

approximation. The conversion can be expressed as:

�̂� ���� =
[
�̂����, �̂��� , �̂���

]
(4)

�̂���� = ��−1,

�̂��� = � − � where

{
2� < |� | ≤ 2�−1, � ≥ 2�����

0, � < 2����� ,

�̂��� = Round (
|� |
2���)

The mantissa �̂��� is then multiplied by |� | to generate the mantissa of the result. To keep the result in the

format of Eq. 2, the product is quantized to����� bits using:

�̂��� = �
(
�̂��� × |� | , �����

)
, (5)

where � is the quantization function. The result must be converted back to integer format. For this purpose, the

(� − 1)-bit absolute value of � is irst calculated by:

|� | = 2�̂��� × �̂��� (6)

The result, � , in integer format is obtained by applying a two’s complement function when � is negative. The

sign of � is determined by XORing the sign bits of � and� .

� = �� . |� | ,

{
�� = +1, ��−1

⊕
��−1 = 0

�� = −1, ��−1

⊕
��−1 = 1

(7)

2.2 DyRecMul for INT8 Multiplication: Architecture and Components

INT8 quantization is a supported feature in machine learning frameworks such as TensorFlow Lite and PyTorch,

as well as hardware toolchains like AMD-Xilinx DNNDK. Moreover, INT8 is a popular datatype in machine

learning hardware accelerators and ML-optimized GPUs designed for embedded and edge applications [24], [20].

The INT8 DyRecMul described in this section can be used in place of INT8 multipliers for pre- or post-training

inference. This multiplier is intended primarily for single-datatype INT8 architectures, meaning that it calculates

� = � ×� , where� ,� and � are all INT8. Fig. 1 depicts its architecture, which consists of four main components:

(1) a cost-efective INT8 to loating-point encoder; (2) an ultra-low-cost mantissa multiplier using dynamically

reconigurable LUTs; (3) a loating-point to INT8 decoder; (4) a two’s complement logic. The following subsections

describe each component in detail.

2.2.1 Integer to Floating-Point Encoder. The proposed architecture converts its irst operand, � , from INT8 to

� ���� (1, 2, 5) representation, where 1, 2, and 5 indicate the number of allocated bits to the sign, exponent, and

mantissa, respectively. This conversion corresponds to Eq. 4 in Section 2.1. The mantissas are multiplied and

the exponents are added, and this conversion limits the binary multiplication to ive bits while maintaining the

dynamic range, which is crucial for accurate DL computations. As will be discussed later, DyRecMul deploys a

CGFLUT5-based unsigned multiplier in which one operand must be ive bits wide to achieve optimal eiciency.

ACM Trans. Reconig. Technol. Syst.

DyRecMul: Dynamically Reconfigurable Approximate Multiplier • 5

INT8-to-

Float

Encoder

Float-to-

INT8

Decoder

CFGLUT5-

Based

Man ssa

Mul plier
5

2

5

X

CDI

Con g bit stream

INT88

Xmnt

X[7]

Z2’s

Compl

ement

CDO

Con g

bit

Memory

W×25×5

. . .
To next mul plier

28× 25×5

1

7

Sign bit

1

Counter
Addr

Fig. 1. DyRecMul architecture for INT8 multiplication of � = � ×� , using � ���� (1, 2, 5) internal floating-point format.

When this multiplier is used in a weight stationary DL accelerator, input feature maps are fed as the irst operand,

� , to the multipliers. Without a loating-point conversion, the feature maps would need to be directly quantized to

ive bits. That would signiicantly limit the supported dynamic range, which could cause important accuracy loss

for small activation values and ultimately lead to a prohibitive level of inaccuracy in ML inference. More precisely,

such a quantization would limit the range of supported values to [−25, 25 − 1], while � ���� (1, 2, 5) expands the

range to [−23 × 25, 23 × 25 − 1] and demands the same unsigned multiplier size for mantissa multiplication. The

experimental results in Section 6.3 demonstrate that this conversion greatly helps in maintaining the precision of

DL calculations.

The conversion logic from INT8 to � ���� (1, 2, 5) is designed to be low-cost and eicient, requiring only seven

LUT5 elements. Fig. 2 depicts the truth tables and the corresponding LUT5 allocations for this encoder. The 2-bit

exponent is acquired from the sign bit and the two most signiicant bits, while each mantissa bit is obtained from

the exponent and three corresponding input bits. The encoder’s critical path consists of two LUT5 units and their

corresponding routing circuits.

2.2.2 Dynamically Reconfigurable Mantissa Multiplier. This component implements mantissa multiplication

according to Eq. 5. The mantissa multiplier which serves as the core component of DyRecMul, is a cost-efective

unsigned integer multiplier based on AMD-Xilinx CFGLUT5 primitives. CFGLUT5 ofers a distinctive capability

allowing the logical function of the LUT5 to be altered during circuit operation. This reconiguration is achieved

by programming new coniguration bits into the LUT5, enabling it to adopt a new logic function with a maximum

of 5-bit inputs and one output. The design subsystem controls the programming of new coniguration bits,

and this reconiguration process does not necessitate external partial or complete reprogramming of the FPGA,

ensuring uninterrupted operation. The programming of new conigurations is carried out serially through a

single-bit CDI input port, while CDI/CDO ports facilitate the cascading of multiple CFGLUT5 units in a chain.

In the mantissa multiplier, the logic circuit for multiplication with the second operand is programmed into

CFGLUT5 units. Whenever the second operand,� , undergoes changes, the CFGLUT5 units within the mantissa

ACM Trans. Reconig. Technol. Syst.

6 • Vakili, et al.

X[7] (sign)

LUT3

I0
I1
I2 O

X[6]

X[5]

� ����

[7:5] [1:0]

000 00

001 01

01x 10

10x 10

101 01

111 00

Xexp [1]

Xexp [0]LUT3

I0
I1

I2 O

LUT5

I0
I1

I2 O
I3
I4

LUT5

I0
I1

I2 O
I3
I4

LUT5

I0
I1
I2 O
I3
I4

LUT5

I1

I2 O
I3
I4

I0

X[6]
X[5]
X[4]

X[5]
X[4]
X[3]

X[4]
X[3]
X[2]

X[3]
X[2]
X[1]

LUT5

I1
I2 O
I3
I4

I0

X[2]
X[1]
X[0]

Xmnt [4]

Xmnt [3]

Xmnt [2]

Xmnt [1]

Xmnt [0]

���� � ����

[1:0] [6:4] [4]

00 xx0 0

00 xx1 1

01 x0x 0

01 x1x 1

1x 0xx 0

1x 1xx 1

���� � ����

[1:0] [5:3] [3]

00 xx0 0

00 xx1 1

01 x0x 0

01 x1x 1

1x 0xx 0

1x 1xx 1

���� � ����

[1:0] [4:2] [2]

00 xx0 0

00 xx1 1

01 x0x 0

01 x1x 1

1x 0xx 0

1x 1xx 1

���� � ����

[1:0] [3:1] [1]

00 xx0 0

00 xx1 1

01 x0x 0

01 x1x 1

1x 0xx 0

1x 1xx 1

���� � ����

[1:0] [2:0] [0]

00 xx0 0

00 xx1 1

01 x0x 0

01 x1x 1

1x 0xx 0

1x 1xx 1

Fig. 2. INT8 to � ���� (1, 2, 5) encoder: LUT mapping and corresponding truth tables.

multiplier are reconigured to establish a constant multiplication logic with the updated value. The irst operand

is fed into the 5-bit input port of CFGLUT5s. Hardcoding the multiplication logic for the second operand directly

into the LUTs, instead of employing a traditional double-operand multiplier, signiicantly reduces the hardware

cost of the multiplication circuit.

Fig. 3 illustrates the LUT mapping and coniguration bits for an example 5-bit unsigned multiplier. The output

consists of the quantized � most signiicant bits of the result. This means that only � CFGLUT5s are needed, each

generating one output bit. In this example, a value of 23 is assumed for the second operand,� , coniguring the

CFGLUT5s to realize the logic circuit of a constant multiplier calculating the product of a 5-bit quantized irst

operand, and 23. Fig. 3 depicts the process of calculating the coniguration bits for three CFGLUT5s which produce

the three most signiicant bits of the product. Rounding is used in these calculations to minimize quantization

error. The coniguration bits are loaded into the CFGLUT5s serially through a cascaded CDI and CDO chain. As

the bitwidth of the irst operand surpasses ive, the number of CFGLUT5s required for each output bit grows

exponentially. More precisely, the required number of CFGLUT5s is:

#������ 5 = 2�1−5 × � (8)

where �1 and � denote the bitwidth of the irst operand, � , and the result, � , respectively.

As an example, implementing an exact 8×8 unsigned multiplier requires 23×16 = 128 CFGLUT5s. Although the

LUT utilization may appear to be high, a more serious obstacle lies in the signiicant number of reconiguration

bits - a total of 4096 (128× 25). In order to fully exploit the CFGLUT5s while minimizing their quantity, we limited

the irst operand, to ive bits, resulting in one CFGLUT5 utilization per result bit. Thus, using � parallel CFGLUT5s

allows for calculating the �-bit result of a 5-bit multiplication. If the bitwidth is shorter, some CFGLUT5s may

remain partially unused, while increasing it to over ive bits will exponentially increase the number of CFGLUT5s.

Additionally, for the INT8 DyRecMul, we set the result bitwidth � to ive, restricting the number of CFGLUT5s to

only ive units and the number of reconiguration bits to 160. When this multiplier is used in a weight stationary

ACM Trans. Reconig. Technol. Syst.

DyRecMul: Dynamically Reconfigurable Approximate Multiplier • 7

CFGLUT5

I0
I1

I2

I3

I4

CDI

CLK CDO

CFGLUT5

I0
I1

I2

I3

I4

CDI

CLK CDO

CFGLUT5

I0
I1

I2

I3

I4

CDI

CLK CDORecon g Clock

5
-b

it
 O

p
1

Con g bits for

Op2

O6

O6

O6

Res[k]

Res[k-1]

Res[k-2]

Op1 Op1×23 Res

[4:0] [9:0]

00000 0000000000 0 0 0

00001 0000010111 0 0 0

00010 0000101110 0 0 0

00011 0001000101 0 0 1

00100 0001011100 0 0 1

00101 0001110011 0 0 1

00110 0010001010 0 0 1

11001 1000111111 1 0 0

11010 1001010110 1 0 1

11011 1001101101 1 0 1

11100 1010000100 1 0 1

11101 1010011011 1 0 1

11110 1010110010 1 0 1

11111 1011001001 1 1 0

Con g bits for

CFGLUTs

[k-1]

.

.

.

[k-2][k]

Fig. 3. 5-bit dynamically reconfigurable multiplier with 3-bit result using CFGLUT5 primitives. The second operand,��2 = 23

in this example.

DL accelerator, weights are translated into the coniguration bits in CFGLUT5s, and input feature maps are fed

as operands to the multipliers. As there is no interdependence between CFGLUT5 elements, they can operate

entirely in parallel, resulting in a short critical path of just one CFGLUT5.

The coniguration bits for CFGLUT5s are stored in a shared BRAM-based memory, as illustrated in Fig. 1. This

memory functions like a read-only memory, storing all coniguration bits for every possible 2� value of the

second operand. A counter generates the read address for the coniguration memory during reconiguration.

When the second operand,� , changes, this counter is initialized to the address of the irst coniguration bit

corresponding to the new� . The counter then increments with each clock cycle, and during each cycle, it

programs one bit into the chain of CFGLUT5s inside the mantissa multiplier through CDI/CDO pins. In the case

of the INT8 DyRecMul, this process continues for 160 clock cycles to write all 160 new coniguration bits.

When multiple DyRecMuls are utilized in a design, the reconiguration BRAM can be dual-ported to facilitate

the parallel reprogramming of two DyRecMuls. Furthermore, a single reconiguration memory can be employed

for the sequential reprogramming of more than two DyRecMuls, albeit at the expense of a longer reconiguration

time. The reconiguration time is an important factor in the eiciency of DyRecMul. As previously mentioned,

DyRecMul is most suitable for applications where one of the operands does not change frequently. In other

words, DyRecMac gains an edge when one of the operands remains unchanged signiicantly longer than the

reconiguration time. The inluence of reconiguration time on the overall processing time primarily relies on the

datalow and architecture of the DL accelerator. Section 5 will review some of the main target applications that

can efectively take advantage of DyRecMul.

ACM Trans. Reconig. Technol. Syst.

8 • Vakili, et al.

���������

[6][4]

0x0

001

111

���������

[5][4:3]

0xx00

00x01

11x01

0x01x

1x11x

���������

[4][4:2]

00xx00

11xx00

0x0x01

1x1x01

0xx01x

1xx11x

[1] [1:0] [1:0]

���������

[3][3:1]

00xx00

11xx00

0x0x01

1x1x01

0xx01x

1xx11x

[1:0]

���������

[2][2:0]

00xx00

11xx00

0x0x01

1x1x01

0xx01x

1xx11x

[1:0]

I0

I1

I2

O
I3

I4

Xexp [1]

	 [4]

Xexp [0]

LUT5
Zmnt [4]

Zmnt [3]

Zmnt [2]

I0

I1

I2
O

I3

Xexp [1]

	 [5]

Xexp [0]
LUT4Zmnt [4]

Zmnt [3]

I0

I1 O

Xexp [1]

	 [6]
LUT2

Zmnt [4]

I0

I1

I2

O
I3

I4

Xexp [1]

	 [3]

Xexp [0]

LUT5
Zmnt [3]

Zmnt [2]

Zmnt [1]

I0

I1

I2

O
I3

I4

Xexp [1]

	 [2]

Xexp [0]

LUT5
Zmnt [2]

Zmnt [1]

Zmnt [0]

���������

[1][1:0]

00x00

11x00

0x001

1x101

0xx1x

[1:0]

I0

I1

I2

OI3

Xexp [1]

	 [1]

Xexp [0]

LUT4Zmnt [1]

Zmnt [0]

���������

[0][0]

0000

1100

0x01

0x1x

[1:0]

I0

I1

I2 O

Xexp [1]

	 [0]

Xexp [0]
LUT3

Zmnt [0]

Fig. 4. � ���� (1, 2, 5) to INT8 decoder: LUT mapping and corresponding truth tables.

2.2.3 Floating-point to Integer Decoder. The decoder converts the result of mantissa multiplication along with

the exponent of the irst operand into a 7-bit unsigned format. The decoder needs seven LUT5 units, with each

unit producing one output bit using two exponent bits and a maximum of three mantissa bits. The truth table of

each output bit is shown in Fig. 4. Since all LUT5 units function in parallel, the critical path is only one LUT5.

2.2.4 Two’s Complement Logic. The output of the decoder is the absolute value of the result. As described in

Section 2.1, the sign of the product can be obtained by exclusive OR operation between the sign bit of the two

operands. If the product is negative, a two’s complement function must be applied. Two’s complement logic can

be realized using eight LUT5 units. The carry signal is expected to be a major source of latency in this multiplier.

To create an unsigned version of DyRecMul, we only need to remove the two’s complement stage, modify the

loating-point format to � ���� (0, 2, 5), and make slight adjustments to the encoder and decoder stages. The results

in section 6 indicate that the unsigned version is more eicient than the signed version. This is because the two’s

complement stage, which consumes a signiicant amount of hardware resources, is present only in the signed

DyRecMul.

3 GENERALIZED DYRECMUL

Section 2 detailed the design of an INT8multiplier with internal � ���� (1, 2, 5) conversion. A crucial question arises

regarding the efectiveness of DyRecMul with other data types and loating-point formats. The cost and accuracy

of a DyRecMul multiplier depend on four key parameters:����� , the mantissa bitwidth in the loating-point

encoding of Op1; ����� , the exponent bitwidth;��̂��� =���
(
�̂���

)
+ 1, the maximum value that the exponent

may attain plus one; and �̂�� , the number of mantissa product bits generated by the mantissa multiplier unit.

Altering these parameters results in diferent trade-ofs between hardware cost and accuracy. The main task in

designing a DyRecMul multiplier entails selecting suitable values for these parameters. This section provides an

estimation of the hardware cost and accuracy of an � × � DyRecMul as a function of these four parameters.

These estimation functions provide insight into the overall eiciency of the DyRecMul method and facilitate the

process of designing DyRecMul multipliers for various data types.

3.1 Hardware Cost Estimation

In this section, we provide a conservative estimation of the hardware cost for three crucial components of

unsigned DyRecMulÐnamely, the encoder, mantissa multiplier, and decoderÐmeasured in terms of the number

of utilized LUT5 units. To establish a uniform metric, we estimate the number of LUT5s, striving to map all

ACM Trans. Reconig. Technol. Syst.

DyRecMul: Dynamically Reconfigurable Approximate Multiplier • 9

logic onto LUT5 resources, excluding other elements such as F7, F8, and F9 MUX primitives. Since each LUT6

in modern AMD-Xilinx technology consists of two LUT5 units, the estimations provided in this section can be

converted to LUT6 utilization by dividing the estimated number of LUT5s by two. Moreover, the estimations

can be readily extended to the signed DyRecMul by applying minor modiications and incorporating the LUT

utilization for the two’s complement component.

3.1.1 Integer to Floating-Point Encoder. As illustrated in Fig. 2 for the INT8 case, the integer to loating-point

encoder comprises two components: (1) an exponent identiier circuit, and (2) mantissa extractor.

The exponent identiier examines the��̂��� most signiicant bits to determine the ����� bits of the exponent.

This is realized by a circuit that bears similarities to a��̂��� -to-����� priority encoder. As long as��̂��� ≤ 5,

each output bit can be generated by a single LUT5. However, when��̂��� exceeds 5, a conservative and simpliied

estimation approach involves dividing the exponent identiier into two steps. The irst step employs a logic circuit

to convert the��̂��� − 1 most signiicant bits, retaining only the most signiicant ’1’ bit and masking other less

signiicant bits to zero. This step requires almost��̂��� − 1 LUTs. The second step resembles a binary decoder

with ����� output bits. In decoders, each output bit typically depends on a maximum of 2����� /2 input bits.

One LUT5 is adequate to process a maximum of ive input bits in this stage. Since ����� is not supposed to be

too large in DyRecMul, we can estimate that ⌈2���BW/10⌉ LUT5s are required for each output bit. In summary,

the estimated total number of LUT5s for the exponent identiier can be expressed as:

{
������ 5 = ����� , �ℎ�� ��̂��� ≤ 5.

������ 5 = ⌈2����� /10⌉ × ����� +��̂��� − 1, �ℎ�� ��̂��� > 5.
(9)

Recalling that ��̂��� = ���
(
�̂���

)
+ 1, the exponent bitwidth, ����� , is directly derived from ��̂��� as

follows:

����� =

⌈
log2

(
��̂���

)⌉
. (10)

The mantissa extractor functions as a multiplexer, with the exponent acting as its selector and��̂��� bits

of the irst operand as its input. Each bit of the mantissa is derived from the ����� -bit exponent and��̂���

bits of the input, X. As long as��̂��� + ����� ≤ 5, each output bit can be generated by one LUT5. However, if

��̂��� + ����� exceeds 5, a multilayer tree of LUTs implements this multiplexer. Every 4 × 1 multiplexer can be

implemented within a single LUT6 or two LUT5. Thus, we conservatively estimate the number of LUT5 in the

irst layer as
⌈
��̂���/4

⌉
× 2. Every four LUTs from the irst layer, along with two exponent bits, feed one LUT6 in

the second layer. Therefore, we estimate the number of LUT5s in the second layer as
⌈
��̂���/16

⌉
× 2. A third

layer will be needed only when��̂��� exceeds 16 and will need more than one LUT when it exceeds 64, which is

too large to consider. Hence, for simplicity, we discard the third layer here. Overall, the obtained estimation for

LUT5 utilization in the mantissa extractor will be as follows:

������ 5 =����� , �ℎ�� ��̂��� < 4.

������ 5 =����� × 2, �ℎ�� ��̂��� = 4.

������ 5 =

(⌈
��̂���/4

⌉
+
⌈
��̂���/16

⌉)
× 2 ×����� , �ℎ�� ��̂��� > 4.

(11)

The total estimated number of LUT5 units required for integer to loating-point encoding is:

���������� 5 = ������ 5 +������ 5 (12)

ACM Trans. Reconig. Technol. Syst.

10 • Vakili, et al.

3.1.2 Floating-Point to Integer Decoder. The decoder converts the product result to integer format. Similar

to the mantissa extractor in the encoder, the decoder operates as a multiplexer, with each output bit chosen

from one of the ��̂��� mantissa product bits, �̂��� . Consequently, each output bit of the decoder requires a

multiplexer, employing the exponent as the selector to choose among��̂��� bits of the mantissa product. As

long as��̂��� + ����� ≤ 5, a single LUT5 is suicient for implementing the multiplexer of each bit. If it exceeds

5, a similar approximation to Eq. 11 is applied. The resulting estimation function for the total number of LUT5s

for the decoder is as follows:

���������� 5 = �, �ℎ�� ��̂��� < 4.

���������� 5 = � × 2, �ℎ�� ��̂��� = 4.

���������� 5 =

(⌈
��̂���/4

⌉
+
⌈
��̂���/16

⌉)
× � × 2, �ℎ�� ��̂��� > 4.

(13)

For the signed version, Eq. 13 needs to be adjusted by replacing � with � − 1.

3.1.3 CFGLUT5-Based Mantissa Multiplier. As detailed in Section 2.2.2, an estimate of the required number of

LUT5 units for mantissa multiplication can be obtained as follows:

{
���_����������� 5 =

⌈
�̂��

⌉
, �ℎ�� ����� ≤ 5.

���_����������� 5 =
⌈
2����� −5 × �̂��

⌉
, �ℎ�� ����� > 5

(14)

Increasing �̂BW enhances accuracy at the expense of a larger mantissa multiplication unit and an extended

reconiguration time.

As an example, for a UINT8 DyRecMul multiplier with � ���� (0, 2, 5) internal loating-point format, and the

parameter values of � = 8, ����� = 2,����� = 5,��̂��� = 4, and �̂BW = 5, the estimated total number of

LUT5s using Eq. 12, 13, and 14 is as follows:

�������� 5 = ���������� 5 + ���������� 5 +���_����������� 5 = 12 + 16 + 5 = 33 (15)

From Eq. 15, the estimated number of LUT6 units required for this UINT8 DyRecMul is approximately 17.

It is worth noting that the synthesizer tools typically have the capability to reduce LUT utilization through

optimization.

3.2 Accuracy Considerations

In addition to hardware costs, accuracy is another crucial factor to consider when determining DyRecMul

parameter values. Speciically in DL applications, relative error serves as a crucial accuracymetric. This importance

arises from the prevalence of small values in a signiicant portion of features and weights in DL computing.

Consequently, a simple binary quantization may cause numerous features to be truncated to zero, leading to

a substantial loss of accuracy. Hence, there is a growing tendency to use loating-point datatypes, which ofer

lower relative errors, in ML computation.

Relative error, ��� when presenting value i is deined as follows:

��� =
���

������
, (16)

where

��� = |������ −������� | , � ∈ N. (17)

ACM Trans. Reconig. Technol. Syst.

DyRecMul: Dynamically Reconfigurable Approximate Multiplier • 11

Mean relative error (MRE) serves as an illustrative metric for measuring relative errors, and it is calculated as

follows in unsigned multiplication:

��� =
1

2�

2� −1︁

�=0

���

������
, (18)

where N denotes the input bitwidth. A loating-point representation with an����� -bit mantissa can always

preserve the����� signiicant bits from the leftmost ’1’ (in positive numbers). In the worst case, where only

the most signiicant mantissa bit is a ’1’, the maximum possible relative error is equal to 2�/
(
2����� +� + 2�

)
=

1/2����� + 1. Conversely, in integer quantization, even quantizing a single least signiicant bit can lead to a

worst-case relative error of 1.

Despite these advantages, a major drawback of loating-point representations is the excessive hardware cost of

their adder/subtracter circuits, limiting their eiciency. DyRecMul addresses this issue by internally converting

to loating point while allowing the subsequent add/subtract operations, typically following multiplication in DL,

to be performed in integer format.

Two key factors signiicantly impact the relative error in DyRecMul: (1) the mantissa bitwidth,����� , and (2)

the maximum exponent value,��̂��� − 1. A longer mantissa allows for the preservation of more least signiicant

bits, thereby improving resolution. Increasing����� reduces the worst-case relative error. On the other hand,

the maximum exponent value, coupled with the mantissa bitwidth, deines the supported dynamic range of the

loating-point representation. Speciically, when converting an N -bit integer to a � ����
(
������ , ����� ,�����

)

format, the loating-point representation can encompass maximum��̂��� +����� − 1 bits of the input. If N is

greater than��̂��� +����� − 1, then the remaining � −��̂��� −����� + 1 bits would be discarded.

The recommended approach to determine suitable parameter values for an � ×� DyRecMul multiplier begins

with identifying the two most crucial parameters:��̂��� and����� . As highlighted in the above discussions,

there is a delicate balance between hardware cost and accuracy when selecting values for these parameters. The

hardware cost estimation functions and MRE, described in Section 3, can be employed to determine the optimal

values for these parameters in accordance with the design constraints. The exponent bitwidth, ����� , is then

simply obtained using Eq. 10. The only remaining parameter is �̂BW, the bitwidth of the reconigurable mantissa

multiplier. This parameter signiicantly inluences the hardware complexity of the mantissa multiplier, decoder,

and, most importantly, the reconiguration time. It is advisable to ine-tune this parameter after establishing other

parameter values, using a simple exhaustive search. This process involves assessing hardware and reconiguration

costs, conducting an accuracy analysis of several options, and selecting the value that provides the optimal

trade-of and meets the speciied requirements.

4 RECONFIGURATION TIME AND RAPIDLY RECONFIGURABLE DYRECMUL

The reconiguration time of CFGLUT5 units in the mantissa multiplier is a crucial parameter for the practicality

of DyRecMul. As illustrated in Fig. 1, the reconiguration bits are stored in a BRAM-based Conig bit Memory,

which functions as look-up tables. When CFGLUT5s need to be updated with a new W value, the new W serves

as an address to read a total of #������5 × 25 reconiguration bits to be programmed into the CFGLUT5s,

where #������ 5 has been calculated in Eq. 8. Since the programming is executed serially through a cascaded

chain, the entire reconiguration of the mantissa multiplier will take #������5 × 25 clock cycles. In the case

of the INT8 DyRecMul presented in Section 2.2, which utilizes 5 CFGLUT5s, this corresponds to 5 × 25 = 160

clock cycles. Throughout the reconiguration time, the multiplier remains non-functional. Therefore, a standard

DyRecMul architecture, as discussed thus far, is suitable for applications where the frequency of updating one of

the operands is slow enough to ensure that the reconiguration stall time does not introduce a signiicant latency

overhead in overall processing time.

ACM Trans. Reconig. Technol. Syst.

12 • Vakili, et al.

Float-to-

INT8

Decoder

CFGLUT5-

Based

Man ssa

Mul plier 15

2

5

X

CDI

INT88

Xmnt

X[7]

ZTwo’s

Compl

ement

CDO

7

Sign bit

CFGLUT5-

Based

Man ssa

Mul plier 2

CDI

CDO

Sign bit

Ping-Pong Sel

Ping-Pong Sel
5

Xmnt

INT8-to-

Float

Encoder

Con g bit stream
Con g

bit

Memory

W×25×5

. . . To next mul plier

28× 25×5

1

1

Counter
Addr

Fig. 5. Architecture of RR_DyRecMul utilizing a ping-pong scheme to reduce the reconfiguration latency.

To mitigate this limitation, this section introduces a Rapidly Reconigurable version of DyRecMul, termed

RR_DyRecMul. RR_DyRecMul employs a ping-pong scheme to conceal the reconiguration time. As illustrated in

Fig. 5, the RR_DyRecMul architecture incorporates a second CFGLUT5-based mantissa multiplier. A multiplexer

is utilized to select the output of one of the mantissa multipliers at any given time. While the irst mantissa

multiplier is operational, the second one can be reconigured with the next W value. The transition from the old

W value to the new one can then occur by simply adjusting the multiplexer selector, and activating the second

multiplier while putting the irst one in reconiguration mode. In RR_DyRecMul, if one of the operands remains

unchanged for at least #������5 × 25 clock cycles, the reconiguration time overhead ideally becomes zero.

The cost overhead comprises an additional mantissa multiplier, the LUT cost of which is estimated in Eq. 14, as

well as a 2-to-1 multiplexer that would require a maximum of �̂BW LUTs.

5 TARGET APPLICATIONS

As Section 6 will unveil, DyRecMul achieves a signiicant enhancement in eiciency, particularly with its

innovative CFGLUT5-based mantissa multiplier. The reconiguration time is a crucial factor that may introduce

latency overhead, particularly when the hardcoded operand experiences frequent variations. Consequently,

DyRecMul emerges as an efective solution for applications in which one operand remains relatively constant.

This characteristic aligns well with various ML computations and signal and image processing applications,

where the infrequency of changes in one operand is a common property. This section provides an overview of

some key applications for the DyRecMul multiplier. The utilization of DyRecMul has the potential to signiicantly

enhance the eiciency of FPGA-based computing in these applications.

5.1 Low-cost Hardware Accelerators for Updatable Supervised Learning

Hardware accelerators are necessary to yield the required inference throughput, latency, and energy eiciency

when using supervised machine learning models for several applications. In an expanding array of applications

across domains such as wireless communication and the inference of tiny ML models, where throughput is

crucial, a fully parallelized accelerator architecture assigns a dedicated hardware multiplier to each multiplication.

ACM Trans. Reconig. Technol. Syst.

DyRecMul: Dynamically Reconfigurable Approximate Multiplier • 13

When model parameters remain unchanged, employing a constant multiplier can considerably enhance eiciency.

However, occasional updating of ML parameter values is a crucial requirement for numerous supervised learning

applications. Even in speciic ML approaches, like federated learning and incremental learning, the periodic

adjustment of model parameters is a fundamental feature. The support for such occasional parameter updates

requires non-constant multipliers, which, in turn, incurs signiicant costs and energy overhead. DyRecMul serves

as a solution that bridges the gap between constant and non-constant multipliers, delivering markedly enhanced

eiciency compared to non-constant multipliers while accommodating occasional updates.

5.2 Deep Reinforcement Learning Hardware

Reinforcement learning (RL) methods encompass two distinct phases: exploration and exploitation. In the explo-

ration phase, the agent actively seeks the optimal action selection policy for each state within the environment.

This policy undergoes iterative reinement until a near-optimal solution is achieved. Subsequently, the RL transi-

tions to the exploitation phase, during which the agent applies its learned policy to make decisions within the

environment, aiming to maximize its cumulative reward. In deep reinforcement learning techniques like deep

Q-learning, a deep neural network (DNN) is utilized to fully approximate quality values (Q-values) or state-action

policies. Throughout the exploration phase, the DNN undergoes retraining, whereas, in the considerably longer

exploitation phase, the DNN’s parameter weights remain constant. DyRecMul is a itting choice for such applica-

tions characterized by relatively short periods of coeicient changes and where constant multipliers suice for

the majority of operational time. DyRecMul eiciently addresses the implementation of high-performance DNNs

by supporting weight updates during the exploration phase through reconiguration. Afterward, it seamlessly

operates as a cost-efective constant multiplier during the exploitation phase.

5.3 DL Hardware Accelerators With Weight-Stationary Dataflows

DL hardware accelerators are increasingly utilized for computing the inference of DL models. These accelerators

are commonly designed to handle computations across various types and sizes of DL algorithms. Given that

multiply-and-accumulate (MAC) operations form the predominant majority and bottleneck, these accelerators

typically feature a core component consisting of a matrix of processing elements (PEs) each containing a

MAC operator. Weights and features are provided to this PE matrix using a predeined datalow, wherein matrix

multiplications are typically carried out for various DL layers such as multilayer perceptron layers or convolutional

layers. A commonly used datalow in DL accelerators is the weight-stationary scheme, where weights are stored

in local memories within the PEs, and input features are sequentially uploaded and circulated across PEs [19].

DyRecMul is an efective solution for weight-stationary datalows, particularly when dealing with large-sized

input features that necessitate infrequent updates of weights. In addition to ofering reduced hardware cost and

latency compared to standard multipliers, DyRecMul eliminates the need for internal registers to store weights.

This is achieved by directly hardcoding and programming the weights into the reconigurable mantissa multiplier.

In scenarios where the input feature size is substantial, the number of clock cycles during which weights must

persist on PEs is notably greater than the reconiguration time calculated in Section 4. This long stability period

for weights eliminates the need for reconiguration time overhead in RR_DyRecMul, as it afords suicient time

to program the next weights into the second mantissa multiplier unit while the current weights are still in use.

The transition to the new weights can then be seamlessly executed within a single cycle. Even with the baseline

DyRecMul, a larger input feature size results in less frequent reconiguration, leading to a correspondingly lower

reconiguration time overhead.

ACM Trans. Reconig. Technol. Syst.

14 • Vakili, et al.

5.4 Updatable Digital Filters

Beyond its applications in ML hardware, DyRecMul can be efectively utilized in digital ilters for signal and image

processing. This is particularly the case in scenarios where the ilter coeicients remain constant but require

occasional updates. DyRecMul achieves markedly higher eiciency by hardcoding coeicients into CFGLUT5s

compared to non-constant multipliers, all while allowing for periodic coeicient updates. Alternative solutions for

achieving updatable ilters involve using non-constant multipliers with additional registers to store coeicients or

resorting to constant multipliers, demanding the reprogramming of the entire FPGA when weights are updated.

The former solution often results in diminished eiciency concerning hardware cost and latency, while the latter

necessitates a service interruption for FPGA reprogramming. DyRecMul serves as a solution that bridges the gap

between non-constant and constant multiplier methods, ofering enhanced eiciency while allowing dynamic

coeicient updates.

6 RESULTS

We evaluated INT8/UINT8 DyRecMul by conducting error analysis, measuring hardware eiciency, and running

accuracy tests on popular benchmark DL models. This section presents the results, discussions, and comparisons.

6.1 Error Analysis and Evaluation

One important method for assessing the accuracy of approximate calculations is error measurements and

analysis. These assessments gauge the diference between the results of approximate calculations to those of

exact calculations to determine any discrepancies [41]. This section presents the accuracy of DyRecMul with

ive error metrics, including MRE (deined in Eq. 18), Error Probability (EP), Mean Absolute Error (MAE), Mean

Squared Error (MSE), and Normalized Error Distance (NED). For unsigned arithmetic, these metrics are deined

as follows:

�� =
1

2�

2� −1︁

�=0

��� ≠ 0, (19)

��� =
1

2�

2� −1︁

�=0

��� , (20)

��� =
1

2�

2� −1︁

�=0

(���)
2, (21)

��� =
1

2�

2� −1︁

�=0

���

��� (��)
, (22)

where � denotes the input bitwidth and ��� has been deined in Eq. 17.

Table 1 compares DyRecMul with existing approximated multipliers [5, 9, 11, 25, 26, 36, 37, 40, 42, 46]. Our

primary focus lies on the signed version of the DyRecMul, tailored speciically for ML applications. Nonetheless,

we present the unsigned version of the multiplier, which is suitable for error-tolerant applications within the

domain of image processing, such as image sharpening and smoothing [17]. Our method outperforms [9] by a

signiicant margin in error analysis. The approximate multipliers proposed by [40] and [26] ofer reconigurability

based on an approximation factor � representing the number of encoders employed in the partial product

generation. DyRecMul yields comparable accuracy compared to this method in the low approximation (� = 8)

mode. In the mid-level approximation mode (� = 10), our method outperforms the other designs and proves its

robustness and efectiveness.

ACM Trans. Reconig. Technol. Syst.

DyRecMul: Dynamically Reconfigurable Approximate Multiplier • 15

Table 1. Error Analysis and Comparisons

Multiplier EP MAE MRE MSE NED

DyRecMul (signed) 0.5157 397 0.0680 96336 0.00005

Danopoulos [9] 0.7480 464 0.1259 5515991 0.01160

Liu [26] (� = 8) -∗ - 0.0525 - -

Liu [26] (� = 10) - - 0.1991 - -

Van Toan [40] (� = 8) - 100 0.2299 - -

Van Toan [40] (� = 10) - 512 0.9320 - -

DyRecMul (unsigned) 0.7380 336 0.0194 260528 0.1210

Ha [11] - 3490 0.3676 - -

Ullah [36] ������1 - - 0.016 - -

Ullah [36] ������2 - - 0.030 - -

Ullah [36] ������3 - - 0.027 - -

Ullah [37] �� - - 0.0029 - -

Ullah [37] �� - - 0.1293 - -

Yang [46] - 220 0.0196 - -

Venkatachalam [42] - 101 0.0548 - -

Liu [25] - 130 0.0062 - -

Ansari [5] - 1530 0.1336 - -

∗ Not reported in the reference

Although error analysis can be useful in evaluating the accuracy of approximated circuits, it may not give

a complete picture. In Section 6.3, we will examine how the approximation in DyRecMul afects the inference

accuracy of some benchmark convolutional neural network (CNN) models in order to gain a more comprehensive

understanding.

6.2 Hardware Implementation Results

DyRecMul was modeled in VHDL, then synthesized and implemented with AMD-Xilinx Vivado ML 2022.2 for

a xcku5p Kintex Ultrascale+ FPGA with a speed grade of -3. For comparisons, we also evaluated the default

AMD-Xilinx multiplier circuit. To ensure fairness, the synthesis tool was instructed to avoid using DSP resources.

ACM Trans. Reconig. Technol. Syst.

16 • Vakili, et al.

Table 2 presents the implementation costs and maximum supported clock frequency of INT8/UINT8 DyRecMul

and the Xilinx standard multiplier cores in three conigurations: signed multiplier, unsigned multiplier, and

signed MAC. The metrics include the utilization of LUTs and CARRY8 primitives, as well as the maximum clock

frequency that is supported. Table 2 also presents the results of four unsigned approximate multipliers from

existing works. These data have been extracted from the reported implementation results on Xilinx Spartan-6 in

[40], and normalized based on exact multiplier results. As all the compared designs are combinational multipliers,

none of them utilizes lip-lops. Additionally, the utilization of other resources, such as BRAMs and DSPs, is also

zero.

The results indicate signiicant reductions in LUT usage with 64%, 80%, and 67% savings for the signed, unsigned,

and MAC cases, respectively, compared to the exact 8 × 8 multiplier. DyRecMul also archived a higher frequency

than all existing exact and approximate multipliers. The ping-pong scheme facilitating rapid reconiguration in

RR_DyRecMul incurs an additional cost of ten LUTs, a still considerably more cost-efective option compared to

standard multipliers.

Furthermore, from the discussions in Section 2, it can be inferred that the total size of this coniguration bit

memory in terms of the number of bits is:

���� ��_���_���������� (����) = �̂�� × 2� × 2����� . (23)

As each BRAM36K unit can be conigured and used as a 32K by 1-bit wide memory, mapping the coniguration

bit memory onto BRAM36K elements, the total number of required BRAM36K units is calculated as follows:

���� ��_���_������#����� =

⌈(
�̂�� × 2� × 2�����

)
/32768

⌉
. (24)

From Eq. 24, we can determine that two BRAM36K units are required for the proposed INT8/UINT8 DyRecMul

as
⌈(
5 × 28 × 25

)
/32768

⌉
= 2.

In addition to incorporating 8-bit multipliers, we expanded our implementation to include 12-bit and 16-bit

multipliers, utilizing distinct internal loating-point formats. This extension enabled us to experimentally assess

the eiciency of DyRecMul when applied to larger datatypes. Table 3 presents the hardware implementation

results for 12-bit and 16-bit multipliers, comparing DyRecMul, RR_DyRecMul, and AMD-Xilinx multiplier cores.

For the INT12/UINT12 versions, we allocated three bits to the exponent bitwidth, ����� = 3, and ive bits to the

mantissa bitwidth,����� = 5, resulting in the format � ���� (1/0, 3, 5). Consequently,��̂��� equals eight and

seven in these UINT12 and INT12 multipliers, respectively. In the case of INT16/UINT16 multipliers, we assigned

four bits and ive bits to the exponent and mantissa bitwidths, respectively, yielding the format � ���� (1/0, 4, 5).

The indings highlight that the hardware eiciency superiority of DyRecMul becomes more pronounced with

larger datatypes. Additionally, the results indicate that unsigned multipliers exhibit progressively lower hardware

costs compared to their signed counterparts. This disparity is primarily attributed to the two’s complement logic

in signed DyRecMul, which incurs escalating costs as the input and output bitwidth, N, increases.

Despite considerable utilization of CARRY8 fast carry primitives in standard multipliers, DyRecMul achieves

a signiicantly higher maximum clock frequency thanks to its optimized datapath. DyRecMul yields similar

results in both signed multiplier and MAC setups. This is because the two’s complement logic at the end of the

architecture needs the same amount of LUTs as an adder/subtractor in MAC. In other words, an adder/subtractor

can be incorporated into the two’s complement LUT-based circuit with almost no cost overhead. Among the

three tested setups, DyRecMul achieves the highest performance in the unsigned multiplication setup. This is

because the two’s complement logic in signed multiplication and the add/sub logic in MAC operations constitute

a signiicant portion of both hardware and latency.

ACM Trans. Reconig. Technol. Syst.

DyRecMul: Dynamically Reconfigurable Approximate Multiplier • 17

Table 2. Implementation Costs and Performance Comparison for INT8 and UINT8 datatypes

Function Multiplier Size #LUT #CARRY8/4 Max Freq. (MHz)

Signed Multiplier

DyRecMul 8×8 25 0 770

RR_DyRecMul 8×8 35 0 699

AMD-Xilinx

(Exact)

8×8 69 8 730

7×7 61 6 660

Signed MAC

DyRecMul 8×8 25 1 769

AMD-Xilinx

(Exact)

8×8 76 10 571

7×7 69 8 585

Unsigned Multiplier

DyRecMul 8×8 16 0 950

RR_DyRecMul 8×8 26 0 847

AMD-Xilinx

(Exact)

8×8 82 6 684

7×7 55 6 725

Venkatachalam [42] ∗ 8×8 108 4 690

Ha [11] ∗ 8×8 73 4 664

Ansari [5] ∗ 8×8 63 3 757

Yang [47] ∗ 8×8 76 3 729

Ullah [36] ������1† 8×8 64 2 -

Ullah [36] ������2† 8×8 54 0 -

Ullah [36] ������3† 8×8 54 0 -

Ullah [37] ��† 8×8 67 7 424

Ullah [37] ��† 8×8 59 4 452

Van Toan [40] � = 8∗ 8×8 59 4 759

Van Toan [40] � = 10∗ 8×8 56 4 849

∗ Results are obtained from [40] and normalized based on the exact multiplier results.

† The target device was Virtex-7.

6.3 Accuracy in Deep Learning Computation

To ensure the usability of DyRecMul in DNN accelerators, we evaluated its accuracy for the benchmark models

ResNet18, ResNet50, VGG19, and DenseNet121 using the CIFAR-10 dataset. For these experiments, we used the

AdaPT framework which provides a rapid emulation environment to measure the accuracy of new approximate

multipliers in the CNNs, LSTMs, and GANs inferences [9]. Fig. 6 compares the inference accuracy and the

hardware utilization costs ofered by an INT8 DyRecMul with those of standard AMD-Xilinx multipliers with

diferent bitwidths. The accuracy is measured for post-training deployment with no re-training applied. Fig. 6

clearly indicates that DyRecMul ofers a signiicantly superior accuracy-hardware cost trade-of compared to the

ACM Trans. Reconig. Technol. Syst.

18 • Vakili, et al.

Table 3. Implementation Costs and Performance Comparison for INT/UINT12 and INT/UINT16 Multipliers

Datatype Multiplier Size #LUT #CARRY8 Max Freq. (MHz)

INT12 ∗

DyRecMul 12×12 62 0 470

RR_DyRecMul 12×12 70 0 425

AMD-Xilinx

(Exact)
12×12 168 18 525

UINT12 ∗

DyRecMul 12×12 36 0 615

RR_DyRecMul 12×12 48 0 580

AMD-Xilinx

(Exact)
12×12 186 15 575

INT16 †

DyRecMul 16×16 104 0 355

RR_DyRecMul 16×16 114 0 320

AMD-Xilinx

(Exact)
16×16 279 32 355

UINT16 †

DyRecMul 16×16 45 0 510

RR_DyRecMul 16×16 56 0 475

AMD-Xilinx

(Exact)
16×16 337 28 400

∗ For INT12/UINT12, ����� = 3 and����� = 5.

† For INT12/UINT16, ����� = 4 and����� = 5.

Table 4. Inference Accuracy and Hardware Metrics Comparison With Previous Studies

Multiplier Dataset Accuracy (%) Area (LUTs) Max Freq. (MHz)

ResNet18 ResNet50 VGG19 DenseNet121 MUL MAC MUL MAC

Exact (5 × 5) CIFAR-10 81.20 22.08 34.83 22.72 48 52 740 724

Exact (6 × 6) CIFAR-10 91.83 85.81 90.17 89.98 51 62 770 700

Exact (7 × 7) CIFAR-10 92.83 92.95 93.60 93.37 61 69 660 585

Exact (8 × 8) CIFAR-10 92.98 93.57 93.78 93.85 69 76 730 571

[9] (8 × 8) CIFAR-10 - 82.70 90.70 - - - - -

[12] SSM (8 × 8) ImageNetV2 - - 92.28 - - - - -

[12] DSM (8 × 8) ImageNetV2 - - 92.15 - - - - -

DyRecMul CIFAR-10 92.72 93.32 93.45 93.54 25 25 770 769

ACM Trans. Reconig. Technol. Syst.

DyRecMul: Dynamically Reconfigurable Approximate Multiplier • 19

0

20

40

60

80

100

22 32 42 52 62 72

A
cc

u
ra

cy
 (

%
)

LUTs

a) Mul plier

Exact ResNet18

Exact ResNet50

Exact VGG19

Exact DenseNet121

DyRecMul ResNet18

DyRecMul ResNet50

DyRecMul VGG19

DyRecMul DenseNet121

5×5
6×6

7×7 8×8

0

20

40

60

80

100

22 32 42 52 62 72 82

A
cc

u
ra

cy
 (

%
)

LUTs

b) Mul ply-and-Accumulate

Exact ResNet18

Exact ResNet50

Exact VGG19

Exact DenseNet121

DyRecMul ResNet18

DyRecMul ResNet50

DyRecMul VGG19

DyRecMul DenseNet121

5×5

6×6

7×7 8×8

Fig. 6. Trade-ofs between hardware utilization and inference accuracy when running four benchmark CNNs using DyRecMul

and standard exact multipliers of diferent sizes: (a) signed multiplier results, and (b) MAC results.

standard AMD-Xilinx multiplier cores. Table 4 provides detailed results of INT8 DyRecMul and selected previous

works [12], including inference accuracy, maximum supported clock frequency and hardware utilization. Based

on the indings, DyRecMul provides an average accuracy loss that is only 0.29% lower than that of 8 × 8 exact

multipliers and 0.07% higher than 7 × 7. The worst-case accuracy distance from the exact 8 × 8 multiplier is

only 0.33%. Table 4 also shows that DyRecMul ofers slightly higher accuracy compared to Danopoulos [9], SSM,

and DSM [12] INT8 approximate multipliers in the VGG19 test and signiicantly higher accuracy compared to

Danopoulos in ResNet50. Also, as reported in Section 6.2, DyRecMul uses fewer LUTs, with a reduction of 64%

and 67% in signed and MAC setups, respectively. Furthermore, it can support clock frequencies that are up to

5.5% and 34.6% higher than an exact 8 × 8 multiplier in signed and MAC setups, respectively.

7 CONCLUSION

This paper introduces DyRecMul, an approximate multiplier meticulously optimized for machine learning

computations on FPGAs. Leveraging dynamically reconigurable logic, this multiplier achieves remarkable

hardware eiciency. Additionally, it employs a cost-efective internal loating-point conversion technique to

ACM Trans. Reconig. Technol. Syst.

20 • Vakili, et al.

preserve a wide dynamic range, thereby enhancing the precision of machine learning calculations. The results

demonstrate that for INT8 precision, DyRecMul requires 64%, 80%, and 67% fewer LUTs compared to the Xilinx

standard multiplier core in signed, unsigned, and MAC setups, respectively. Moreover, the maximum supported

clock frequency remains notably higher than that of Xilinx multipliers. DyRecMul also provides a substantial

advantage over four existing approximate multipliers in terms of both hardware utilization and frequency.

Additionally, the results indicate that employing this multiplier for post-training DL inference leads to a minimal

average accuracy degradation of less than 0.29% compared to exact INT8 multiplication.

8 ACKNOWLEDGMENTS

We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC).

REFERENCES

[1] Mohammad Ahmadinejad, Mohammad Hossein Moaiyeri, and Farnaz Sabetzadeh. 2019. Energy and area eicient imprecise compressors

for approximate multiplication at nanoscale. AEU-International Journal of Electronics and Communications 110 (2019), 152859.

[2] Omid Akbari, Mehdi Kamal, Ali Afzali-Kusha, and Massoud Pedram. 2017. Dual-quality 4: 2 compressors for utilizing in dynamic

accuracy conigurable multipliers. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 25, 4 (2017), 1352ś1361.

[3] Mohammad Saeed Ansari, Bruce F. Cockburn, and Jie Han. 2019. A Hardware-Eicient Logarithmic Multiplier with Improved Accuracy.

In 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE). 928ś931. https://doi.org/10.23919/DATE.2019.8714868

[4] Mohammad Saeed Ansari, Bruce F Cockburn, and Jie Han. 2020. An improved logarithmic multiplier for energy-eicient neural

computing. IEEE Trans. Comput. 70, 4 (2020), 614ś625.

[5] Mohammad Saeed Ansari, Honglan Jiang, Bruce F Cockburn, and Jie Han. 2018. Low-power approximate multipliers using encoded

partial products and approximate compressors. IEEE journal on emerging and selected topics in circuits and systems 8, 3 (2018), 404ś416.

[6] Chuangtao Chen, Sen Yang, Weikang Qian, Mohsen Imani, Xunzhao Yin, and Cheng Zhuo. 2020. Optimally approximated and

unbiased loating-point multiplier with runtime conigurability. In Proceedings of the 39th International Conference on Computer-

Aided Design (Virtual Event, USA) (ICCAD ’20). Association for Computing Machinery, New York, NY, USA, Article 121, 9 pages.

https://doi.org/10.1145/3400302.3415702

[7] Vinay K. Chippa, Srimat T. Chakradhar, Kaushik Roy, and Anand Raghunathan. 2013. Analysis and characterization of inherent

application resilience for approximate computing. In Proceedings of the 50th Annual Design Automation Conference (Austin, Texas) (DAC

’13). Association for Computing Machinery, New York, NY, USA, Article 113, 9 pages. https://doi.org/10.1145/2463209.2488873

[8] Luigi Dadda. 1965. Some schemes for parallel multipliers. Alta frequenza 34 (1965), 349ś356.

[9] Dimitrios Danopoulos, Georgios Zervakis, Kostas Siozios, Dimitrios Soudris, and Jörg Henkel. 2023. AdaPT: Fast Emulation of

Approximate DNN Accelerators in PyTorch. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 42, 6 (June

2023), 2074ś2078. https://doi.org/10.1109/TCAD.2022.3212645

[10] Darjn Esposito, Antonio Giuseppe Maria Strollo, Ettore Napoli, Davide De Caro, and Nicola Petra. 2018. Approximate multipliers based

on new approximate compressors. IEEE Transactions on Circuits and Systems I: Regular Papers 65, 12 (2018), 4169ś4182.

[11] Minho Ha and Sunggu Lee. 2018. Multipliers With Approximate 4ś2 Compressors and Error Recovery Modules. IEEE Embedded Systems

Letters 10, 1 (2018), 6ś9. https://doi.org/10.1109/LES.2017.2746084

[12] Issam Hammad, Ling Li, Kamal El-Sankary, and W Martin Snelgrove. 2021. CNN inference using a preprocessing precision controller

and approximate multipliers with various precisions. IEEE Access 9 (2021), 7220ś7232.

[13] Soheil Hashemi, R. Iris Bahar, and Sherief Reda. 2015. DRUM: A Dynamic Range Unbiased Multiplier for Approximate Applications. In

Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (Austin, TX, USA) (ICCAD ’15). IEEE Press, 418ś425.

[14] Mohsen Imani, Ricardo Garcia, Saransh Gupta, and Tajana Rosing. 2018. RMAC: Runtime Conigurable Floating Point Multiplier for

Approximate Computing. In Proceedings of the International Symposium on Low Power Electronics and Design (Seattle, WA, USA) (ISLPED

’18). Association for Computing Machinery, New York, NY, USA, Article 12, 6 pages. https://doi.org/10.1145/3218603.3218621

[15] Mohsen Imani, Daniel Peroni, and Tajana Rosing. 2017. CFPU: Conigurable Floating Point Multiplier for Energy-Eicient Computing. In

Proceedings of the 54th Annual Design Automation Conference 2017 (Austin, TX, USA) (DAC ’17). Association for Computing Machinery,

New York, NY, USA, Article 76, 6 pages. https://doi.org/10.1145/3061639.3062210

[16] Mohsen Imani, Alice Sokolova, Ricardo Garcia, Andrew Huang, FanWu, Baris Aksanli, and Tajana Rosing. 2019. ApproxLP: Approximate

Multiplication with Linearization and Iterative Error Control. In Proceedings of the 56th Annual Design Automation Conference 2019 (Las

Vegas, NV, USA) (DAC ’19). Association for Computing Machinery, New York, NY, USA, Article 159, 6 pages. https://doi.org/10.1145/

3316781.3317774

ACM Trans. Reconig. Technol. Syst.

https://doi.org/10.23919/DATE.2019.8714868
https://doi.org/10.1145/3400302.3415702
https://doi.org/10.1145/2463209.2488873
https://doi.org/10.1109/TCAD.2022.3212645
https://doi.org/10.1109/LES.2017.2746084
https://doi.org/10.1145/3218603.3218621
https://doi.org/10.1145/3061639.3062210
https://doi.org/10.1145/3316781.3317774
https://doi.org/10.1145/3316781.3317774

DyRecMul: Dynamically Reconfigurable Approximate Multiplier • 21

[17] Honglan Jiang, Cong Liu, Fabrizio Lombardi, and Jie Han. 2018. Low-power approximate unsigned multipliers with conigurable error

recovery. IEEE Transactions on Circuits and Systems I: Regular Papers 66, 1 (2018), 189ś202.

[18] Honglan Jiang, Francisco Javier Hernandez Santiago, Hai Mo, Leibo Liu, and Jie Han. 2020. Approximate arithmetic circuits: A survey,

characterization, and recent applications. Proc. IEEE 108, 12 (2020), 2108ś2135.

[19] Norman P Jouppi, Clif Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,

Al Borchers, et al. 2017. In-Datacenter Performance Analysis of a Tensor Processing Unit. In Proceedings of the 44th Annual International

Symposium on Computer Architecture (Toronto, ON, Canada) (ISCA ’17). Association for Computing Machinery, New York, NY, USA,

1ś12. https://doi.org/10.1145/3079856.3080246

[20] Sumin Kim, Gunju Park, and Youngmin Yi. 2021. Performance Evaluation of INT8 Quantized Inference on Mobile GPUs. IEEE Access 9

(2021), 164245ś164255. https://doi.org/10.1109/ACCESS.2021.3133100

[21] Parag Kulkarni, Puneet Gupta, and Milos Ercegovac. 2011. Trading Accuracy for Power with an Underdesigned Multiplier Architecture.

In 2011 24th Internatioal Conference on VLSI Design. IEEE, 346ś351. https://doi.org/10.1109/VLSID.2011.51

[22] Martin Kumm, Konrad Möller, and Peter Zipf. 2013. Dynamically reconigurable FIR ilter architectures with fast reconiguration.

In 2013 8th International Workshop on Reconigurable and Communication-Centric Systems-on-Chip (ReCoSoC). IEEE, 1ś8. https:

//doi.org/10.1109/ReCoSoC.2013.6581517

[23] Chia-Hao Lin and Ing-Chao Lin. 2013. High accuracy approximate multiplier with error correction. In 2013 IEEE 31st International

Conference on Computer Design (ICCD). IEEE, 33ś38. https://doi.org/10.1109/ICCD.2013.6657022

[24] Ye Lin, Yanyang Li, Tengbo Liu, Tong Xiao, Tongran Liu, and Jingbo Zhu. 2021. Towards fully 8-bit integer inference for the transformer

model. In Proceedings of the Twenty-Ninth International Joint Conference on Artiicial Intelligence (Yokohama, Yokohama, Japan) (IJCAI’20).

Article 520, 7 pages.

[25] Cong Liu, Jie Han, and Fabrizio Lombardi. 2014. A low-power, high-performance approximate multiplier with conigurable partial error

recovery. In Proceedings of the Conference on Design, Automation & Test in Europe (Dresden, Germany) (DATE ’14). European Design and

Automation Association, Leuven, BEL, Article 95, 4 pages.

[26] Weiqiang Liu, Liangyu Qian, Chenghua Wang, Honglan Jiang, Jie Han, and Fabrizio Lombardi. 2017. Design of approximate radix-4

booth multipliers for error-tolerant computing. IEEE Transactions on computers 66, 8 (2017), 1435ś1441.

[27] Weiqiang Liu, Jiahua Xu, Danye Wang, Chenghua Wang, Paolo Montuschi, and Fabrizio Lombardi. 2018. Design and evaluation of

approximate logarithmic multipliers for low power error-tolerant applications. IEEE Transactions on Circuits and Systems I: Regular

Papers 65, 9 (2018), 2856ś2868.

[28] Hamid Reza Mahdiani, Ali Ahmadi, Sied Mehdi Fakhraie, and Caro Lucas. 2009. Bio-inspired imprecise computational blocks for eicient

VLSI implementation of soft-computing applications. IEEE Transactions on Circuits and Systems I: Regular Papers 57, 4 (2009), 850ś862.

[29] R Marimuthu, Y Elsie Rezinold, and Partha Sharathi Mallick. 2016. Design and analysis of multiplier using approximate 15-4 compressor.

IEEE Access 5 (2016), 1027ś1036.

[30] John N. Mitchell. 1962. Computer Multiplication and Division Using Binary Logarithms. IRE Transactions on Electronic Computers EC-11,

4 (Aug 1962), 512ś517. https://doi.org/10.1109/TEC.1962.5219391

[31] AmirMomeni, Jie Han, PaoloMontuschi, and Fabrizio Lombardi. 2014. Design and analysis of approximate compressors for multiplication.

IEEE Trans. Comput. 64, 4 (2014), 984ś994.

[32] Srinivasan Narayanamoorthy, Hadi Asghari Moghaddam, Zhenhong Liu, Taejoon Park, and Nam Sung Kim. 2014. Energy-eicient

approximate multiplication for digital signal processing and classiication applications. IEEE transactions on very large scale integration

(VLSI) systems 23, 6 (2014), 1180ś1184.

[33] Hassaan Saadat, Haseeb Bokhari, and Sri Parameswaran. 2018. Minimally biased multipliers for approximate integer and loating-point

multiplication. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 37, 11 (2018), 2623ś2635.

[34] Antonio Giuseppe Maria Strollo, Ettore Napoli, Davide De Caro, Nicola Petra, and Gennaro Di Meo. 2020. Comparison and extension of

approximate 4-2 compressors for low-power approximate multipliers. IEEE Transactions on Circuits and Systems I: Regular Papers 67, 9

(2020), 3021ś3034.

[35] Che-Wei Tung and Shih-Hsu Huang. 2019. Low-Power High-Accuracy Approximate Multiplier Using Approximate High-Order

Compressors. In 2019 2nd International Conference on Communication Engineering and Technology (ICCET). 163ś167. https://doi.org/10.

1109/ICCET.2019.8726875

[36] Salim Ullah, Sanjeev Sripadraj Murthy, and Akash Kumar. 2018. SMApproxlib: library of FPGA-based approximate multipliers. In

Proceedings of the 55th Annual Design Automation Conference (San Francisco, California) (DAC ’18). Association for Computing Machinery,

New York, NY, USA, Article 157, 6 pages. https://doi.org/10.1145/3195970.3196115

[37] Salim Ullah, Semeen Rehman, Bharath Srinivas Prabakaran, Florian Kriebel, Muhammad Abdullah Hanif, Muhammad Shaique, and

Akash Kumar. 2018. Area-optimized low-latency approximate multipliers for FPGA-based hardware accelerators. In Proceedings of the

55th Annual Design Automation Conference (San Francisco, California) (DAC ’18). Association for Computing Machinery, New York, NY,

USA, Article 159, 6 pages. https://doi.org/10.1145/3195970.3195996

ACM Trans. Reconig. Technol. Syst.

https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1109/ACCESS.2021.3133100
https://doi.org/10.1109/VLSID.2011.51
https://doi.org/10.1109/ReCoSoC.2013.6581517
https://doi.org/10.1109/ReCoSoC.2013.6581517
https://doi.org/10.1109/ICCD.2013.6657022
https://doi.org/10.1109/TEC.1962.5219391
https://doi.org/10.1109/ICCET.2019.8726875
https://doi.org/10.1109/ICCET.2019.8726875
https://doi.org/10.1145/3195970.3196115
https://doi.org/10.1145/3195970.3195996

22 • Vakili, et al.

[38] Shaghayegh Vahdat, Mehdi Kamal, Ali Afzali-Kusha, and Massoud Pedram. 2017. LETAM: A low energy truncation-based approximate

multiplier. Computers & Electrical Engineering 63 (2017), 1ś17.

[39] Shaghayegh Vahdat, Mehdi Kamal, Ali Afzali-Kusha, and Massoud Pedram. 2019. TOSAM: An energy-eicient truncation-and rounding-

based scalable approximate multiplier. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 27, 5 (2019), 1161ś1173.

[40] Nguyen Van Toan and Jeong-Gun Lee. 2020. FPGA-based multi-level approximate multipliers for high-performance error-resilient

applications. IEEE Access 8 (2020), 25481ś25497.

[41] Zdenek Vasicek. 2019. Formal methods for exact analysis of approximate circuits. IEEE Access 7 (2019), 177309ś177331.

[42] Suganthi Venkatachalam and Seok-Bum Ko. 2017. Design of power and area eicient approximate multipliers. IEEE Transactions on Very

Large Scale Integration (VLSI) Systems 25, 5 (2017), 1782ś1786.

[43] C. S. Wallace. 1964. A Suggestion for a Fast Multiplier. IEEE Transactions on Electronic Computers EC-13, 1 (Feb 1964), 14ś17.

https://doi.org/10.1109/PGEC.1964.263830

[44] XuanWang andWeikang Qian. 2022. MinAC: Minimal-Area Approximate Compressor Design Based on Exact Synthesis for Approximate

Multipliers. In 2022 IEEE International Symposium on Circuits and Systems (ISCAS). 677ś681. https://doi.org/10.1109/ISCAS48785.2022.

9938008

[45] Ying Wu, Chuangtao Chen, Weihua Xiao, Xuan Wang, Chenyi Wen, Jie Han, Xunzhao Yin, Weikang Qian, and Cheng Zhuo. 2024. A

Survey on Approximate Multiplier Designs for Energy Eiciency: From Algorithms to Circuits. ACM Trans. Des. Autom. Electron. Syst.

29, 1, Article 23 (jan 2024), 37 pages. https://doi.org/10.1145/3610291

[46] Tongxin Yang, Tomoaki Ukezono, and Toshinori Sato. 2017. Low-Power and High-Speed Approximate Multiplier Design with a Tree

Compressor. In 2017 IEEE International Conference on Computer Design (ICCD). 89ś96. https://doi.org/10.1109/ICCD.2017.22

[47] Tongxin Yang, Tomoaki Ukezono, and Toshinori Sato. 2018. A low-power high-speed accuracy-controllable approximate multiplier design.

In 2018 23rd Asia and South Paciic Design Automation Conference (ASP-DAC). 605ś610. https://doi.org/10.1109/ASPDAC.2018.8297389

[48] Zhixi Yang, Jie Han, and Fabrizio Lombardi. 2015. Approximate compressors for error-resilient multiplier design. In 2015 IEEE International

Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS). 183ś186. https://doi.org/10.1109/DFT.2015.7315159

Received 21 December 2023; revised 5 March 2024; accepted 15 April 2024

ACM Trans. Reconig. Technol. Syst.

https://doi.org/10.1109/PGEC.1964.263830
https://doi.org/10.1109/ISCAS48785.2022.9938008
https://doi.org/10.1109/ISCAS48785.2022.9938008
https://doi.org/10.1145/3610291
https://doi.org/10.1109/ICCD.2017.22
https://doi.org/10.1109/ASPDAC.2018.8297389
https://doi.org/10.1109/DFT.2015.7315159

	Abstract
	1 Introduction
	2 Proposed Approximate Multiplier
	2.1 Analytical Description
	2.2 DyRecMul for INT8 Multiplication: Architecture and Components

	3 Generalized DyRecMul
	3.1 Hardware Cost Estimation
	3.2 Accuracy Considerations

	4 Reconfiguration Time and Rapidly Reconfigurable DyRecMul
	5 Target Applications
	5.1 Low-cost Hardware Accelerators for Updatable Supervised Learning
	5.2 Deep Reinforcement Learning Hardware
	5.3 DL Hardware Accelerators With Weight-Stationary Dataflows
	5.4 Updatable Digital Filters

	6 Results
	6.1 Error Analysis and Evaluation
	6.2 Hardware Implementation Results
	6.3 Accuracy in Deep Learning Computation

	7 Conclusion
	8 Acknowledgments
	References

