
Adapting Wavelet Compression to Human Motion Capture Clips

Philippe Beaudoin Pierre Poulin

Université de Montréal

{beaudoin,poulin}@iro.umontreal.ca

Michiel van de Panne

University of British Columbia

van@cs.ubc.ca

Figure 1: Comparison between standard wavelet compression and optimized wavelet coefficient selection with inverse kinematics correction.
The compressed sequence is shown in red with the original sequence overlaid in gray in both images.

ABSTRACT

Motion capture data is an effective way of synthesizing human mo-
tion for many interactive applications, including games and simula-
tions. A compact, easy-to-decode representation is needed for the
motion data in order to support the real-time motion of a large num-
ber of characters with minimal memory and minimal computational
overheads. We present a wavelet-based compression technique that
is specially adapted to the nature of joint angle data. In particular,
we define wavelet coefficient selection as a discrete optimization
problem within a tractable search space adapted to the nature of the
data. We further extend this technique to take into account visual ar-
tifacts such as footskate. The proposed techniques are compared to
standard truncated wavelet compression and principal component
analysis based compression. The fast decompression times and our
focus on short, recomposable animation clips make the proposed
techniques a realistic choice for many interactive applications.

CR Categories: I.3.7 [Three-Dimensional Graphics and Realism]:
Animation—Compression

Keywords: Compression, Wavelet, Skeletal Animation, IK cor-
rection

1 INTRODUCTION

Motion capture data enables rapid production of huge collections
of skeletal animations. As a result, it is now a common method
for synthesizing character motion in video games, simulations, and
controllable avatars. As the amount of data contained in such col-
lections increases, it becomes crucial to develop compression tech-
niques suited to skeletal animations. Lossless compression may be
useful for various applications, but the best gains can be obtained
when we take into consideration human perceptual limitations. This

paper is therefore interested in lossy compression of skeletal anima-
tion data.

A “good” compression technique depends to a significant degree
on the characteristics of the application. Is the cache footprint im-
portant? Is it important to have fast access to a subset of the joint
data? Is it perceptually important to have accurate foot placement?
Is it important that motion clips be compressed independently of
each other? In our work, we shall assume that the answer to each
of the above questions is ‘yes’, based on the knowledge that many
interactive applications need to: animate multiple characters in real
time using minimal resources; support multi-way blending between
multiple motions; support separate blending of individual limbs or
upper and lower bodies; support accurate foot placement; and need
tools and techniques that integrate easily with current pipelines for
processing and animating motion capture data.

Typical motion capture data exhibits temporal coherence and
joint correlations, both of which can be exploited for the purposes
of compression. The positions and orientations of a character’s
body parts vary smoothly over time when viewed at an appropri-
ately small time scale, thus being amenable to being modeled by
splines, wavelets, or even local linear dynamical systems. The cor-
related movement between joints arises from the highly coordinated
and structured nature of human motions. Given these two types of
correlations, some fundamental questions arise. How much com-
pression can be achieved by exploiting only temporal correlation,
or using only joint correlation? How should these two types of
compression be ordered so as to exploit both correlations?

Recent work in animation and compression provides answers to
some of these questions. Principal component analysis (PCA) ap-
plied globally to motion capture data shows that 10-20 principal
components are typically required to represent the motion of a typi-
cal human skeleton modeled using 40-60 degrees of freedom (DOF)
[18, 15]. This typically achieves a compression factor of 2-4, once
the costs of the reconstruction matrix have been amortized, and as-
suming similar quantization for the original and compressed data.
Applying PCA to well-chosen coherent local motion segments [15]
can yield further improvements, requiring on the order of 3-5 prin-
cipal components for typical motion segments. This is somewhat
offset by the additional storage required by the new bases for each

motion segment. There are fewer answers related to temporal com-
pression alone. Arikan [1] notes that simple subsampling provides
12:1 compression on the 120 Hz CMU database for the particular
level of visual quality used as a benchmark to compare techniques.
¿From this, the largest gains may come from temporal compression
rather than joint correlations. The same work reports compression
ratios in the range of 30-35:1 using a scheme that exploits both joint
correlations (PCA) and temporal coherence.

Our work looks only at temporal compression. We avoid com-
bining this with exploitation of the joint correlations for several rea-
sons. First, it is useful to gain an understanding of how much com-
pression the right kind of temporal schemes can achieve on their
own. Second, compressing individual channels of motion allows
for flexibility in the reuse of motions. For example, the upper body
of one motion may be combined with the lower body of another
motion. This allows for motion variety and gives game engines
flexibility to let characters achieve their goals. Last, interactive ap-
plications often use a linear blend of multiple motions in order to
do parameterized interpolation between motions and also to blend
between successive motion clips. When combined with the need
to animate more than 10 characters simultaneously, this may easily
lead to upwards of 30 motions being decompressed simultaneously
with limited resources. In these situations, the cache footprint and
computational overhead required to support PCA-based schemes
are potentially problematic, and thus applications are likely to es-
chew maximal compression in favor of one that has lower compu-
tational or memory requirements.

We use Euler joint angles as our underlying motion representa-
tion and show that with appropriate care and attention, joint space
can be a suitable domain for motion compression. Joint angle rep-
resentations are an integral part of current game and simulation en-
gines, and trivially support blending between motions. An alter-
native that is explored in two examples of recent work [1, 15] is
to use internal virtual marker representations as a basis for motion
compression. This necessitates extra overhead in converting to the
original joint angle representations in order to support traditional
run-time engines for the display of animated characters.

The specific contributions of this paper are as follows. We pro-
pose two techniques for adapting a wavelet compression scheme
to joint angle data. We evaluate these ideas by comparing them
against PCA alone, as well as an unoptimized wavelet scheme (see
Figure 1). The compression schemes we introduce are well suited
to the constraints of real-time character animation that result from
requiring the simultaneous decompression of a large number of
motions. We conclude that the right kind of temporal-only, joint-
angle-based compression schemes offer compression ratios not far
removed from other schemes that take joint correlations into ac-
count. Two recent papers [15, 1] note that joint angle data is itself
not suitable for compression because of the hierarchical nature of
the limbs. We show that an appropriately adapted compression
scheme can achieve high quality compression directly on joint an-
gle data.

The remainder of this paper is structured as follows. Section 2
presents related work, while Section 3 introduces a number of pre-
liminary definitions used throughout the paper. Section 4 describes
the direct application of truncated wavelet compression techniques
to skeletal animation data. Section 5 defines the wavelet coefficient
selection as a discrete optimization problem and shows how it can
be efficiently solved in the context of skeletal animation data. This
technique is further extended using inverse kinematics (IK) to han-
dle situations where body-environment interactions are important.
Section 6 presents results and discussions, followed by conclusions
in Section 7.

2 RELATED WORK

The need for compression arises in many domains. We focus our
discussion on the compression of skeletal animation data, although
we note that there are also methods focused on the related-but-
distinct problem of compression of animated meshes, e.g., [4]. We
begin by noting that reduced bases and keyframe extraction meth-
ods have been proposed for applications other than compression.
Representations of poses in a reduced dimensional space have been
used for animation retrieval [7], for the development of various mo-
tion editing tools [18, 3, 9], and for motion synthesis [17, 8, 5].
Temporal simplification has also been used to extract key poses in
an animation sequence [14, 11, 2], for space-time optimization [16],
or for motion editing [12, 13].

Liu and McMillan [15] compress the raw 3D marker positions
obtained from motion capture by breaking the motion into contigu-
ous segments that can be compactly expressed in a reduced PCA
basis. Temporal coherence is then exploited by adaptively fitting
cubic splines to the reduced-basis coefficients and only storing the
keyframes for the resulting cubic splines. To minimize footskate,
the foot markers are compressed separately from the remaining
markers and a tighter PCA residual error tolerance is used. A full-
body IK-based post-process must be applied when angular values
are desired. Compression ratios on the order of 50-60:1 are re-
ported for a given set of residual-error thresholds. They note that
the piecewise PCA by itself gives a compression factor of approxi-
mately 8, while temporal compression provides an additional factor
of roughly 7. Because this work compresses raw marker motion
(with possibly redundant markers), the compression rates may not
be directly comparable to our work, which compresses the joint an-
gles more commonly used as a motion capture data format.

Arikan [1] presents a motion capture database compression
scheme. His technique exploits joint correlations and time coher-
ence as applied to large motion databases. The technique is based
on the use of virtual markers as an internal representation and thus
requires conversion to and from this representation. A wavelet com-
pression based on Haar wavelets is used as a point of comparison.
Our work differs in that we investigate a scheme that can compress
motion clips independently of each other and that allows for the
efficient extraction of individual channels of motion from the com-
pressed data. We work directly with joint angles and use a cubic
interpolating spline wavelet basis appropriate to the continuous na-
ture of animation data.

3 PRELIMINARY DEFINITIONS

This paper focuses on compression techniques based on a truncated
wavelet representation of the degrees of freedom. The wavelet basis
is a natural choice given its use for compressing various other time-
dependent signals such as audio. It yields a better rate-distortion
than piecewise linear approximations [14] at a minimal increase
in computational cost. We use a cubic interpolating bi-orthogonal
wavelet basis built using the lifting scheme [19]. We noticed some
artifacts due to the lack of continuity in the reconstructed signals
when wavelets of a degree inferior to 3 were used. The interpolating
basis is a matter of convenience; it allows us to build the signal
directly from the samples without having to first convert it to a non-
interpolating representation such as B-Splines.

The data we are working with contains k DOF: 3 signals tracking
the position of the skeleton root and k−3 signals tracking the Euler
angles at the different joints. For our results, k = 62. A complete
animation is therefore represented by n samples in a k-dimensional
space noted Θ(t) = (θ0(t), ...,θk−1(t)), with (θ0(t),θ1(t),θ2(t))
being the root position. The result of a lossy compression applied
to this animation will be noted Θ̂(t).

3.1 Distortion Metrics
In order to evaluate the efficiency of a compression method, it is
necessary to evaluate its distortion. Since the data is meant to be
viewed by human observers, the distortion should depend on the vi-
sual accuracy of the compressed animation and account for known
perceptual limitations. Measuring such a distortion is difficult and
is typically done by visual inspection of the final results. However,
we shall still require a formally defined distortion metric in order
to yield repeatable numerical results. This metric will also be used
with the optimization-based compression scheme presented below.

The simplest metric is the RMS error in the DOF. However, as
noted earlier, animation quality usually depends much more on the
accuracy of the 3D positions of the joints than that of the angles
that control them. Although both measures are related, the effect of
a small angular error on the final pose depends both on the model
hierarchy and its current pose. Given the static skeletal information
and the value of all the angles at time t, it is easy to compute, as a
series of matrix multiplications, the 3D positions of the joints of an
animation. If the skeleton contains p joints, then these positions can
be expressed as p 3D vectors

(

x0(t), ...,xp−1(t)
)

. In a similar way
we can define a corresponding set of 3D vectors

(

x̂0(t), ..., x̂p−1(t)
)

for the compressed animation. Finally, the static skeleton informa-
tion gives us the length

(

l0, ..., lp−1
)

of the bone driven by each
joint. These values can be used to define the positional distortion:

εx =

√

√

√

√

1
n

n−1
∑
t=0

p−1

∑
i=0
|xi(t)− x̂i(t)|2

li
l .

The fraction li/l, where l = ∑ li, is used to weight the joints based
on their local influence. A joint driving a finger has less impact on
the positional error over the skeleton than a joint driving a forearm.

3.2 PCA Compression
For comparison purposes, we introduce a simple compression
scheme based on PCA. This method works by building the covari-
ance matrix of the angular DOF Θ̃(t) = (θ3(t), ...,θk−1(t)), cor-
responding to poses without the root position. The eigenvectors
corresponding to the largest eigenvalues are then built into a ma-
trix defining a lower-dimensionality linear space into which each
pose Θ̃(t) is projected. The number of eigenvectors retained will
then dictate the size of the compressed data and the quality of the
reconstruction.

The data required for reconstruction of the original set of signals
is: the projection matrix; the reduced basis representation of the
motion over time corresponding to the projected Θ̃(t); three signals
corresponding to (θ0(t),θ1(t),θ2(t)); and a (k− 3)-dimensional
vector containing the mean of each Θ̃(t). We finally quantize all
stored data to 16 bits, which was determined experimentally to yield
good rate-distortion results.

4 STANDARD WAVELET COMPRESSION

In this section we first show how standard truncated wavelet com-
pression techniques can be used with skeletal animations. Given a
signal of n samples perfectly represented by n wavelet coefficients,
a target compression ratio r can be obtained by keeping the n/r
largest coefficients and making the others equal to zero. In situa-
tions where wavelet encoding works well, most wavelet coefficients
are very small and a heavily truncated wavelet representation faith-
fully reproduces the original signal.

For skeletal animations, the data is comprised of k different sig-
nals, one for each Euler angle and three for the root position. A first
approach consists of considering each signal independently. In the

case of truncated wavelet compression, this would mean keeping
the n/r largest wavelet coefficients in each of the k signals. This
method is optimal in a least-square sense for each of the k dimen-
sions independently. However, it is not optimal if the data is viewed
as a k-dimensional vector. A common value of r means that the
same number of coefficients will be allocated to each signal, even
if some of them contain strong variations while others are nearly
constant.

Another approach consists of keeping the kn/r largest coeffi-
cients among all the kn wavelet coefficients representing the data.
This produces a least-square optimal representation over the entire
k-dimensional space. Using the selected kn/r coefficients, we can
build a vector w∈ [0,n]k identifying how many coefficients are kept
from each of the k signals.

Direct application of the above technique with skeletal animation
data causes a problem, however, since some DOF encode Euler an-
gles while others encode positions. In order to make these values
comparable, we represent each angle in radians and multiply it by
the length of the bone driven by the associated joint. This scaling is
only performed to compute the wi, which are then used to compress
the original signals.

Vector w is used to build the standard wavelet compression tech-
nique where the compressed animation is obtained using θ̂i(t) =
trunc(θi,wi). We use the notation trunc(f ,a) to represent the sig-
nal obtained from f by keeping only the a largest wavelet coef-
ficients. Compressing the animation is simply a matter of per-
forming a wavelet transform and then building w by identifying the
kn/r largest coefficients. Decompression is achieved by an inverse
wavelet transform. The fast wavelet transform algorithm, with lin-
ear execution time, allows this to be computed efficiently.

To efficiently encode the non-zero coefficients of each signal, we
first order them from the widest to the narrowest wavelet basis. We
then quantize each coefficient to 16 bits. In the spirit of run-length
encoding, a small number of 16 bit codes are reserved to represent
sequences of consecutive zeros. Another code is used to indicate a
point past which all the remaining coefficients of the signal are null.
As an optional step, we can further entropy-encode the data using
the Lempel-Ziv [21] compressor gzip on a clip-per-clip basis. The
use of gzip would be unsuitable for online use but is included here
as an example of the gains that could be achieved using a custom
entropy-encoding step.

5 OPTIMIZED WAVELET COEFFICIENT SELECTION

For a given ratio r, standard wavelet compression minimizes the
RMS error in the DOF. However, if the goal is to be perceptually
faithful to the original animation, it is necessary to take positional
distortion into account. A first way to achieve this is to redistribute
the non-zero wavelet coefficients in an optimal way.

Formally, this problem consists of selecting, among all the kn
wavelet coefficients, exactly kn/r coefficients to keep in order to
minimize positional distortion. The size of the search space for this
discrete optimization problem is

(kn
kn/r

)

. Given the usually large
number of samples n and the non-linear coupling between the joint
angles and the final pose, this selection represents a daunting task.

We propose to simplify this problem to the selection of k discrete
variables identifying how many of the n largest wavelet coefficients
should be kept for each of the k signals. Formally, we seek a vector
m ∈ [0,n]k such that the compressed signals θ̂i(t) = trunc(θi,mi)
minimize positional distortion and that ∑mi = kn/r.

This simplification can be seen as a way to increase the impor-
tance of some signal components while reducing that of others.
This would be a somewhat arbitrary process if we were dealing
with generic temporal signals. However, in the case of skeletal ani-
mations, the signals correspond to joints organized in a hierarchical

way and it seems natural to give more importance to angles that are
high in the hierarchy.

One could think of obtaining the vector m using bone lengths
or any other information available in the static skeleton. Unfortu-
nately, this would be equivalent to considering the k signals inde-
pendently, which was shown to be sub-optimal for standard wavelet
compression. We find that the optimal choice of m depends not
only on the static skeleton and the relative complexity of the differ-
ent signals, but also on the poses in the animation. For example, in
a boxing animation sequence where the actor holds his arms close
to his body, a small rotation of the torso can have less influence on
the positional distortion than a rotation at the elbow or the shoulder.

The optimal vector m will therefore be different for each anima-
tion clip. In this case, the size of the search space is approximately
(kn/r

k
)

, which is much smaller than before. This discrete optimiza-
tion problem can be solved in a number of ways. In our implemen-
tation, we use a heuristic simulated annealing technique described
as Algorithm 1.

The algorithm sets vector m equal to vector w obtained with
standard wavelet compression. The initial step size s is set to
bmaxi{mi/2}c. Each successive step of the algorithm randomly
selects an index i ∈ [1,k] and the component mi is immediately
reduced by the value s′ = min(s,mi). A linear search is then
performed to identify another component j ∈ [1,k] that, when in-
creased by the value s′, produces a new vector m′ and new signals
θ̂ ′i (t) that minimize positional distortion εx.

m← w1
s← bmaxi{mi/2}c2
while s 6= 0 do3

i← random(1,k)4
s′←min(s,mi)5
m′←m6
m′i←m′i− s′7
Find j ∈ [1,k] so m′j + s′ minimizes εx8
if j 6= i then m′j ←m′j + s′, m←m′9
else if too many successive failures then s← bs/2c10

end11
Algorithm 1: Optimized coefficient selection.

If the search produces j 6= i, then the vector is updated as
m←m′. If we find j = i, then this particular choice of i has failed
and the vector m remains unchanged. After a pre-defined number
of successive failures, the step size is updated as s← bs/2c. In our
implementation the step size is reduced after 10 successive failures.
The algorithm terminates when s reaches 0 and the final vector m
can be used to compress and store the data in the same way as stan-
dard wavelet compression.

This technique could be used with metrics other than positional
distortion. However, if the chosen metric is not dependant enough
on the joint hierarchy, then our initial assumption fails and the re-
stricted search space can prove too limited to yield good optimiza-
tion results. We experienced such problems when using a metric
that penalized errors at joints interacting with the environment.

5.1 Inverse Kinematics Correction
The previous technique can achieve very satisfactory rate-distortion
results with the positional distortion metric. However, this metric
does not consider some events that are known to create important
visible artifacts such as a contact foot sliding on the ground. Also,
as mentioned earlier, our experiments showed that simply using an
optimization metric penalizing such artifacts did not yield good re-
sults.

A first way to correct these errors would be to use the technique
of Ikemoto et al. [10] that automatically detects and corrects foot-
skate. This classifier-based method is useful when no correct refer-
ence animation is available but, in the case of compression, it risks
introducing motions that were not present in the original sequence.

We propose to first use wavelet coefficient selection in order to
obtain a lossy reconstruction of the motion. Then, for each pose
showing contact errors, IK is applied to move the incorrect joints
to their true positions obtained from the original motion. We did
not address the issue of automatically identifying contact errors.
Instead, since the feet are the most important source of such errors,
we corrected their positions at every frame.

This requires us to store 3 extra signals for each foot. This con-
stitutes an important overhead since our animations are expressed
using 62 signals. It is therefore essential to compress the positional
signals.

Trying to directly encode positions causes a problem. This is due
to the fact that these signals have a very wide range of possible out-
put values and encoding them with enough precision would require
a lot of wavelet coefficients. Failure to keep enough coefficients
could even have the catastrophic result of dramatically reducing the
compression quality.

To overcome this problem, we encode a vector containing the
difference between the real position and the position obtained after
wavelet coefficient selection. This difference is close to zero and
covers a much smaller range than the positions themselves, making
it much easier to encode using a small number of wavelet coeffi-
cients. Moreover, there is no more risk of reducing the compression
quality.

The signals containing these difference vectors are compressed
independently from the DOF using standard wavelet compression.
The compression ratio rIK for the difference signals can be chosen
independently from that of the other signals. Here again the coef-
ficients are quantized to 16 bits and are further compressed using
run-length codes and, optionally, gzip.

The choice of a good IK solver also has some impact on the final
result. In particular, the solver should find a solution that does not
lie too far from the initial pose. In our implementation, we used a
simple multiple-constraint cyclic-coordinate descent [20], but more
efficient techniques could also yield good results.

6 RESULTS

The skeletons used to produce the results presented here all have
the same hierarchy and DOF. Timings were obtained on a 2 GHz
AMD Athlon 64 bit running the Linux operating system.

Assessing the perceptual quality of a compressed animation is
very difficult to do and depends on many parameters. Common
practices [1] involve the use of both a gross numerical evaluation
of the error, such as the one we obtain with positional distortion εx,
as well as a qualitative evaluation through visual inspection of the
results.

The various techniques mentioned in this section have been
tested on a subset of 15 animations taken from the CMU motion
capture library [6] and portray an array of actions and tasks. The
sampling rate is 120 Hz and the test sequences ranged in size from
148 frames (around 1 sec.) to 5423 frames (45 sec.). Average re-
sults are presented as well as results for a short 148-frame running
motion and a 2085-frame motion with an actor performing various
kinds of jumps. The uncompressed files are arrays of IEEE 32 bit
floats encoding the DOF in time.

6.1 Optimized Wavelet Coefficient Selection
We first study the rate-distortion behavior of optimized wavelet co-
efficient selection using positional distortion εx. We compare it to

Figure 2: Average rate-distortion over the 15 test sequences for var-
ious compression techniques.

εx PCA Wavelet Optimized

Ru
nn

in
g 1.4 6.02 (6.0:1) 1.27 (28:1) 0.75 (48:1)

0.96 6.49 (5.5:1) 1.51 (24:1) 0.94 (38:1)
0.58 7.67 (4.7:1) 2.31 (16:1) 1.24 (29:1)
0.26 9.42 (3.8:1) 3.69 (9.7:1) 2.18 (16:1)
0.08 11.5 (3.1:1) 8.74 (4.1:1) 5.08 (7.0:1)

Ju
m

pi
ng

0.67 153 (3.3:1) 18.6 (27:1) 9.97 (51:1)
0.45 157 (3.2:1) 24.8 (20:1) 13.5 (37:1)
0.29 164 (3.1:1) 33.8 (15:1) 18.4 (27:1)
0.14 168 (3.0:1) 62.7 (8.1:1) 32.9 (15:1)
0.05 177 (2.9:1) 135 (3.7:1) 79.2 (6.4:1)

Table 1: File size (in KB) and compression ratio with various εx (in
cm) for the different compression techniques discussed in the paper.
Ratios are given with respect to the uncompressed files which are
35.8 KB for the 148-frame running animation and 505 KB for the
2085-frame jumping animation. Applying gzip to the uncompressed
files yield a compression ratio of 1.1:1.

standard wavelet compression and PCA compression. We do not in-
clude IK correction results since its goal is to increase visual realism
by eliminating footskate, sometimes at the expense of an increase
in positional distortion.

Numerical compression results for the running and jumping test
sequences are presented in Table 1. For each technique we present
the file size obtained after the optional gzip compression. On aver-
age, the file size before running gzip is 1.1-1.5 times larger. We ob-
served that r, the ratio of the number of coefficients kept, is approx-
imately 0.6 times the desired compression ratio. The rate-distortion
graph averaged over the 15 test sequences is presented in Figure 2.
Figure 3 compares the results obtained with standard compression
to those obtained with optimized wavelet coefficient selection for
the same compression ratio.

Through visual inspection of the sequences compressed with
standard wavelet and optimized wavelet coefficient selection, we
found that no noticeable artifacts were visible with εx ≤ 0.5. On
average, optimized wavelet coefficient selection can achieve this
while maintaining a compression ratio of around 25:1. This ratio
can reach up to 40:1 with longer sequences. Naturally, the target
value of εx depends on the context. One might wish to achieve a
lower value for very close viewpoints or, conversely, a higher value
if the animation plays far in the background. For values of εx > 0.5,

Figure 3: Comparison of standard wavelet compression and optimized
wavelet coefficient selection with the same compression ratio. The
original motion is shown in red in both images.

Running (148 frames) Jumping (2085 frames)
Ratio Time (ms) Iterations Time (ms) Iterations
50:1 133 264 308 247
40:1 214 415 312 243
30:1 254 496 391 311
15:1 293 542 456 369
7:1 327 669 483 380

Table 2: Execution time per frame (in ms) and number of iterations
for optimized coefficient selection.

the most noticeable artifact is footskate.
Execution time for the optimized wavelet coefficient selection

depends on the length of the sequence and the desired compression
ratio. Timing results and the number of iterations of the optimiza-
tion algorithm for the test animations are shown in Table 2. When
gzip is not used, decompression time is 30 µs/frame on average,
which in principle makes it possible to interactively decompress
more than 200 animations in real time.

6.2 Inverse Kinematics Correction
As mentioned earlier, when εx increases, the first visible artifact is
caused by the foot sliding on the ground. This is the reason that
motivated the introduction of a correction of the feet based on IK.

This method requires us to store 6 extra signals for the 3D po-
sition of the feet. Therefore, for the same file size, IK correction
must keep less wavelet coefficients for the DOF than the other tech-
niques. The outcome is that, for the same compression ratio, εx is
usually larger with IK correction than with optimized wavelet co-
efficient selection. However, since IK correction resolves the most
problematic artifacts related to sliding feet, we found by visual in-
spection that it could achieve higher compression ratios with no
visible artifacts. For example, Figure 4 shows that, with the same
compression ratio, IK correction can significantly reduce footskate
while adding only minor distortions to the overall animation. This
can also be observed in the accompanying video where the com-
plete sequence is presented. The video can be found online at
www.iro.umontreal.ca/labs/infographie/papers.

For the 15 test sequences, IK correction could reach compression
ratios of 35:1 with no noticeable artifacts. We evaluated this by vi-
sually comparing the motions obtained with IK correction to the
ones obtained with wavelet techniques when εx = 0.5. The com-

Figure 4: Comparison of optimized wavelet coefficient selection and
IK correction with the same compression ratio. The original motion
is shown in red in both images. In an animation, the error observed
on the left image translates into a sliding foot.

pression parameters used to obtain the results shown in the accom-
panying video are r = 30 and rIK = 16. Figure 1 compares the
results of standard wavelet to those with IK correction using an ag-
gressive compression ratio.

The extra average compression time required to extract the 6 po-
sitional signals is 45 µs/frame. Total average decompression time
is 300 µs/frame. This large number is mostly due to the simple
and inefficient cyclic-coordinate descent IK solver we have imple-
mented. This number could be significantly reduced by using a
solver more finely tuned to this specific application.

6.3 Adaptive Wavelet Compression of Quaternions

We also experimented with the effect of compressing a quaternion
representation. Quaternions do not exihibit the inherent DOF lim-
itations of the skeleton; a 1-DOF knee still requires 4 values as a
quaternion. The quaternion representation is thus larger than Euler
angles to begin with. Wavelet compression reduces about equally,
and thus we found the compressed quaternion representations to
still be larger than the compressed Euler angles.

7 CONCLUSION

We have presented techniques to adapt standard truncated wavelet
compression techniques to the nature of skeletal animation data. In
particular, we proposed a way to optimize wavelet coefficient se-
lection by searching through a reduced and tractable search space.
This allows for important improvements on the visual quality of the
compressed results while maintaining the fast decompression times
associated with truncated wavelet compression. This technique was
further extended to correct visually important artifacts such as foot-
skate.

One of the problems we have encountered is the lack of a good
metric to evaluate the perceptual distortion of the compressed ani-
mations. Such a metric would arguably be quite difficult to devise,
given the fact that perceptual realism can depend on many factors
external to the animation. Camera placement, viewer expertise, and
surrounding environment are but a few of these factors. Still, we
believe it would be possible to design a metric more predictive of
perceived motion quality than the proposed positional distortion.
This metric would not only give us a better way to evaluate final
results, but could also be used during wavelet coefficient selection.

In the future, we wish to explore ways of exploiting large scale
redundancies within a motion capture database, as well as level-of-
detail streaming.

ACKNOWLEDGEMENTS

The data used in this project was obtained from
mocap.cs.cmu.edu. The database was created with fund-
ing from NSF EIA-0196217. The authors acknowledge financial
support from NSERC and FQRNT.

REFERENCES

[1] O. Arikan. Compression of motion capture databases. In SIG-
GRAPH’06, pages 890–897, 2006.

[2] J. Assa, Y. Caspi, and D. Cohen-Or. Action synopsis: Pose selection
and illustration. In SIGGRAPH’05, pages 667–676, 2005.

[3] J. Barbič, A. Safonova, J.-Y. Pan, C. Faloutsos, J.K. Hodgins, and N.S.
Pollard. Segmenting motion capture data into distinct behaviors. In
Graphics Interface, pages 185–194, 2004.

[4] H.M. Briceño, P.V. Sander, L. McMillan, S. Gortler, and H. Hoppe.
Geometry videos: A new representation for 3D animations. In Symp.
Computer Animation, pages 136–146, 2003.

[5] J. Chai and J.K. Hodgins. Performance animation from low-
dimensional control signals. In SIGGRAPH’05, pages 686–696, 2005.

[6] CMU graphics lab motion capture database. mocap.cs.cmu.edu, April
2006.

[7] K. Forbes and E. Fiume. An efficient search algorithm for motion data
using weighted PCA. In Symp. Computer Animation, pages 67–76,
2005.

[8] P. Glardon, R. Boulic, and D. Thalmann. A coherent locomotion en-
gine extrapolating beyond experimental data. In Computer Animation
and Social Agents, pages 73–84, 2004.

[9] K. Grochow, S.L. Martin, A. Hertzmann, and Z. Popović. Style-based
inverse kinematics. In SIGGRAPH’04, pages 522–531, 2004.

[10] L. Ikemoto, O. Arikan, and D. Forsyth. Knowing when to put your
foot down. In Symp. Interactive 3D Graphics and Games, pages 49–
53, 2006.

[11] K. Kondo and K. Matsuda. Keyframes extraction method for motion
capture data. Journal for Geometry and Graphics, 8(1):81–90, 2004.

[12] J. Lee and S.Y. Shin. A hierarchical approach to interactive motion
editing for human-like figures. In SIGGRAPH’99, pages 39–48, 1999.

[13] J. Lee and S.Y. Shin. Multiresolution motion analysis with applica-
tions. In Intl Workshop on Human Modeling and Animation, pages
131–143, 2000.

[14] I.S. Lim and D. Thalmann. Key-posture extraction out of human mo-
tion data by curve simplification. In Intl Conf IEEE Engineering in
Medicine and Biology Society, volume 2, pages 1167–1169, 2001.

[15] G. Liu and L. McMillan. Segment-based human motion compression.
In Symp. Computer Animation, pages 127–135, 2006.

[16] Z. Liu, S.J. Gortler, and M.F. Cohen. Hierarchical spacetime control.
In SIGGRAPH’94, pages 35–42, 1994.

[17] K. Pullen and C. Bregler. Motion capture assisted animation: Textur-
ing and synthesis. In SIGGRAPH’02, pages 501–508, 2002.

[18] A. Safonova, J.K. Hodgins, and N.S. Pollard. Synthesizing physically
realistic human motion in low-dimensional, behavior-specific spaces.
In SIGGRAPH’04, pages 514–521, 2004.

[19] W. Sweldens. The lifting scheme: A construction of second generation
wavelets. SIAM Journal on Mathematical Analysis, 29(2):511–546,
1998.

[20] C. Welman. Inverse kinematics and geometric constraints for articu-
lated figure manipulation. Master’s thesis, Simon Fraser University,
1993.

[21] J. Ziv and A. Lempel. Compression of individual sequences via
variable-rate coding. IEEE Transactions on Information Theory,
24:530–536, 1978.

	Introduction
	Related Work
	Preliminary Definitions
	Distortion Metrics
	PCA Compression

	Standard Wavelet Compression
	Optimized Wavelet Coefficient Selection
	Inverse Kinematics Correction

	Results
	Optimized Wavelet Coefficient Selection
	Inverse Kinematics Correction
	Adaptive Wavelet Compression of Quaternions

	Conclusion

