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A common approach to improving resource utilization in data centers is to adaptively provision resources based on the actual

workload. One fundamental challenge of doing this in microservice management frameworks, however, is that diferent

components of a service can exhibit signiicant diferences in their impact on end-to-end performance. To make resource

management more challenging, a single microservice can be shared by multiple online services that have diverse workload

patterns and SLA requirements.

We present an eicient resource management system, namely Erms, for guaranteeing SLAs with high probability in shared

microservice environments. Erms proiles microservice latency as a piece-wise linear function of the workload, resource

usage, and interference. Based on this proiling, Erms builds resource scaling models to optimally determine latency targets

for microservices with complex dependencies. Erms also designs new scheduling policies at shared microservices to further

enhance resource eiciency. Experiments across microservice benchmarks as well as trace-driven simulations demonstrate

that Erms can reduce SLA violation probability by 5× and more importantly, lead to a reduction in resource usage by 1.6×,
compared to state-of-the-art approaches.
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Fig. 1. A microservice dependency graph shows how microservice T interacts with other microservices. T calls downstream

microservice Url and U in parallel and then calls Url and C one ater another. The end-to-end latency measures the duration

between T receiving the request and returning the result.

1 INTRODUCTION

Recent years have witnessed a rapid emergence and wide adoption of microservice architecture in cloud data

centers [4, 14, 15]. Compared to the conventional monolithic architecture that runs diferent components of a

service within a single application, a microservice system decouples an application into multiple small pieces for

ease of management, maintenance, and update [18, 25, 42, 42, 43, 48]. Due to this, microservices are light-weight

and loosely-coupled. As a consequence, when microservice architectures are exposed to growing load, the system

manager can locate individual microservices that may experience heavy load and scale them independently

instead of scaling the whole application [13, 16].

Despite the lexibility, microservice architecture brings several new challenges in providing service-level

agreement (SLA) guarantees for eicient resource management. First, a service request needs to be processed

by hundreds of microservices [1, 28]. These microservices can form a complex dependency graph consisting of

parallel, sequential and even alternative executions, as shown in Fig. 1. It becomes extremely diicult to manage

resources at the granularity of microservices so as to maximize resource eiciency and in the meanwhile, ensure

the end-to-end SLA. Second, microservice containers [10] are usually colocated with batching applications [26].

Resource interference can degrade diferently the performance of microservices since some microservices are

sensitive to resource interference. Third, resource interference can further cause performance imbalances between

containers from the same microservice, especially when the workload is heavy, as a microservice usually contains

hundred to thousands of containers.

Existing approaches provide SLA guarantees for microservice management via handcrafted heuristics, re-

inforcement learning approaches, or deep learning algorithms [7, 23, 36, 38, 41, 46, 47]. In particular, several

heuristics adopt the average and covariance of microservice response time to determine the contribution that each

microservice makes toward guaranteeing the end-to-end SLA requirement [23, 47]. One fundamental limitation

of such solutions is that their derived contributions are ixed and do not change with the dynamic workload.

The reinforcement learning approaches need substantial eforts for labeling critical microservices that have a

great impact on SLA [38]. Moreover, when one service contains multiple critical microservices, independently

keeping them tuning up can easily lead to sub-optimal results. Deep learning approaches need to evaluate a large

number of potential resource conigurations in order to ind an eicient allocation without SLA violation [36, 46].

However, this is not scalable for complex services in production environments where a service can consist of

1000+ microservices with many tiers [28].
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Furthermore, there is no study so far to investigate microservices sharing among diferent services with

complex dependencies. However, shared microservices create a new opportunity to improve resource eiciency

through global resource management among all services. To demonstrate this, we conduct a simple experiment to

show that prioritizing services at a shared microservice can save more than 40% of resources (details are shown in

ğ 2.3). As such, there is a crucial need for more eicient schemes that can globally manage SLAs for all services.

This paper addresses the aforementioned limitations by introducing Erms, a new system designed for eicient

and scalable resource management in a shared microservice execution framework to provide SLA guarantees with

high probability. Erms characterizes microservice tail latency in terms of a piecewise function of the workload,

the number of deployed containers, and resource interference. With this characterization, Erms manages to

dissect the detailed structure of microservice dependency graphs through explicit quantiication and global

optimization. This makes Erms fundamentally diferent from deep learning approaches [36, 46] and other heuristic

solutions [23, 47].

Erms determines the latency target of each microservice so as to satisfy the end-to-end SLA requirement

with minimum resource usage, based on the observed workload. At a shared microservice, Erms implements

priority-based scheduling to orchestrate the execution of all requests from diferent online services. Under this

scheduling, priority is given to services that include more latency-sensitive microservices, so as to signiicantly

improve resource eiciency. Erms adopts a probability-based approach to implement priority scheduling, which

can avoid potential starvation. Furthermore, Erms proposes a new interference-aware cluster-wide placement

strategy aimed at balancing the latency across microservice containers and enhancing the overall performance of

online services. Erms also incorporates careful designs to make the system scalable and applicable to production

environments. The key techniques are in the application of convex optimization results and in the design of

novel graph algorithms with low complexity.

We build a prototype of Erms on top of Kubernetes [24]. We evaluate Erms via real deployment on microservice

benchmarks including DeathStarBench [18] and TrainTicket [49]. Additionally, we run large-scale simulations

with real traces. Experimental results demonstrate Erms can reduce the number of deployed containers by up to

1.6× and reduce SLA violation probability by 5× compared to the state-of-the-art approaches. In summary, Erms

has made the following contributions:

• Optimal computation of microservice latency target. To the best of our knowledge, Erms is the

irst system to systematically determine an optimal latency target for each microservice to meet SLA

requirements. Erms is scalable to handle complex dependencies without any restrictions on graph topology.

• New scheduling policy at shared microservices. Another contribution of Erms is to design a new sched-

uling policy for shared microservices with theoretical performance guarantees. This policy assigns priority

to requests from diferent services, and also globally coordinates resource scaling for all microservices.

With this new policy, Erms can further reduce the number of used containers by up to 50%.

• Implementation. We provide a prototype implementation of Erms on top of Kubernetes [24], a widely

adopted container orchestration system. We implement dynamic resource provisioning to place containers

so as to control the overall resource interference.

2 BACKGROUND AND MOTIVATION

2.1 Microservice Background

A production cluster often deploys various applications and each application contains multiple diferent online

services to serve users’ requests [29]. Usually, a service request is sent to an entering microservice, e.g., Nginx,

which will then trigger a set of calls between multiple microservices. A microservice shall proceed to call its

multiple downstream microservices either in a sequential manner or in parallel, when handling a call from its

upstreammicroservice. Moreover, a microservice usually runs in multiple containers (with the same coniguration)
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Fig. 2. The cumulative distribution of microservices shared by a diferent number of online services from Alibaba traces.

to serve all requests sent to it. In this paper, we adopt the number of containers as a metric for estimating resource

usage, which is consistent with prior research [23, 38, 46, 47] and is widely recognized in the industry [28].

When handling a user request, the set of calls along with the associated microservices form a dependency graph.

The performance of a user request, i.e., the end-to-end latency is determined by the longest execution time of

all critical paths in the graph. Here, a critical path is a path that starts with a user request and ends with the

service response to the corresponding request [38]. It is worth noting that a graph can contain multiple critical

paths. For example, the dependency graph in Fig. 1 has two critical paths highlighted in blue and green colors

respectively, ��1 = {�,� ,�} and ��2 = {�,���,�}. In addition, the execution time on each critical path is the

sum of all microservice latency along that path.

In addition to complex call dependency, microservices can also be multiplexed among multiple online services.

We depict the degree of microservice sharing in Fig. 2 for traces collected from Alibaba clusters [1]. These traces

include more than 20000 microservices and 1000 online services. Fig. 2 shows that 40% of microservices are shared

by more than 100 online services. A shared microservice needs to process all requests from diferent services.

When the workload of one online service (i.e., the request arrival rate) grows suddenly, the latency of requests

from other services experienced at this microservice will increase signiicantly. Consequently, the end-to-end

latency of one service can be greatly impacted by other services in a shared microservices execution framework.

2.2 uantification of Microservice Latency

Compared to the end-to-end latency of online service, microservice latency is treated as a more ine-grained

metric in terms of quantifying the resource pressure of deployed containers. Due to this, recent works begin to

investigate how this performance metric can be afected by various factors such as the workload and resource

interference on the physical host [7, 23, 47].

As shown in Fig. 1, the latency of a request at each microservice includes both the queuing time (in gray color)

and processing time (in red color), which however, are diicult to obtain from a microservice tracing system

since they require to probe the Linux kernel with high-overhead tools [19, 48]. By contrast, the timestamp of

each SEND event and RECEIVE event of a request and a response in Fig. 1 is available from the tracing framework

such as Jaeger [2]. Leveraging such information, we can derive the latency of a microservice by subtracting its

downstream microservice response time from its own response time. More speciically, let ��� and ��� denote the

timestamp that the �th request arrives at Microservice� (aka RECEIVE) and the corresponding response leaves�

(aka SEND) respectively. When � is the only downstream microservice of�, the latency of request � at� is:

��� = (��� − ��� ) − (��� − ��� ). (1)

If� calls its multiple downstream microservices sequentially, each microservice’s response time, i.e., (��� − ��� )
should be subtracted from (��� −��� ) in Eq. (1). By contrast, if� calls several downstreammicroservices in parallel,

only the maximum response time of these microservice shall be subtracted from (��� − ��� ). Note that, ��� also

includes the transmission latency, which can be obtained from the tracing system directly.
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Fig. 3. P95 Microservice latency from diferent traces (P99 behaves similarly). The four numbers in each bracket represent

host resource usage, which include CPU utilization, memory capacity utilization, memory bandwidth usage, and network

bandwidth usage. T is for ground truth and F is for fiting using a piece-wise linear function.

The study of microservice latency in existing works focuses on the irst and second-order statistics across

diferent workloads. In general, when the tail-latency of a microservice grows signiicantly in the workload, i.e.,

the call arrival rate, this microservice is considered to be critical for resource management. However, we observe

from both existing microservice benchmarks [18] and Alibaba traces [1] that microservice always presents

non-uniform delay performance when workload changes. As shown in Fig. 3, in each curve, each curve exhibits a

distinct cut-of point (indicated by a black circle), which can be automatically determined as outlined in Section

5.2.1. Before reaching this cut-of point, the tail latency gradually and linearly increases with the workload.

Conversely, once the workload surpasses this threshold, the latency of microservices experiences a considerably

faster (almost linear) growth. The reason behind this is that each microservice container maintains a certain

number of threads to process requests in parallel; therefore, when the workload is heavy and beyond a certain

point, many requests need to be queued, resulting in a rapid increase in response time. As a result, current

investigations on microservice latency are not meticulous and can easily lead to poor scaling decisions since they

depend on a constant mean and variance [23, 47].

Another limitation is that, existing studies do not quantify the impact of resource interference on the slope of

the latency curve [23, 46, 47]. Here, we measure resource interference in terms of resource usage of CPU, memory

capacity, memory bandwidth and network bandwidth on physical hosts. Our quantiication of microservice

latency reveals that the slope changes when interference varies. As depicted in Fig. 3(a), when comparing a host

with high resource usage (indicated by the purple line) to one with low resource usage (indicated by the blue

line), the rate of increase in microservice latency after the cutof is ive times higher on the former. Additionally,

resource interference causes the cut-of point to shift forward. In other words, as interference becomes more

severe, microservice latency begins to increase rapidly at an earlier stage.

These observations motivate us to model microservice latency as a piecewise linear function of the workload.

In addition, the slope of the linear curve highly depends on resource interference. With this function, we can

quantify the performance of each microservice under diferent workloads and resource usages. It is possible to

improve resource eiciency via globally optimizing resource conigurations of all microservices based on the

latency model and in the meanwhile, provide SLA guarantees with high probability.

To validate the above idea, we conduct a simple experiment for resource scaling in Fig. 4 where there is only

one service consisting of two sequentially-executed microservices U and P from Social Network Application in

DeathStarBench [18]. Based on the two proiled piece-wise linear functions and host utilization, we compute for

both U and P a latency target, which speciies the maximum time each microservice can take to process a request

to meet the end-to-end SLA. These two latency targets change with the service workload and their sum equals

the end-to-end SLA. The details of the computation are described in ğ 4.2. U is given a higher latency target in

contrast to P since its latency grows faster with the workload. The number of containers for U and P is then scaled

ACM Trans. Comput. Syst.
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such that the resulted microservice latency is below the corresponding target. Fig. 4(b) shows that this scaling

can lead to a reduction of the number of deployed containers by up to 58% and 6× in heavy-load and light-load

settings while keeping the same tail end-to-end latency, compared to heuristic approaches GrandSLAm [23] and

Rhythm [47]. The reason behind is that baselines compute latency targets based on the mean of microservice

latency, regardless of the workload and interference. Consequently, they tend to allocate a lower latency target to

U in contrast to our result, thereby requiring much more containers to be deployed for U, as shown in Fig. 4(a).

2.3 Challenges and Opportunities from Microservice Multiplexing

As mentioned in ğ 2.1, an individual microservice can be multiplexed by hundreds of online services. However,

services can form diverse dependency graphs and have diferent workload patterns. When these services perform

scaling in a separate manner, their allocated latency targets at a shared microservice can vary a lot, simply taking

the minimum latency target for scaling without diferentiating services can lead to a waste of resources.

We construct a simple multiplexing scenario to demonstrate that eicient scheduling at a shared microservice

is important. As shown in Fig. 5, this scenario consists of two online services that share a common microservice P

(postStorage) from DeathStarBench. The irst service calls U (userTimeline) and P sequentially while the second

service calls H (homeTimeline) and P sequentially. Moreover, U is more sensitive to workload changes than H

in terms of latency performance. To ensure a comprehensive and unbiased comparison of diferent resource

allocation approaches, we explore a wide range of resource allocation conigurations for microservices. We

carefully select the conigurations that minimize resource allocation while still satisfying the SLA requirements

for each approach.

ACM Trans. Comput. Syst.
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One straightforward solution is to process the concurrent requests that arrive at the shared microservice

following the default policy FCFS (First-Come-First-Serve) and allocate a latency target in each service inde-

pendently. Speciically, latency targets �� ,� �
1 for U and P are allocated from the irst service based on its SLA

requirement SLA1, and latency targets �� ,� �
2 for H and P are computed based on the second SLA requirement

SLA2. To satisfy all SLA requirements, the inal latency target for P is conigured by taking the minimum between

� �
1 and � �

2 , i.e., �
�
= min{� �

1 ,�
�
2 }.

The second approach is to partition the deployed containers of P into two separate groups, one group serves

the irst service and the other group serves the second group. Under this non-sharing approach, the latency target

is allocated in each group independently.

We run an experiment based on the constructed scenario to compare the resource usage under these two

schemes above. In this experiment, we generate the same static workload (40k requests/minute) for two diferent

services and set SLA1 = SLA2 = 300�� . Experimental results show the non-sharing scheme requires 9 cores (❷

in Fig. 5), whereas the sharing scheme (❶ in Fig. 5) requires 10.5 CPU cores to fulill the SLA requirement. It

seems that this result violates the rule that sharing should be more cost-efective than non-sharing since the

former can fully utilize resources. We also build an M/M/1 queue to analyze the processing time at P under

these two diferent schemes [20]. Indeed, the theoretical result validates sharing is better for the achieved mean

processing time when ixing the resource usage. However, under resource scaling with SLA requirements, the

bottleneck is the more-sensitive microservice, i.e., U in this scenario. Due to this, P is allocated a lower latency

target in the irst service. In the sharing setting, requests with a higher latency target (from the second service)

can easily delay the processing of those with a lower latency target (from the irst service). As a result, sharing

leads to more resource usage under SLA-guaranteed scaling. This implies that the lack of global coordination in a

shared microservice execution framework makes multiplexing ineicient, and it is better to process calls from

diferent services separately. Nevertheless, this non-sharing scheme is inconsistent with the design principle of

microservice architecture, i.e., microservice is designed to be loose-coupled and functionality-focused only.

To mitigate delay caused by less-sensitive microservices and improve resource eiciency, we design a priority-

based scheduling policy under which requests from the irst service are given higher priority at Microservice P

(❸ in Fig. 5). Under this scheduling, latency targets need to be recomputed for microservices within the second

service. The purpose of recomputation is to set a lower latency target for less-critical microservices, so as to

relieve resource pressure on shared microservices. To examine this idea, we rerun the above experiment with

the same workload and SLA settings. The result shows this policy only requires 7.5 CPU cores to satisfy SLA

requirement, which is 20% (40%) less than that under the non-sharing scheme (FCFS policy). As such, multiplexing

with eicient scheduling provides opportunities to greatly reduce the total resource usage, even in simple settings.

However, globally coordinating all services is generally diicult when the number of shared microservices is

large, which requires more careful designs.

3 THE ERMS METHODOLOGY

In this section, we describe the overall architecture of Erms framework. Erms is a cluster-wide resource manager

that periodically adjusts the number of containers deployed for each microservice, with the goal of meeting

service SLAs while minimizing total resource usage.

Erms deploys a Tracing Coordinator (❶ in Fig. 6) on top of two tracing systems, Prometheus [3] and Jeager [2].

Tracing Coordinator generates microservice dependency graphs and extracts the individual microservice latency

based on historic traces.

Erms includes an Oline Proiling module with two components, microservice Latency Proiling (❷ in Fig. 6)

and Resource Usage Proiling (❸ in Fig. 6), which work in the background. This module fetches all microservice

latency samples and resource usage samples under diferent workloads for all deployed containers for each

ACM Trans. Comput. Syst.
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microservice from the Tracing Coordinator. With these data samples, microservice Latency Proiling builds a itting

model that proiles microservice tail latency as a piece-wise linear function of the workload. Additionally, using

the collected samples, Resource Usage Proiling builds a linear model to estimate resource usage of microservice

containers under diferent workloads.

The key module of Erms is Online Scaling, which makes scaling decisions according to workload changes.

It consists of three components, i.e., Graph Merge (❹ in Fig. 6), Latency Target Computation (❺ in Fig. 6),

and Priority Scheduling (❻ in Fig. 6). Graph Merge component applies graph algorithms to merge a general

dependency graph with complex dependency into a simple structure with sequential dependency only, based on

the observed workload. The purpose of this merge procedure is to simplify latency target computation. Latency

Target Computation component allocates an initial latency target for all microservices within each dependency

graph via solving a simple convex problemwith low overhead. Priority Scheduling component assigns each service

a diferent priority at a shared microservice based on this initial latency target. Requests from diferent services

are processed according to this priority. Moreover, such priority also determines a new workload that a shared

microservice needs to process under each service. Stem from this new workload, Latency Target Computation

component recomputes latency targets for all microservices, and scales containers accordingly.

Erms also contains a Container Placing module (❼ in Fig. 6) to place all containers from diferent microservices

across physical hosts in the cluster. This module places newly scheduled containers or release existing containers,

which are determined by the Online Scaling module. The placement strategy aims to globally reduce the impact

of resource interference on the end-to-end latency of online service. Speciically, the strategy takes into account

the global resource interference within the physical hosts, which primarily arises from two sources: oline jobs

and the microservices that are to be deployed on these hosts. Finally, actions are executed on the underlying

Kubernetes cluster through the deployment module.

4 RESOURCE SCALING MODELS

In this section, we present the details of resource scaling models under Erms. First, we deine the basic scaling

model and our assumptions (ğ 4.1). Next, we explain our developed solution approach and analyze why it works

well (ğ 4.2). The general principle behind this solution is to solve complex problems with near-optimality via

using theoretically grounded yet practically viable solutions. Finally, we develop a multiplexing model to handle

shared microservices (ğ 4.3).

ACM Trans. Comput. Syst.
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4.1 Basic Model

Given a collection of service dependency graphs and all the microservices in each graph - together with quantiied

information about microservice latency and the workload relationship, and the container size of each microservice

- we must deploy these services in the cluster such that their SLA requirements are satisied, i.e., the tail end-to-end

latency is smaller than a user-deined threshold while minimizing total resource usage. This yields the following

optimization problem:

min−→�

�︁

�=1

�� · �� , subject to, latency�
(−→�

)
≤ SLA� . (2)

−→� =

〈
�1, �2, · · · , ��

〉
is the decision vector where �� denotes the number of containers allocated to Microservice

i. � is the total number of unique microservices from all services. �� is the dominant resource demand of

Microservice i, i.e.,

�� = max
{
��� /� , ��

� /�
}
, (3)

where ��� (��
� ) is the size of CPU (Memory) coniguration of containers from Microservice i, � and � are the

overall CPU and Memory capacity in the cluster. latency� (−→� ) and SLA� represent the tail end-to-end latency of

requests from service � under resource allocation −→� and the SLA requirement of service � , respectively.

As observed in ğ 2.2, microservice latency is a piece-wise linear function of the workload. For ease of modelling,

we only consider a speciic interval for each microservice in this section. In other words, the tail latency �� of

Microservice � is described as �� = ��
��
��

+�� . Here, �� and �� denote the slope and intercept, and �� is the workload
of Microservice i. The details of choosing intervals are presented in ğ 5.3.

4.2 Design of Optimal Scaling Method

In the setting where there is only one service consisting of sequential microservices, latency� (−→� ) can be formu-

lated as:

latency�
(−→�

)
=

�︁

�=1

��
��

��
+ �� . (4)

In this setting, the optimal solution to Eq. (2) can be obtained via solving KKT equations corresponding to the

convex optimization problem [6]. Consequently, the optimal latency target and the optimal number of containers

��� can be expressed by a closed-form result:

��
��

���
+ �� =

︁
������

∑�
�=1

︁
������

(
SLA −

�︁

�=1

��

)
+ �� . (5)

Eq. (5) states that the optimal latency target of each microservice is in proportion to the square root of the product

of �� , workload �� , and resource demand �� . This result implies that when the workload of a microservice increases,

it needs to be allocated a higher latency target. Correspondingly, other microservices should be allocated lower

latency targets and scheduled more containers.

A general dependency graph consists of multiple critical paths and one microservice can appear in diferent

paths, complicating the optimal allocation of latency targets since it is diicult to give an exact expression of

latency�
(−→�

)
. To address this problem, Erms simpliies the graph topology by removing parallel dependencies. We

describe the procedure in Fig. 7, which shows how to merge parallel dependency within one dependency graph of

workload � . In Fig. 7, microservice T irst calls microservice Url and U in parallel, and then calls microservice C

after the response of Url and U.

Extracting complete dependency graph. In highly dynamic execution environments, dependency graphs

within one service can vary signiicantly between each other. To address this issue, Erms compares the diferences
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CP1 CP2

Calls in

Parallel

T

UU��

CC

T

U�����

T

UU

C

C C****

Fig. 7. Erms simplifies the structure of a general graph via gradually removing parallel dependency.

between dynamic graphs generated from the same online service and merges them into a complete dependency

graph. Speciically, Erms irst collects all microservices from historical traces and creates an empty zero matrix

of size
〈
�,�

〉
, where � is the number of microservices, and each element represents an edge between two

microservices. Erms then retrieves the dependency graph from the trace and updates the speciic element from 0

to 1 if there is an edge between two microservices. This iteration is repeated until all graphs have been retrieved.

Finally, the resulting adjacency matrix represents the complete dependency graph.

Handling sequential dependency. Erms removes dependency starting from the last layer, i.e., it irst creates

a virtual microservice UrlC∗ to merge Url and C, and creates another virtual microservice UC∗ to combine U

and C. Let
〈
��, ��

〉
and

〈
�� , ��

〉
be the parameters of the tail latency function associated with Url and C, and〈

�∗1, �
∗
1

〉
and

〈
�∗2, �

∗
2

〉
be the parameters of UrlC∗ and UC∗. The invention of a virtual microservice should yield

the same latency and the same amount of resource usage as that of the original real microservices. Thus, the new

parameters
〈
�∗1, �

∗
1

〉
can be characterized by:

�∗1
�

�� + ��
+ �∗1 = ��

�

��
+ �� + ��

�

��
+ �� . (6)

The solution to Eq. (6) is given by:

�∗1 =
(︁

���� +
︁
����

) (︁
��/�� +

︁
��/��

)
, (7)

�∗1 = �� + �� . (8)

And the virtual resource demand of UrlC∗ is:

�∗
1 =

(︁
���� +

︁
����

) / (︁
��/�� +

︁
��/��

)
. (9)

〈
�∗2, �

∗
2

〉
can be obtained in the same way.

Removing parallel dependency. With the invention of UrlC∗ and UC∗ in Fig. 7, it remains to remove the

parallel dependency between them. This can be achieved via inventing another virtual microservice UU∗∗. Let〈
�∗∗, �∗∗

〉
be the parameter of UU∗∗. The optimal latency targets across parallel microservices must be the same,

as otherwise, one can increase the lower one to reduce the overall resource usage. Thus, we have:

�∗1
�

�∗1
+ �∗1 = �∗2

�

�∗2
+ �∗2 ≈ �∗∗

�

�∗1 + �∗2
+ �∗∗ . (10)

The solution to Eq. (10) is as follows:

�∗∗ = �∗1 + �∗2, �
∗∗

= max
{
�∗1, �

∗
2

}
, (11)

and the virtual resource demand of UU∗∗ is given by:

�∗∗
= (�∗1�∗

1 + �∗2�∗
2)/(�∗1 + �∗2). (12)

After this merge process, the dependency graph only consists of three (virtual and real) microservices that execute

sequentially. Erms computes latency targets and resource allocation for all these microservices based Eq. (5).
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Fig. 8. An example of computing latency target for microservice graph in Fig. 7.

Latency target computation. Finally, Erms reverses the above graph merge procedure and computes a

latency target for each microservice, as described in Fig. 8. First, Erms computes latency targets for microservices

T, UU∗∗, and C with sequential dependencies according to Eq. (5). Second, Erms assigns the same latency targets

to microservices with parallel dependencies, that is, UrlC∗ and UC∗’s latency targets are equal to UU∗∗’s latency
target. Last, Erms uses these results to compute latency targets for real microservices with sequential dependencies,

i.e.,
{
Url,C

}
based on UrlC∗ and

{
U,C

}
based on UC∗.

Algorithm 1 describes the entire process of resource scaling with a general graph of known microservice

characteristics and service workload. It adopts Depth-First Search (DFS) to ind all two-tier invocations [28]. (Line

7 to Line 19). Each two-tier invocation consists of one microservice along with all its downstream microservices,

e.g.,
{
T,Url,U,C

}
is a two-tier invocation formed by T, and

{
Url,C

}
is another two-tier invocation formed by

Url in Fig. 7. The merge function for inventing new virtual microservices (Line 24), starts from the last two-tier

invocation and ends with the irst one that is found by DFS. After this, the algorithm computes an optimal latency

target for all virtual microservices (Line 20). The worst-case time-complexity of DFS algorithm is O
(
|� | + |� |

)
for

a graph with |� | nodes and |� | edges.

4.3 Microservice Multiplexing Model

Erms can extend the basic resource scaling framework to model multiplexing among diferent services.

Erms schedules high-priority services before those of low priority whenever there are multiple requests queued

at a shared microservice. As such, response time of low-priority requests experienced at this shared microservice

will be delayed by high-priority ones. To explicitly quantify such an efect, Erms formulates a new model to

incorporate priorities assigned to diferent services. Consider two services illustrated in Fig. 5 with workload

�1, �2 and SLA requirements SLA1 and SLA2 When requests from the irst service are given higher priority at

shared microservice P, and there is no other microservice shared among these two services, the new model is

formulated as: ︁

�∈Φ1\{� }
��
�1

��
+ �� + ��

�1

��
+ �� ≤ SLA1, (13)

︁

�∈Φ2\{� }
��
�1

��
+ �� + ��

�1 + �2
��

+ �� ≤ SLA2, (14)

where Φ1 and Φ2 are the set of microservices included in the irst and second services. In the irst service, the

end-to-end tail latency includes the time of processing �1 requests per unit of time at P. By contrast, for the shared

microservice in the second service, its tail latency is the time to inish processing (�1 + �2) requests. This model

can be generalized to include more services multiplexing microservice P. It is worth noting that this problem is

also convex with respect to the allocation vector −→� .

ACM Trans. Comput. Syst.



12 • Shutian Luo, Chenyu Lin, et al.

Algorithm 1: Resource Scaling Algorithm of Erms

1 ��������� : Stack for unvisited nodes;

2 ������� : Stack for nodes in a two-tier invocation;

3 �����������: Stack for virtual microservices;

4 /* Depth-First Search */

5 ���������.���ℎ(������������������);
6 ������ = ����;

7 while !���������.������� () do
8 ������� = ���������.��� ();
9 if ������� .�ℎ��� �� ��� ����� then

10 ���������.���ℎ(������� .�ℎ���);
11 ������ = ������� ;

12 else

13 ������� .���ℎ(�������);
14 /* Two-tier invocations */

15 if ������ == ������� then

16 � = ����� (������� );
17 ����� ������� ;

18 ������� .���ℎ(�);
19 �����������.���ℎ(�);

20 while !�����������.������� () do
21 � = �����������.��� ();
22 /* Latency Target Computation */

23 ������� ������� ������ � �� ������������ � ���ℎ Eq. (5);

24 Function Merge(�������):

25 /* Merge Parallel Calls First */

26 if ����� �� ������� ��� �������� then

27 ������ ������� ������������ ���ℎ Eq.(11);

28 /* Merge Sequential Calls Last */

29 ������ ������� ������������ ���ℎ Eq. (7), (8);

30 return virtual Microservice;

31 End Function

We also make use of convex analysis to quantify the total amount of resource usage under the multiplexing

model. Theorem 1 demonstrates this new model results in less resource usage for satisfying SLAs, when compared

to other scheduling policies.

Theorem 1. The resource usage obtained by the optimization problem in Eq. (13) and Eq. (14) is smaller than that

under the sharing scheme using FCFS scheduling and the non-sharing approach.
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In the following proof of Theorem 1, we empirically compare Erms’ priority scheduling policy with other

baselines, including sharing and non-sharing approaches, in terms of resource usage. The result demonstrates

Erms’ priority scheduling policy is more cost-efective than baseline schemes in ensuring SLA requirements.

Proof. When there is no prioritization with multiplexing, the service SLA requirements, SLA1 can be formu-

lated as:

��
�1

��
+ �� + ��

�1 + �2
��

+ �� ≤ SLA1, (15)

and SLA2 is the same as that in Eq. (14). We now consider a special setting where SLA1 −�� −�� = SLA2 −�ℎ −�� .
In this setting, the optimal resource allocation can be obtained by solving KKT equations that are similar to

Eq. (4), resulting in a total amount of resource usage of:

�� �
=

(︁
���1�� + �ℎ�2�ℎ +

︁
�� (�1 + �2)��

)2

SLA1 − �� − ��
. (16)

When each service deploys microservice independently with no multiplexing, we can directly use the results

in Eq. (5) to determine the optimal scaling for each microservice, which yields the following amount of resource

usage:

�� �
=

�1
(√
���� +

︁
����

)2 + �2
(√
�ℎ�ℎ +

︁
����

)2

SLA1 − �� − ��
. (17)

Applying Cauchy-Schwarz Inequality here, we have �� � ≤ �� � and the equality is attained if and only if

���� = �ℎ�ℎ .

However, it is diicult to derive a closed-form solution to the problem formulated in Eq. (13) and Eq. (14). One

approximation is to solve these two equations independently, which yields an upper bound for the total resource

usage:

�� � ≤
(︁

�ℎ�2�ℎ +
︁
�� (�1 + �2)��

)2

SLA1 − �� − ��
+ ���1�� +

︁
���������1. (18)

Moreover, it can be readily shown that the R.H.S. of Eq. (18) is less than �� � . As such, we have �� � ≤ �� � ≤ �� � .

This completes the proof of Theorem 1. □

While this theorem can guarantee the optimality of Erms’ scheduling policy, it does not quantify to what extent

Erms can improve the baselines. The proof also implies that the actual improvement depends on the workload

and the sensitivity of upstream microservice’s response time to workload changes.

5 ERMS DEPLOYMENT

5.1 Tracing Coordinator

The tracing coordinator in Erms is developed based on two open-source tracing systems, Prometheus [3] and

Jaeger [2]. Prometheus collects OS-level metrics including CPU and memory utilization for each microservice

container as well physical hosts. Jaeger is a system to collect application-level metrics, including all calls send

to each microservice and service response time. Jaeger adopts a sampling frequency of 10% to control the data

collection overhead. It records two spans for each call between a pair of microservices; one starts with the client

sending a request and ends with the client receiving the corresponding response, while the other starts with the

server receiving the request and ends with it sending the response back to the client.

Tracing Coordinator extracts microservice dependency graphs based on historical traces from Jaeger. Specif-

ically, it irst treats the incoming microservice that receives user requests as the root node. If there is a call
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between two microservices, Tracing Coordinator adds an edge between them. In addition, if the client-side span

of newly added calls overlaps the span of existing calls, those calls are marked as parallel calls, otherwise they

are sequential calls. Tracing Coordinator repeats this process until it traverses all recorded calls. Based on the

microservice dependency graph, Tracing Coordinator also extracts individual microservice latency.

5.2 Microservice Ofline Profiling

In this subsection, we introduce Erms’ oline proiling module in detail. Erms adopts a linear function model to

proile microservice latency and container resource usage. And these proiling results are leveraged to facilitate

eicient containers scaling (ğ 4) and scheduling (ğ 5.4).

5.2.1 Latency ofline profiling. As explained in ğ 2.2, microservice latency can be described as a piece-wise linear

function of workload. At the same time, resource interference can signiicantly impact the slope of the latency

curve. Therefore, Erms primarily considers workload and resource interference when conducting the proiling of

microservice latency [7, 27, 37, 38, 47].

In terms of interference, Erms mainly considers CPU utilization, memory capacity utilization, memory band-

width utilization, and network bandwidth utilization of the physical host where the microservice container is

located. As investigated in ğ 2.2, resource interference can have a signiicant impact on microservice latency

[7, 27, 37]. Erms adopts machine learning methods to proile microservice latency in terms of workload and

interference. Speciically, Erms collects the tail latency of all samples within the � th minute for each Microservice

i from Tracing Coordinator, i.e., �
�
� . Erms also counts the total number of calls processed by each deployed

container in the �th minute, i.e., �
�
� . These two together with the average resource utilization are regarded as one

data sample for Microservice i, i.e., �
�
� = (� �

� , �
�
� ,C

�
� ,MemC

�
� ,MemB

�
� ,N

�
� ) where the last four elements represent

CPU, memory capacity utilization, memory bandwidth utilization, network bandwidth utilization respectively.

Erms its all these samples into a piece-wise model as shown below.

�
�
� =

{
(�1

� C
�
� + �1� MemC

�
� + �1� MemB

�
� + �1� N

�
� + �1� )�

�
� + �1� , �

�
� ≤ �� ,

(�2
� C

�
� + �2� MemC

�
� + �2� MemB

�
� + �2� N

�
� + �2� )�

�
� + �2� , otherwise.

(19)

Provided there is resource interference, i.e., C
�
� , MemC

�
� , MemB

�
� , and N

�
� remain ixed, �

�
� can be portrayed as a

piece-wise linear function of the workload �
�
� . Consequently, Erms irst iterates over all training samples with the

same resource interference to identify the optimal one as the cut-of point �� that minimizes the sum of squared

residuals for the piece-wise linear function. Subsequently, using the least squares method, Erms its the slopes

(��� )�=1,2 and intercepts (��� )�=1,2 of the piece-wise linear function based on the optimal cut-of point �� . It is worth

noting that (��� )�=1,2 are ixed values, unafected by the resource interference.

Based on the itted �� and �� , Erms proceeds to create a new training dataset for each microservice, captur-

ing the impact of resource interference. In this training dataset, each element for Microservice � consists of

{C� ,MemC� ,MemB� ,N� , �� , (��� )�=1,2}. To ensure eicient proiling, Erms employs simple yet efective models to

quantify the relationship between �� , (�� )�=1,2 and the resource utilization {C� ,MemC� ,MemB� ,N� }. Speciically,
the slope (�� )�=1,2 is modeled as a linear function in relation to resource utilization. This means that the parameters

(��� , ��� , ��� , ��� , ��� )�=1,2 can be learned directly from the training dataset using the least-squares method. The cut-of

point �� is also a function of resource utilization, and Erms leverages a decision tree model [39] to learn this

relationship.

5.2.2 Resource usage profiling. Microservices are mainly deployed to handle service requests, so the actual

resource usage of microservice containers primarily depends on the service workload. As depicted in Fig. 9,

both traces from Alibaba clusters and real benchmarks show that the average resource utilization of a running

ACM Trans. Comput. Syst.



Optimizing Resource Management for Shared Microservices: A Scalable System Design • 15

2000 4000
Workload

30

40

50

60

70

80

90

Ut
iliz

at
io

n 
(%

)

T-CPU
F-CPU
T-Memory Capacity
M-Memory Capacity

2000 4000
Workload

180

200

220

240

260

280

300

M
em

or
y 

BW
 (M

B/
s)

T-Memory BW
F-Memory BW
T-Network BW
F-Network BW

150

190

230

270

310

350

390

Ne
tw

or
k 

BW
 (K

B/
s)

(a) Microservices from Alibaba traces [28].
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(b) Microservices from DeathStarBench [18].

Fig. 9. Resource utilization of microservice containers grows linearly with microservice workloads.

container grows almost linearly with workload. Therefore, Erms adopts a linear regression model to proile

container resource usage �� (·):
� �� (�) = ��� ·� + ��� , � ∈ {�,MemC,MemC, � }, (20)

where� is the number of requests handled by per container within a minute for Microservice � , and � presents

four diferent hardware resources as described in Eq. (19).

5.3 Online Resource Scaling

In this section, we present the design details of Online Scaling module. The key of this module is to carefully

apply resource scaling models developed in ğ 4 such that the scaling overhead is well controlled.

5.3.1 Dependency merge and latency target computation. Erms averages the current resource utilization across all

physical hosts and feeds this utilization into the microservice proiling model to obtain parameters that describe

the piece-wise linear function. These parameters quantify the sensitivity of microservice latency with respect

to the workload of each container. Erms relies on them to allocate latency targets for microservices following

Algorithm 1.

One critical challenge herein, however, is that there exist two diferent sets of parameters associated with

two intervals for one microservice described by the proiling model. It is diicult to optimally choose which set

should be used for Latency Target Computation. Exhaustively trying all possible choices is not scalable since

the number of candidates is 2� where� is the number of microservice in a graph. To address this challenge,

Erms irst performs dependency merge and allocates latency targets based on these parameters learned from the

second interval, as this interval corresponds to a high workload and means less resource consumption. After

allocating a latency target for each Microservice i, Erms then checks whether the allocated latency target is less

than the latency corresponding to the cut-of point �� or not. A positive result means Microservice i requires

extra resources and should be allocated a lower latency target. For these microservices, Erms adopts the other set

of parameters in the irst interval to recompute all latency targets. In this way, the dependency graph of each

service needs to be processed at most twice for Latency Target Computation.

5.3.2 Priority scheduling. At a shared microservice, Erms needs to conigure the scheduling priority of requests

from diferent online services. To ind the schedule that yields the fewest resource usage, it is required to solve

the multiplexing model in ğ 4.3 under all possible conigurations. However, this is not tractable in practical

systems since there are �! orderings if � services share a microservice. When considering the situation that

many microservices can be multiplexed among diferent services, the computational overhead can be extremely

high, without mentioning the complexity of the multiplexing model. To be more scalable, Erms irst calls the
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Table 1. Notations for placement optimization under Erms

��� The interference coeicient of resource � for microservice � (Eq. (19))

� �� The usage of resource � for Microservice �’s containers

��
ℎ

The usage of resource � of existing jobs in Host ℎ

��
�

The capacity of resource � for Host ℎ

�ℎ
�,�

Whether the �th container of � is placed on ℎ

�� Number of containers scheduled for Microservice �

Ψ The set of four kinds of resource, including CPU, memory capacity, memory

bandwidth and network bandwidth, respectively

Ω The set of all Microservice

Φ The set of all physical hosts

Latency Target Computation component for each service to allocate an initial latency target to all microservices.

Priority is conigured based on this target. In particular, the service that yields the lower latency target at a

shared microservice is given higher priority. The intuition behind this is that the lower latency target implies the

corresponding service consists of many latency-sensitive microservices and their requests should be handled

irst.

Based on the conigured priority, Erms recomputes microservice latency target via solving the multiplexing

model. However, this model couples all services together and is computationally expensive to deal with. For

reducing scaling overhead, Erms chooses to call the Latency Target Computation component for each service

independently. This call returns the inal latency targets of all microservices and the number of containers to

be scaled. In this call, Erms adopts a modiied workload for a shared microservice to take into account priority

scheduling. More speciically, let ��,� denote the original workload at shared microservice i that is from service � ,

the modiied workload is
∑�

�=1 ��,� , assuming services are ordered following their index. The result from Latency

Target Computation implies when the workload of a microservice increases, other microservices within the same

dependency graph should be set lower latency targets for resource eiciency. Based on this, Priority scheduling

allocates more resources to non-sharedmicroservices in order to relieve resource pressure on sharedmicroservices,

compared to FIFO scheduling.

Whenever a thread is available in a deployed container and there are requests waiting to be processed, a

request from the service with higher priority will be assigned to this thread with higher probability. In particular,

requests from the service with the highest priority are scheduled with probability (1 − �), and requests from the

service with the �th highest priority are scheduled with probability ��−1 (1 − �), and the service with the lowest

priority is scheduled with probability ��−1 where � is the number of services. Here, a small � is beneicial to

the response of high-priority services at the cost of starving the processing of low-priority requests when the

workload is heavy. We shall evaluate the impact of � on shared microservices in ğ 6.4.2.

5.3.3 Overhead of resource scaling. By careful design, Erms only needs to call Latency Target Computation twice

for each dependency graph. In addition, Latency Target Computation component also applies graph traversal

algorithm twice to compute latency targets, yielding a complexity of O
(
|� | + |� |

)
for a graph with |� | nodes and

|� | edges. In production clusters, dependency graphs behave like a tree [28], and the number of edges is usually

several times the number of nodes. As such, the computational overhead of resource scaling scales linearly with

the total number of microservices included in all services.
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5.4 Interference-aware Containers Scheduling

To improve scalability, the Online Scaling module takes into account only the average resource interference across

multiple hosts when performing resource scaling. However, it is important to note that scheduled containers

belonging to a single microservice may be deployed across diferent hosts, resulting in varying degrees of resource

interference. This variation in interference can subsequently lead to signiicant performance imbalances among

containers within the same microservice.

A simplemethod to tackle performance imbalance involves bridging the disparity in host resource utilization[30].

However, this approach neglects the potential impact of resource interference on the performance degradation

of diferent microservices to varying extents. In contrast, Erms strategically places containers in response to

performance degradation in order to minimize end-to-end latency. To attain the optimal container placement,

we develop an optimization problem with the objective function of minimizing the aggregate latency of all

microservices (per eq. (19)). It is worth noting that this objective function accounts for resource interference

originating not only from oline jobs but also from the microservices that will be placed on the hosts. The

formulation of this optimization is as follows:

min
�

︁

ℎ∈Φ

︁

�∈Ω

��︁

�=1

�ℎ�,�

{(︁

�∈Ψ

(
��� · (

︁

�∈Ω

��︁

�=1

�ℎ�,� · � �� + ��ℎ)/�
�
ℎ

) )
�
�
� + ��

}
(21)

s.t.
︁

ℎ∈Φ
�ℎ�,� = 1, ∀�, � and �ℎ�,� ∈ {0, 1}, ∀�, �, ℎ, (22)
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��︁

�=1

���
�
� ≤ ��ℎ, ∀ℎ, � . (23)

The explanation for each parameter can be found in Table 1, and the last constraint arises from the fact that the

combined resource consumption of all containers on each host must not exceed the host’s capacity. The resource

usage of host ℎ, as quantiied in the objective function in Eq. 21, comprises two parts: usage from microservice

containers to be deployed,
∑

�∈Ω
∑��

�=1
�ℎ
�,�

· � �� and usage from existing jobs, ��
ℎ
. Given the workload �

�
� , resource

usage of microservice containers can be estimated based on eq. (20), while the resource usage of existing jobs can

be retrieved through Erms’s Tracing Coordinator.

It is worth noting that in this problem, � = {�ℎ
�,�
}�,�,ℎ serves as the sole optimization variable. In the meanwhile,

this problem is a non-linear integer programming problem, which is NP-hard and challenging to solve. To address

this, we relax the integer constraint �ℎ
�,�

∈ {0, 1}, allowing �ℎ
�,�

to assume a fractional number, i.e., �̂ℎ
�,�

∈ [0, 1].
As a result, the problem transforms into a convex program, which can be eiciently solved using the ADMM

approach [22]. Following this, the generated fractional solutions are rounded back to binary values through

uniform random sampling, i.e., �ℎ
�,�

equals one with a probability of �̂ℎ
�,�
. A signiicant limitation of this method is

its high complexity, particularly when a production cluster contains a vast number of hosts and microservices.

This complexity may result in substantial scheduling overhead, thereby restricting the approach’s applicability.

To alleviate this overhead, Erms statically divides a cluster’s hosts into multiple equal-sized groups and solves a

considerably smaller-scale optimization problem using the computational resources within each group.

Globally optimizing the placement of all containers may lead to migrations of containers across hosts. To

mitigate the migration overhead, Erms solves the optimization problem based on the current deployment of

containers in the cluster. If Erms determines to scale out the number of container for microservice � from �� to �
∗
� ,

then it only needs to igure out the placement for these (�∗� − �� ) containers.
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5.5 Erms Implementation

We implement a prototype of Erms on top of Kubernetes [24], a widely-adopted container orchestration framework.

At runtime, Erms queries Prometheus to obtain real-time data for scheduling resources. Online Scaling module

and Resource Provisioning module are written via Kubernetes Python client library, implemented in approximately

3KLOC of Python.

Erms implements the priority-based scheduling in the network layer of each container. More speciically, it

relies on a Linux traic control interface tc to manage diferent incoming network lows of a container. This

interface can provide prioritization through a queuing discipline, i.e., pfifo_fast. As such, Erms only needs to

specify the priority of each low. Originally, tc is designed for controlling outcoming traic rather than incoming

traic. Erms activates a virtual network interface in a physical host and then binds this interface to the desired

container.

6 EVALUATION OF ERMS

6.1 Experiment Setup

Benchmarks: We evaluate Erms using an open-sourced microservice benchmark, DeathStarBench [18] and

TrainTicket [49]. DeathStarBench consists of Social Network, Media Service, and Hotel Reservation applications.

These applications contain 36, 38, and 15 unique microservices respectively, and include 3, 1, and 4 diferent

services. Moreover, both Social Network application and Hotel Reservation application have 3 shared microser-

vices. TrainTicket application contains about ten services, such as ticket booking, ticket querying and so on, and

these services form dynamic dependency graph in runtime. Moreover, there are 23 shared microservices in these

services.

Cluster Setup: We deploy Erms in a local private cluster of 20 two-socket physical hosts. Each host is

conigured with 32 CPU cores and 64 GB RAM. Each microservice container is conigured with 0.1 core and

200MB memory.

Workload Generation:We ind that 100,000 requests reach the maximum throughput that our cluster can

support in one minute for the benchmark [18]. As such, we generate multiple static workloads ranging from 600

(low) to 100,000 (high) requests per minute for each service. In addition, we also adopt dynamic workloads from

Alibaba clusters [28]. SLA targets are set with respect to 95th percentile end-to-end latency, ranging from 50 ms

(low) to 200 ms (high) for all applications.

Dependency Graph: In DeathstarBench, online services generally exhibit static dependency graphs while

processing various requests. However, TrainTicket presents dynamic dependency graphs at runtime, inluenced

by distinct request arguments, such as the number of stations involved. We explore two representative TrainTicket

services: ticket booking and ticket querying. Under the arguments for 1 and 10 stations, we generate simple and

complex graphs, respectively. The combination of simple and complex graphs serves to highlight the dynamic

nature of these dependency graphs.

Baseline Schemes:We compare Erms against GrandSLAm [23], Rhythm [47], and Firm [38]. Moreover, we

include the original Erms’ implementation (Erms-IPM) [30] as an additional baseline scheme. Without special

mention, we set � to 0.05.

• GrandSLAm: It computes latency target for each service such that it is proportional to its average latency

under diferent workloads.

• Rhythm: It evaluates the contribution of each microservice as the normalized product of mean latency, and

variance of latency across diferent workloads, as well as the correlation coeicient between microservice

latency and the end-to-end service latency.

• Firm: It irst identiies a critical microservice on each critical path that has a heavy impact on the end-to-end

latency, and then applies reinforcement learning to tune resource allocation for this microservice.
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Fig. 10. Profiling accuracy using diferent algorithms on DeathStarBench and Alibaba traces.

• Erms-IPM: To mitigate performance imbalances between containers of microservices, it minimizes the

gap in resource utilization across hosts through container placement.

6.2 Microservice Profiling Accuracy

To validate the accuracy of Erms’ microservice proiling module, we run DeathStarBench and TrainTicket in our

local cluster and collect one-day running samples for each microservice. We ix the interference level on each host

via injecting iBench workloads [11] during each hour, and collect one sample per minute for a microservice. In

addition, we collect one-day samples for all microservices from Taobao Application in Alibaba traces [1]. Taobao is

mainly for online shopping and it consists of 2000+ microservices. It is worth noting that microservices are usually

co-located with batch jobs on the same host to increase resource utilization in Alibaba clusters [28]. Therefore,

Alibaba microservices tend to experience more diferent types of resource interference than microservices in a

dedicated cluster.

We train Erms’ proiling model for each microservice using the irst 22-hour samples and perform testing

on the remaining samples. We also implement XGBoost [8] and a three-layer Neural Network (NN) with 64

neurons as baseline schemes. As shown in Fig. 10(a), the testing accuracy under Erms ranges from 83% to 97% for

microservices from both DeathStarBench [18] and Alibaba traces. In this case, the testing accuracy is similar

across all schemes. To investigate the generalization ability of Erms, we also evaluate the testing accuracy

under diferent sizes of training data set collected from Taobao. As shown in Fig. 10(b), Erms achieves a testing

accuracy of 85% using 70% of the training samples. In contrast, the testing accuracy under NN drops dramatically

when the number of training samples reduces. Considering that Erms only needs the slope and intercept of a

piecewise linear function for resource scaling, this testing accuracy is suicient for resource management, even

in production environments.

Moreover, we also evaluate the proiling results of resource usage using traces generated from DeathStarBench

and TrainTicket, which collectively comprise nearly 120 microservices. Furthermore, we validate the eiciency of

the linear regression model on more than 1000 microservices from Alibaba clusters. The results highlight that the

prediction accuracy under these benchmarks and Alibaba traces can be as high as 92.2% and 91.2%, respectively.

6.3 Resource Eficiency and Performance

6.3.1 Static workload. In this part, we evaluate the resource usage and end-to-end latency of services under

diferent static workloads and SLA settings. In each setting, we run all services for 30 minutes.

We quantify resource usage in terms of the number of containers allocated to all services. Fig. 11(a) shows

the distribution of the resource usage under diferent static workloads. The result reveals that more than 83%

of workloads require less than 200 containers under Erms, while these workloads need about 310 containers

under both GrandSLAm, and Rhythm. GrandSLAm and Rhythm have similar distributions of resource usage as
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Fig. 11. Containers allocated with static workloads.
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Fig. 12. Tail latency under diferent schemes.

they allocate resources based on statistics of microservice latency. Firm tends to tune resource coniguration for

critical microservices only, and it needs to allocate more resources under the high workload to ensure SLA. As a

result, Firm leads to the longest tail in term of the CDF distribution of resource allocation, as shown in Fig. 11(a).

In an extreme case, Firm needs more than 3× resources compared to Erms. To be more comprehensive, we also

compare these schemes in each speciic setting, as shown in Fig. 11(b). On average, Erms saves about 27.8%, 91.1%

and 30.1% of containers in contrast to Firm, GrandSLAm, and Rhythm, respectively. As workload goes up, the

improvement of Erms also grows. One key reason behind this is that shared microservices need to deploy more

containers so as to handle requests from diferent services, especially when the workload is high. This gives more

opportunities for Erms to optimize resource allocation. Similar behavior can be observed when we vary SLA

requirements. In the low-SLA scenario, the reduction of resource usage under Erms is more signiicant than that

under the high-SLA setting. Low SLA means a low latency target allocated to each microservice and therefore,

there is a large room to optimize resource usage.

In the meanwhile, we also characterize the end-to-end performance of service requests under diferent scenarios.

As shown in Fig. 12(a), on average, the SLA violation probability under Erms is less than 4%, whereas it is as high

as 25.2%, 16.4%, and 7.2% under Firm, GrandSLAm and Rhythm respectively. Moreover, both higher workloads and

lower SLAs lead to higher SLA violation probability under all schemes. When referring to the actual end-to-end

delay, Erms can reduce this metric by 18% compared to other schemes, as depicted in Fig. 12(b). Moreover, in the

high workload and low SLA scenarios, the gap between end-to-end latency and SLA will be larger than that in

the low workload and high SLA settings.

6.3.2 Dynamic workload. In this part, we generate dynamic workload based on Alibaba traces and set the SLA

target to 200ms. In this experiment, we dynamically scale containers for microservices from the Social Network

application so as to satisfy SLA. As shown in Fig. 13(a), all schemes could respond to the workload changes

promptly. However, Erms can save up to 30% of containers compared to other schemes on average. In Fig. 13(b),
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Fig. 13. Performance under the dynamic workload.
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Fig. 14. Performance under dynamic dependency graphs.

we depict the corresponding tail latency of requests submitted over time. It shows that Erms can satisfy SLA

requirements all the time without violation, even when the workload grows quickly. However, other schemes can

easily violate SLA at peak workloads. In particular, Firm can violate SLA by up to 50% due to its late detection of

bottleneck microservices.

6.3.3 Dynamic dependency graph. We evaluate the resource allocation and end-to-end latency of services with

dynamic dependency graphs using various schemes. To obtain optimal resource allocation for a dynamic graph,

we progressively decrease the number of containers for distinct microservices until SLA violations arise. The

corresponding resource allocation can then be deemed optimal. To accommodate dynamic dependency graphs,

baseline schemes allocate resources for the complete graph rather than its subgraph to prevent SLA violations.

We employ a combination of complex and simple graphs to measure the graph’s dynamic nature.

As illustrated in Figure 14(a), optimal resource allocation yields an average savings of approximately 5%, 10%,

14%, and 20% compared to Erms, Firm, GrandSLAm, and Rhythm, respectively. These indings demonstrate that

Erms outperforms other baseline schemes in dynamic dependency graph scenarios, although a minor gap still

exists between Erms and optimal resource allocation. Moreover, the gap between Erms and optimal resource

allocation remains stable as the proportion of simple graphs increases, while the gap between other schemes and

optimal resource allocation widens with the growth of simple graphs. This is because Erms’s accurate modeling

of the dependency graph can adapt to the dynamic nature of the graph. Additionally, Figure 14(b) reveals that

Erms enhances service performance by 3% compared to other baseline schemes. As the proportion of simple

graphs increases, Erms can gradually improve performance due to the beneit of overprovisioning, while the

performance of other baseline schemes varies. Consequently, Erms can achieve high performance even under

dynamic dependency graph scenarios.
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Fig. 15. The benefit brought by individual modules.

6.4 Evaluation of Individual Modules

In this subsection, we separately quantify the beneit brought by diferent components and modules of Erms

including Latency Target Computation, Priority Scheduling, and Resource Provisioning.

6.4.1 Latency target computation. In this experiment, we evaluate the improvement of Latency Target Computa-

tion component by implementing Erms with default FCFS policy to schedule requests at a shared microservice.

We compare the overall resource usage across diferent schemes under various static workloads and SLA settings.

The distribution of resource usage is depicted in Fig. 15(a). In an extreme case, Latency Target Computation alone

could reduce the overall resource usage by 2× against Firm. On average, Erms outperforms Firm, GrandSLAm

and Rhythm by 63.2%, 42.3%, and 61.5%, respectively, indicating that the performance of Erms can degrade a lot

without eicient scheduling at shared microservices.

6.4.2 Benefit of priority scheduling. We proceed to quantify the beneit brought by Erms’ scheduling policy at

shared microservices. We also implement priority scheduling under GranSLAm and Rhythm. Firm tunes resource

online using a reinforcement learning engine, it is not possible to prioritize requests. Therefore, we only compare

Erms to GrandSLAm and Rhythm in this experiment. It is worth noting that priority scheduling requires Erms to

recompute latency targets and adjust resource allocation for non-shared microservices as well.

As shown in Fig. 15(b), with priority scheduling, Erms can save about 19% of containers. However, the beneit

of priority scheduling for GrandSLAm (Rhythm) is very marginal, i.e., less than 10%. This is because directly

applying priority scheduling under GrandSLAm (Rhythm) only reduces resource usage at shared microservices

without impacting other microservices. By contrast, Erms relies on priority scheduling to optimize resource

allocation for all microservices, leading to increased resource usage for non-shared microservices. However,

sacriicing these microservices can beneit shared microservices a lot and therefore greatly reduce the overall

resource usage, as illustrated in Fig. 5. This result demonstrates that coordinating latency target computation and

scheduling is critical for resource management in shared environments.

We also investigate the impact of the � parameter on shared microservices to determine the optimal � value

under various workload and SLA conditions, as depicted in Fig. 16. For each scenario, we utilize two conigurations,

with the outcomes represented by green and blue lines in Fig. 16. In the workload scenario, wemodify the workload

levels of shared microservices for high-priority and low-priority requests.

The green line in Fig. 16(a) reveals that a small � value, ranging from 0.05 to 0.1, signiicantly reduces the

latency of low-priority requests under low workloads, while only slightly increasing the latency of high-priority

requests under high workloads. Speciically, when � is set at 0.1, the latency of low-priority requests decreases by

7.8%, while the latency of high-priority requests increases by a mere 1.3%. Consequently, a � value between 0.05

and 0.1 ofers high performance for this coniguration. As the workload for low-priority requests rises and that for
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Fig. 16. The delay of requests from services with diferent priorities (Low P and High P) at shared microservices under various
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Fig. 17. The benefit of interference (ITF) aware deployment.

high-priority requests diminishes, as denoted by the red line in Fig. 16(a), the � value exhibits minimal inluence

on the latency of low-priority requests until it surpasses 0.4. This occurs because low-priority services necessitate

a higher � value to decrease queuing time as their workload increases. A similar observation is evident in distinct

SLA scenarios. With a � value set between 0.05 and 0.1, the latency of low-priority requests substantially declines,

while the latency of high-priority requests experiences a minor increment, as demonstrated in Fig. 16(b).

6.4.3 Interference-aware containers placement. In this section, we assess the performance improvement achieved

through the implementation of an interference-aware container placement module under the Erms framework

(refer to ğ 5.4). We employ the iBench benchmark [11] to introduce varying degrees of interference, subsequently

examining total resource consumption and tail latency under three diferent approaches: the Erms container

placement policy, Erms-IPM, and the default deployment scheme of Kubernetes (K8S).

As illustrated in Figure 17(a), the K8S scheduler necessitates over 50%more containers to fulill SLA requirements

in comparison to Erms-IPM, owing to its lack of resource interference awareness during container placement.

Conversely, Erms achieves a 10% reduction in allocated containers relative to Erms-IPM by optimizing end-to-

end latency in the presence of resource interference. In high SLA scenarios, the interference-aware container

placement module can decrease resource utilization by up to 2×, a more signiicant efect than in low SLA settings.

Two factors contribute to this observed phenomenon. First, high SLA settings result in diminished resource

allocation, rendering microservice performance more susceptible to interference from background workloads.

Second, high SLA settings lead to high latency targets for each microservice. As microservice latency escalates

with interference, resource usage increases to maintain the same latency target under intensiied interference. This

demonstrates the importance of proiling microservice performance while considering interference-awareness in

order to optimize resource allocation efectively.
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Fig. 18. Simulation results using Alibaba traces.

We further assess the end-to-end latency for services under Erms, Erms-IPM, and K8S while utilizing the same

amount of resources. As depicted in Figure 17(b), Erms signiicantly improves latency performance by 10% and

1.2× on average when compared to Erms-IPM and K8S, respectively. Notably, Erms outperforms K8S by 2.2×
in high interference scenarios and by 2× in high SLA settings, showing its enhanced eiciency in optimizing

service latency.

6.5 Trace-driven Simulations

To evaluate Erms on a large scale, we replay Alibaba microservice workloads to conduct trace-driven simulations

for Taobao Application. This application includes 500+ services and each service contains 50 microservices on

average. The total number of shared microservices is 300+.

6.5.1 End-to-End performance. We depict the distribution of the total number of containers deployed under

each service in Fig. 18(a). It shows that more than 80% of services require less than 2000 containers under Erms,

whereas these services need 6000 containers under both GrandSLAm and Rhythm. In addition, Erms could reduce

the number of allocated containers by 1.6× on average, compared to baseline schemes, as shown in Fig. 18(b).

This improvement is much larger than that under real benchmarks, demonstrating Erms has more opportunities

to improve resource eiciency for services with complex call dependency. We also evaluate the improvement of

Latency Target Computation and Priority Scheduling, respectively. Results in Fig. 18(b) show that Latency Target

Computation alone can save resource usage by up to 1.2×. By contrast, Priority Scheduling leads to a reduction in

resource usage by 50%. This improvement is also much higher than that from benchmarks since there are more

shared microservices in Alibaba traces.

6.5.2 Scalability of Erms. We evaluate the scaling overhead of Erms using Alibaba traces since their scale is

much larger than that of DeathStarBench. The average overhead of Latency Target Computation is 15ms on

an Intel Xeon CPU. For the largest graph with 1000+ microservices, the computational overhead is 300ms. In

addition, the overhead of resource provisioning is 200ms on average. Most of time, Erms only needs to scale

no more than 1000 containers across 5000 hosts. Therefore, the overall scaling overhead is quite small since a

container usually requires several seconds to start [38].

7 DISCUSSION

In this section, we will discuss several practical issues about deploying Erms in a production environment.

Modelling latency using linear functions. Erms chooses to quantify microservice latency using piece-wise

linear functions. The key reason is that these functions can well model microservice behavior, as explained

in ğ 2.2. Moreover, the piece-wise linear function can achieve up to 86% proiling accuracy on Alibaba production

workloads and DeathStarBench, even outperforming complicated models including XGBoost and Neural Network.

Another advantage is that Erms can leverage piecewise linear functions to derive closed-form expressions that
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assign optimal latency targets to each microservice. As a result, Erms can achieve better performance than

existing heuristics while being scalable to handle large-scale problems. In fact, linear functions are not satisfactory

for only very few microservices, i.e. less than 3% in DeathStarBench with proiling accuracy around 62%. This is

because the latency of these microservices is relatively small, making it diicult to predict accurately. Nonetheless,

these microservices have a negligible impact on the end-to-end SLA, and Erms only allocates a small amount of

resources to them.

Handling resource-related exceptions. Resource-related exceptions, such as out of memory, rarely happen under

Erms for two reasons. First, Erms computes latency targets across microservices based on SLA requirements and

current workload. Erms assigns each microservice a proper number of containers based on the latency target to

avoid overload. Second, Erms rounds up the number of containers per microservice to an integer. In this sense,

Erms can eliminate the negative impact of mispredictions to avoid exceptions. Also, this over-provisioning due

to rounding up is negligible relative to the total number of containers per microservice (typically hundreds to

thousands in production environments).

8 RELATED WORK

Microservice autoscaling. GrandSLAm builds an execution framework for ML-based microservices [23]. How-

ever, it allocates microservice latency targets independently among diferent services without global coordination.

Microscaler [45] adopts Bayesian optimization approach to scale the number of instances for those important

microservices. Rhythm [47] builds an advanced model to quantify the contribution of each microservice. Firm

[38] leverages machine-learning techniques to localize critical microservice that can have a heavy impact on

the overall service performance under low-level resource interference. Most recently, Sinan [46] presents a

CNN-based cluster resource manager for microservice architecture to guarantee QoS while maintaining high

resource utilization. DeepRest [9] and Graf [36] employ graph neural networks to accurately estimate resource

allocation in microservices, particularly those with intricate dependency graphs. Meanwhile, ORION [31] models

serverless latency as a stochastic distribution and subsequently utilizes convolution operations to determine the

end-to-end latency for serverless applications. LAOrchestrator [35] designs a double nested learning algorithm to

dynamically provision the number of containers for ad-hoc data analytics. ATOM [21] and MIRAS [44] tunes

resources for microservices to improve the overall system throughput. All of these works do not investigate

shared microservices.

Microservice sharing. To handle microservice sharing, Q-Zilla [34] designs a decoupled size-interval task

scheduling policy to minimize microservice tail latency based on resource reservation. �steal [33] partitions

resources at shared microservice and makes use of stealing to improve utilization. However, these schemes are not

suitable for practical microservice architecture since they need to know the processing time of each microservice

call in advance. Moreover, optimizing individual microservice latency can not provide SLA guarantees on the

end-to-end performance of online services.

Graph analysis. Sage [17] builds a graphical model to identify the root cause of unpredictable microservice

performance and dynamically adjust resources accordingly. This is not scalable in a production environment

since a practical application can even consist of hundreds of microservice with complicated parallel or sequential

dependencies. Parslo [32] adopts a gradient descent-based approach to break the end-to-end SLA into small

unit SLO. However, such an iterative approach is generally costly in time, and can not be applicable to dynamic

workloads. Llama [40] and Kraken [5] aim to optimize performance for serverless systems, which can not be

applied to general microservices.

Interference mitigation: The problem of resource interference in cloud-related systems has been extensively

investigated in the literature [7, 12, 27, 37]. These works focus on the co-scheduling of diferent applications,

aiming at maximizing application performance. The intention of Erms is diferent from these works, Erms aims to

ACM Trans. Comput. Syst.
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minimize resource unbalance across diferent hosts so as to improve resource eiciency and provide end-to-end

performance guarantees.

9 CONCLUSION

This paper presents a new method for dynamically allocating resources in shared microservice architectures

through the use of explicit modeling. Our designs incorporate prioritization among various services, providing

valuable insights into the efective deployment of online services. However, one limitation of Erms is its tendency

to overprovision resources for online services with highly dynamic dependency graphs, as demonstrated in our

experiments. A more promising approach would involve estimating resource allocation for graphs exhibiting

diferent levels of dynamics, rather than relying solely on a complete graph. This would enable the scaling of

minimal resources to satisfy the SLA for online services with diverse dependency graphs.
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