FARD: Accelerating Distributed Fog Computing
Workloads through Embedded FPGAs

Samuele Barbieri
DEIB, Politecnico di Milano
Milano, Italy
samuele.barbieri@mail.polimi.it

Rolando Brondolin
DEIB, Politecnico di Milano
Milano, Italy
rolando.brondolin@polimi.it

Abstract

In the last few years Internet of Things (IoT) applications are
moving from the cloud-sensor paradigm to a more variegated
structure where IoT nodes interact with an intermediate fog
computing layer. To enable compute-intensive tasks to be
executed near the source of the data, fog computing nodes
should provide enough performance and be sufficiently en-
ergy efficient to run on the field. Within this context, em-
bedded Field Programmable Gate Array (FPGA) can be used
to improve the performance per Watt ratio of fog computing
nodes. In this paper we present Fog Acceleration through
Reconfigurable Devices (FARD), a distributed system that
exploits FPGAs to accelerate compute-intensive tasks in fog
computing applications. FARD is able to efficiently run dis-
tributed fog applications thanks to a well-defined application
structure, a per-application isolated network overlay and
thanks to the acceleration of tasks. Results show energy effi-
ciency improvements while efficiently enabling cooperation
across fog nodes.

CCS Concepts Computer systems organization —
Embedded systems; Distributed architectures; s+Hardware —
Hardware accelerators;

Keywords Fog computing; FPGA; Fog acceleration

1 Introduction

In the last years, the development of IoT sensors and commu-
nication infrastructures allowed to build many complex and
powerful applications deployed on the field. This increased
the challenges on how to extract knowledge, considering
also that most of these applications rely on cloud infrastruc-
tures for all the compute-intensive tasks required to process
the data. When dealing with IoT applications, sensors should
send all the data they measure to the cloud platform, wait for
the cloud application to analyze the data and receive back

EWILi 19, October 17, 2019, New York, USA.
Copyright held by Owner/Author

Fabiola Casasopra
DEIB, Politecnico di Milano
Milano, Italy
fabiola.casasopra@mail.polimi.it

Marco D. Santambrogio
DEIB, Politecnico di Milano
Milano, Italy
marco.santambrogio@polimi.it

results if the IoT nodes have to actuate on the monitored sys-
tem. This process introduces non-negligible latency that is
unsustainable for safety-critical applications and extremely
expensive in general.

Within this context, fog computing [2] tries to bring the
computation closer to the data, adding intermediate nodes
between cloud and IoT layers that are able to handle compute-
intensive tasks [6]. This allows to reduce the latency from
the IoT node perspective and allows to send only aggregated
data to the cloud infrastructure to save bandwidth. Fog nodes
are usually hierarchically structured in order to serve both
as intelligent nodes for computations and as routers for the
data moving from IoT sensors to the cloud.

Given the roles of the fog computing nodes, the amount
of computing power needed depends on the complexity of
the applications and on the complexity of the environment
in which the fog layer will operate. Many fog nodes are
based on small yet powerful ARM nodes [1, 18], others are
instead based on the x86 architecture [3]. Issues arise when
the cores are not powerful enough to handle the applica-
tion requirements (as in the ARM based scenario) or when
the cores are too power-hungry to operate with limited en-
ergy resources (as in the x86 based scenario). To overcome
this limitation, specialized hardware can efficiently imple-
ment compute-intensive kernels at a fraction of the energy
cost. Cerina et. al [4] showed the feasibility of FPGA-based
platforms in the fog scenario. However, to the best of our
knowledge, a distributed fog computing platform based on
heterogeneous nodes (CPU and FPGA) is still missing.

Within this paper, we present FARD, a distributed system
that exploits FPGAs to accelerate compute-intensive tasks in
fog computing applications. FARD is a peer to peer network
of fog nodes, where the developer can build the applications
with different structures and hierarchies. To foster research
on this topic, we released FARD as open-source on Github.
Given the research challenges described so far, the contribu-
tions of this paper are the following:

o the design and implementation of a distributed system
for heterogeneous fog computing nodes that provides

https://github.com/necst/fard

EWiLi ’19, October 17, 2019, New York, USA

a defined application structure, a network layer for
each application in isolation and the flexibility to build
both peer to peer as well as hierarchical applications.
o the design and implementation of a heterogeneous
fog application based on FARD and the Python pro-
ductivity for Zynq (PYNQ-Z1) [12] platform able to
accelerate a traffic count algorithm that outperforms
the software implementation both in terms of pure
performance and in terms of performance per Watt.

The rest of this paper is organized as follows: Section 2 lists
the related works in the field, Section 3 describes the FARD
design, Section 4 presents the counting cars fog application,
Section 5 evaluates the fog computing system while Section
6 draws the conclusion and future work.

2 Related work

The foundational work of Bonomi et al. [2] identified the
main characteristics that a fog computing layer should have
to efficiently operate between the cloud computing layer and
the sensor one. The fog layer usually has a large number
of geographically distributed nodes receiving data from an
even larger amount of sensors deployed on the field. It has
to provide low latency communication between fog nodes,
between sensors and the fog layer and between the fog layer
and the cloud layer. It should support mobility when dealing
with mobile devices and it should support real-time interac-
tions (service-oriented instead of batch-oriented). It should
support wireless access, it should be heterogeneous, and,
finally, it should operate with many different protocols.

Previous works in the state of the art do not provide node
to node communication [1, 3, 15], just supporting communi-
cation between each node with a remote cloud application
or service. This approach is sufficient when a single fog
node provides gateway functionalities to sensors, but more
complex applications require coordination that this model
is not able to support. To overcome this limitation, Wen et.
al [18] addressed node-to-node interplays to parallelize the
computation and then collect a single general result. Within
this context, FARD enhances node to node cooperation by
providing a network layer for each application and defin-
ing a communication mechanism able to implement both
hierarchical structures as well as peer to peer ones.

For what concerns the hardware architecture, fog com-
puting nodes usually leverage one of these standard archi-
tectures: ARM and x86. Bellavista et al. [1] explored and
leveraged energy efficient ARM cores that can last on bat-
teries at the cost of lower performance. Caligoo [3], instead,
leverages x86 processors to handle compute-intensive tasks
at the cost of lower energy efficiency that poses challenges
when such devices need to be deployed on batteries. Another
option is represented by embedded FPGAs, as they are able
to meet both low energy requirements as well as enough
computing capabilities. Cerina et al. [4] demonstrated that
FPGAs are suitable as fog computing nodes. FARD builds on

S. Barbieri, F. Casasopra, R. Brondolin, and M. D. Santambrogio

FPGA FPGA

FPGA

Figure 1. FARD distributed system with hardware platform,
software stack, networking infrastructure and FARD APIs.
Each node has a node manager and tasks depending on avail-
able resources. The FARD APIs connects to a node manager
to control the applications and collect output.

top of the PYNQ-Z1 platform to provide acceleration of fog
computing tasks.

For what concerns our case study, we implemented a
counting cars algorithm on FPGA. This kind of algorithms
are built as a pipeline of image filters able to isolate the back-
ground from the foreground elements, then isolate blobs and
count them. Cameras used in traffic monitoring are usually
fixed ones, that led us to implement a basic motion detection
variant algorithm [7]. Generally speaking, blob counting
algorithms grows in complexity depending on how many
blobs the system should detect [5]. In our case, instead, the
application is able to identify and count blobs with linear
complexity w.r.t. the size of the input image. The only con-
straint is that the blob should not contain holes.

3 System design

FARD is a distributed system for fog computing nodes. It
provides hardware acceleration for compute-intensive tasks
as well as distributed run-time management of fog tasks
to enhance their cooperation. The hardware side of FARD
leverages the Xilinx Vivado Design Suite [17] as well as the
libraries provided by the PYNQ-Z1 platform. The software
side, instead, is built on top of ZeroMQ [10] and Pyre [13].

3.1 System overview

The distributed system behind FARD was designed with four
principles in mind: application structure, event driven com-
putation, network cooperation and application isolation. The
application structure of workloads running inside FARD is
well defined. The system is built upon the concepts of peer,
task, event and application. An application is composed of a
set of different tasks. Each instance of a task is called peer,
and many peers can be a replica of the same task. Given
that the fog nodes computation happen as a response to the
generation of data from the IoT sensors, the natural way

Accelerating Distributed Fog Computing through Embedded FPGAs

EWiLi ’19, October 17, 2019, New York, USA

Node

el =]
manager 1

Node

L =]
manager 2

. =]| =]

FARD task coptainer

FA! Dtaskcontamerl |

| FARD task container | FP%!Dtaskcontalner |
t

FARD network

IFAF{D network |

| | | IFARD network | |
=

Overlay Network|manager | Overlay Network manader |

| FARD network | |

| Overlpy Network manager | OverILy Network manager |

PYNQ1

PYNQ2

Figure 2. FARD events can be exchanged as broadcast, multicast or unicast. As an example, event 1 of node manager 1 is sent
as unicast to node manager 2 while event 4 of APP1 is sent as broadcast to all the tasks of APP1, bypassing the network for the

local sender task.

FARD Task container
fire()
FARD ——m Overlay pyre |
network network < >
| (APP1) <|—E|:|E’ manager
handle()
HeartBeat Outpgt Process
collection management
pipe Ipipe ?pioe

-+

A\ I
FARD node manager

Figure 3. FARD task structure with network components,
task container, heartbeat system, output collection and pro-
cess management.

to represent this behavior is through event driven computa-
tion. Peers of the same application communicate with each
other using events. Each event can be sent in broadcast to
all the peers in the application, in multicast to a set of peers
belonging to the same task or in unicast to a specific peer.
This allows a FARD application to enable network coopera-
tion across nodes. Finally, FARD should be able to support
multiple different applications running inside the distributed
system. For this reason we developed a network overlay sys-
tem with ZeroMQ and Pyre to enforce application isolation.

Figure 1 shows the main components of the FARD dis-
tributed system. On top of the concepts described so far, we
built the Node Manager, which is the component of FARD
responsible for life-cycle management of the FARD appli-
cations and for the resource management of the PYNQ-Z1
nodes. Finally, we developed the FARD APIs to let users com-
municate with the node managers and the applications. The
APIs connect with the local node manager to send commands.
The APIs integrate with the PYNQ-Z1 platform and can be
used within the Jupyter notebooks of the boards. Within this
context, a developer can build an application both leveraging
a peer to peer design as well as a fully hierarchical approach
to follow the Open Fog consortium specifications [8].

In the next sections we will detail the design of FARD,
starting from the network design in Section 3.2, moving to
the application structure in Section 3.3 and finally describing
the node manager architecture in Section 3.4.

FARD Task container

|CheckAvaiIabiIity| | LaunchTask | | LaunchCompIete| | CollectOutput |

| NodeAvailability || DelLaunchTask || SendOutput |

KillApp | |

fire()
—I—> — Overlay
Node network network >

Manager (node |_E|:|E/
<—| |— manager)‘ manager

handle()

Figure 4. FARD node manager structure with events han-
dled and network components.

3.2 Networking system

The networking system of FARD is based on pyre. This li-
brary provides client’s naming and automatic discovery of
nodes and peers through a local network. On top of pyre
we built the overlay network system. FARD creates for each
application a networking channel where each peer can at-
tach to communicate with other peers in the local network.
This allows to isolate messages on a per application basis,
however, no other FARD component can access this network
to send control commands to the peers. To overcome this
limitation, the Node Manager creates a process pipe with
each peer it handles to send the management commands.

Figure 2 shows the network components and some exam-
ples of communication between peers belonging to the same
application. As detailed in Section 3.1, each event can be sent
in broadcast to each peer, multicast to peers that are instance
of a given task, or unicast from a peer to another. This allows
the peers to share responsibilities in the computation and to
build different application structures. Broadcast events can
be used to notify peers of events that have to be managed
at the whole application level, while multicast events can
be used to launch computations specifically for a given task.
Finally, unicast events can be used to build chains of com-
putation with different peers geographically distributed. To
properly work, each peer should instantiate the networking
system components (e.g. the FARD network and the Overlay
network manager).

EWiLi ’19, October 17, 2019, New York, USA

Figure 3 and Figure 4 show instead how the networking
system works for a FARD task and for the node manager
respectively. When a peer sends an event, it calls the fire()
method of that event providing a message as payload. The
message is then sent through the FARD network and the
overlay network manager, which is the component that han-
dles the pyre socket. Then the sender can either wait syn-
chronously or continue executing depending on the message
type. On the receiver side the handle() method is called
asynchronously when the message arrives.

3.3 Application structure

As we mentioned in Section 3.1, each application is com-
posed of a set of tasks. A task is a Python class that extends
the FardTask class, implementing the methods necessary to
properly run it: init(), run() and stop(). The init() method is
generally used to set up the task run, in particular it is used
to configure the FPGA for the first time when the task is
launched. The run() method is instead the main method of
the task and runs continuously until the task is deleted from
the system. When this happens, the stop() method is called,
allowing the user code to clean the resources used by the
task before deleting it from the node.

The Node Manager is the component that launches the
tasks on its node. To do so, it encapsulates the user code
inside the FARD task container (shown if Figure 3), which ex-
ecutes the task inside a thread, while it instantiates another
thread to execute the health-checks required to monitor the
task. This second thread is also responsible for the commu-
nication with the Node Manager and it periodically checks if
the task should be restarted or removed from the system.

3.4 Node manager architecture

The FARD node manager (shown in Figure 4) is the com-
ponent responsible for the life-cycle management of the
applications running inside the distributed system. It pro-
vides facilities to launch and remove applications, it checks
if an application can be scheduled on the system depending
on its hardware requirements, it monitors each peer health
and status, and it collects log data when requested. Thanks
to the flexibility of the concepts that we leveraged to build
FARD, the node manager is implemented in the same way as
any other application that runs inside the distributed system,
thus it represents a useful example of how a complex applica-
tion can be designed within FARD. When the node manager
is loaded onto each board, it loads a configuration file that
states the amount of millicpus (1000 millicpus equals to 1
core) available, the number of FPGAs available and other
useful runtime information.

3.4.1 Task distribution and admission control

The most important activity the node manager carries out
during its execution is the admission control of tasks and its
distribution across the fog nodes depending on its resource

S. Barbieri, F. Casasopra, R. Brondolin, and M. D. Santambrogio

requirements. When a user requires to launch a new applica-
tion through the APIs, the request is forwarded to the local
node manager running on the same node of the APIs. The
node manager then receives the application code and the
bitstream, pack them in a zip file and send the archive to a
set of node managers depending on the number of tasks and
peers defined in the application configuration file. When a
node manager receives an archive, it unpacks it and starts to
execute the peers assigned to the given node.

In order to decide to which node managers we should send
the archive and how many peers each node manager should
run, we perform a node availability check. This procedure
verifies whether the system is able to accept the application
or not and it is based on five different events: CheckAvail-
ability, NodeAvailability, LaunchTask, DelLaunchTask, and
LaunchComplete. The local node manager sends a request
for availability to all the nodes in the system through the
CheckAvailability event. Each node then replies to the local
node manager with its free resources using the NodeAvail-
ability event. When the local node manager receives all the
replies, it decides onto which nodes the application should
run and sends to them a LaunchTask event with the code
and the bitstreams, while it sends a DelLaunchTask to the
remaining nodes to free the temporary allocated resources.
At this point, the local node manager waits for the Launch-
Complete events from the other node managers to return the
application ID to the caller. If the process fails at some point,
the local node manager asks to the other nodes to delete the
peers already launched and returns a negative response to
the FARD APIs.

3.4.2 Task removal and cleaning

Given that the FARD applications are designed as services,
they usually do not end unless the user requires to remove
them. To do so, the user has to call the delete command from
the FARD APIs, sending as input the application ID. When
this happens, the local node manager sends a KillApp event
to all the nodes in the system. When a node manager receives
this kind of event, it checks using the application ID if a peer
of that application is running in its node. If the peer is found,
the node manager sends a kill command to gracefully close
it. If the peer does not respond, the node manager waits for
a timeout and then kills the peer directly. Then, the files of
the task are deleted and the state of the system cleaned for
the given application.

3.4.3 Applications output management

Another important aspect of FARD is the collection of logs
and outputs from the applications. When this functionality
is enabled, the system collects the output from each peer
and forwards it to the FARD APIs that requested it. To im-
plement this functionality, we need to setup some channels
to move data from the peer to the node manager and from
the node manager to the APIs. From the peer to the node

Accelerating Distributed Fog Computing through Embedded FPGAs

(b) Internal corner

(a) External corner

Figure 5. Graphic representation of the kernel that com-
putes internal and external corners for black and white im-
ages.

manager we leverage the pipe already in place, while for the
node managers communication we use the SendOutput event.
When this kind of events arrive to the local node manager
that requested the data, the content is unpacked and pushed
to a queue consumed by the FARD APIs.

4 Case study: counting cars

We developed a case study to analyze the performance of
FARD and to evaluate whether the use of FPGAs fit in a
fog computing environment. In particular, we developed an
image processing algorithm to retrieve the number of cars in
a frame of a video coming from fixed cameras across a road.
The algorithm performs a series of image filters, then
identifies and counts blobs in an image. At first, we per-
form background subtraction on the gray-scale image with
a threshold of 12 to exclude background details from the
foreground scene where we can find the cars. Then we apply
2 times the erosion filter. Then we apply 30 time the dilation
filter and finally a last pass of the erosion filter. These steps
allow to obtain images with blobs that do not contain holes.
The final output images are composed of a black background
and a white foreground representing the blobs to count.
The blob counting problem can be reduced to a corner
counting problem, where a blob is an area delineated only by
angles. These shapes have the characteristic of guaranteeing
that the number of external corners minus the number of
internal corners is constant, four in our case. Given the
difference between internal and external corners, we can
compute how many blobs the image contains by dividing
the number by four. To identify the corners the algorithm
scans the image with a kernel of 2 X 2 (shown in Figure 5). If
the sum of the four pixels is one, we have an external corner,
while we have an internal one if the sum is equal to three.
We implemented this algorithm as a hardware accelerator
for the PYNQ-Z1 platform, where the accelerator computes
the filters on the image and counts the blobs, while the
software layer collects the image from a camera or a file,
sends it to the accelerator and collects the output of the
algorithm. We then used FARD to build the fog application.
The nodes are organized in a chain, where each node sends

EWiLi ’19, October 17, 2019, New York, USA

the number of outgoing cars to the next one. The last node
collects the data, creates a per node balance of incoming and
outgoing cars and sends it to the FARD APIs each second.

5 Experimental evaluation

Within this section, we will evaluate the proposed distributed
system as well as the case study presented in Section 4. Sec-
tion 5.1 will detail the experimental setup we realized to
evaluate FARD and the hardware implementation. Section
5.2 will instead present the experimental results for the count-
ing cars application, while Section 5.3 will present the results
of the distributed system.

5.1 Experimental setup

To properly test the proposed system in a lab testing envi-
ronment, we deployed three PYNQ-Z1 connected through
a Gigabit Ethernet switch. On top of this deployment, we
run both the tests on the case study application as well as
the distributed system evaluation, where the case study was
evaluated against a CPU implementation. Details of the
hardware platforms are the following:

e CPU: Intel Core i7-4700MQ @ 3.40GHz, RAM 12GB
DDR3, OS Arch Linux with 5.0.13 kernel;

e PYNQ: ARM Cortex-A9 with FPGA, RAM 512MB
DDR3, OS Ubuntu 16.04 with 4.9.0 kernel. FPGA 280
BRAM 18K, 220 DSP, 106400 FF, 53200 LUT.

For what concerns the case study, we used as input a video
coming from a highway traffic camera obtained from the
MUOVEE[11] website. We then cropped and scaled it ac-
cording to the hardware accelerator parameters (maximum
size of the frames is 180 X 180 pixel). We then extracted the
background frame used to exclude environment details. The
hardware accelerator was designed with the Xilinx Vivado
design suite according to the algorithm described in Section 4
and targeting the PYNQ-Z1 board. The accelerator was then
integrated into the full embedded system. For what concerns
the software implementation, we leveraged the Intel Core
i7-4700MQ because it is quite common to have platforms
with this kind of computing power in fog scenarios [9, 16].
The algorithm was developed in C++ as a single thread appli-
cation and compiled with GCC with all optimizations active
(-03). Multithreading is not required in this case as the per-
formance of the application already allows to process a frame
in real-time and wait for the subsequent frame with a single
worker.

For what concerns the distributed system evaluation, we
implemented three simple applications that send messages in
unicast, multicast and broadcast. Within unicast we used two
nodes, while we leveraged three nodes in the multicast and
broadcast cases. We performed experiments with different
message rates and for each experiment we measured the
Round Trip Time (RTT) of each message going from the
sender to the receiver(s) and then back to the sender.

EWiLi ’19, October 17, 2019, New York, USA

Table 1. Resource utilization of the kernel on the FPGA in
terms of BRAMSs, DSPs, FFs and LUTs.

S. Barbieri, F. Casasopra, R. Brondolin, and M. D. Santambrogio

70 1
65
60

==~ broadcast
——- multicast
—==- unicast

Total Used Total Available Utilization (%)

BRAM_18K 178 280 63
DSP48E 6 220 2
FF 4379 106400 4
LUT 5643 53200 10

Table 2. Comparison between software (i7-4700MQ) and
hardware (ARM + PYNQ-Z1) implementations for execution
time per frame, power consumption and FPS/Watt, with
relative speedups.

Time per Frame [ms] Average Power [W]

System Mean Variance Mean Variance FPS/Watt
CPU 6.095 1.004 16.751 0.321 9.80
PYNQ 1.704 0.038 1.762 - 333.06
speedup 3.75x 33.98x

5.2 Counting cars performance

The utilization of the hardware resources of the PYNQ-Z1
for the counting cars accelerator is shown in Table 1. The
application uses 63% of the total available BRAMs because
both the background image and the current frame are stored
in the on-chip memory. This is the heaviest resource utiliza-
tion of the accelerator and can be mitigated by leveraging
the DDR memory. This will enable to increase the number of
cores implemented in the FPGA, to increase the image size,
and to improve the performance of the algorithm. In fact, if
we look at the other resources (e.g. DSPs, FFs and LUTs), we
can see that they are used for at most =~ 10%.

The performance results of the counting cars application
are shown in Table 2. For each platform, we list the execution
time to compute each frame, the average power consumption
and the performance per watt metric (expressed as Frames
per Second (FPS)/Watt). We ran each experiment 10 times
averaging the results and for each frame we compute the
gray-scale, the filtering process and then the blob count
algorithm. Power consumption measurements were taken
from post-implementation power estimation for the PYNQ,
while we used the Linux tool perf to collect the i7 power
consumption leveraging Intel Running Average Power Limit
(RAPL) [14] measurements for the CPU and the memory
subsystem.

Considering the execution time per frame, Table 2 shows
that both implementations are able to provide real-time pro-
cessing of video frames, as most of the surveillance cameras
generate 30 FPS. However, we can see that the hardware im-
plementation is able to outperform the software one by 3.75x
even if the PYNQ-Z1 includes only a small FPGA. Moreover,
if we consider the energy efficiency and the FPS/Watt ratio,
the hardware implementation outperforms the software one
by 33.98x. These results are a first indication that FPGAs

55 4 7

50 A G

45 4 7

40 4 ah

35 ,' ~
301 7
251 v 2 . Lz
20 ,/ >~ »Z

15 - 4 R

104 vea =z

RTT (ms)
N
N
N\
AN

0 25 50 75 100 125 150 175
messages

Figure 6. RTT of messages sent with different strategies
(broadcast, multicast and unicast). Lower is better.

can be exploited in fog computing scenarios to provide bet-
ter performance and energy efficiency. Finally, given the
power consumption measurements of both platforms, we
can say that the hardware implementation of the counting
cars algorithm can run on batteries, while the software im-
plementation will have issues if we consider also disks and
other hardware subsystems.

5.3 Distributed system evaluation

To correctly evaluate the proposed distributed system design,
we can leverage three metrics: fog network latency, network
bandwidth savings and number of distinct services.

For what concerns fog network latency, Figure 6 shows
the messages RTT for each communication mechanism for
increasing amount of messages sent. Unicast shows the high-
est performance, as this mechanism implies direct messaging
between two peers that already know each other’s name. The
RTT slightly increases for the multicast case, as the network
layer of FARD has to look-up the peers belonging to the task
that will receive the messages. Finally, broadcast shows the
highest RTT, as it relies on the broadcast messaging system
of pyre. The broadcast strategy is able to send 182 messages
per second managing the replies. If the sender does not
need to receive data back (as in counting cars), FARD can
broadcast 780 messages per second.

For what concerns network bandwidth savings w.r.t. the
communication with the cloud layer, we can leverage the
counting cars case study to analyze the impact of the fog.
The case study takes as input a video stream of 180 X 180
pixel. Each frame has an uncompressed size of ~ 94K B. Thus
for each second and for each camera, an IoT node would send
to the cloud at most ~ 2.75MB. If the video stream is com-
pressed (as the videos of the MUOVEE[11] website), this
number shrinks down to =~ 35K B per node per second. The

Accelerating Distributed Fog Computing through Embedded FPGAs

fog implementation instead sends just the number of incom-
ing and outgoing cars per node, reducing the bandwidth
usage to 8 Bytes per second per node.

Finally, if we consider the number of distinct services in
the fog, FARD supports at most one peer connected to the
FPGA per node, while many peers that use just the ARM
cores can be instantiated on a single node depending on how
many millicpus each peer requires.

6 Conclusion and future work

Within this paper we presented FARD, a distributed system
for fog computing nodes that provides hardware acceleration
for compute-intensive tasks. The distributed system behind
FARD was designed with four principles in mind: application
structure, event driven computation, network cooperation and
application isolation. To show the feasibility of FPGAs in fog
computing environments, we implemented and evaluated
a geographically distributed fog application to count cars
flowing in a camera video. The experimental results show
good performance of the FARD distributed system in terms
of latency, while the hardware implementation guarantees
real-time execution and outperforms an x86 implementation
in terms of pure performance and FPS/Watt.

Future work of FARD will revolve around the design, im-
plementation, and management of stream operators and
batch jobs throughout the distributed system. Finally, we
will integrate fault-tolerance techniques to improve the avail-
ability of nodes and peers during the lifetime of the system.

References

[1] P.Bellavista and A. Zanni. Feasibility of fog computing deployment
based on docker containerization over raspberrypi. In Proceedings
of the 18th International Conference on Distributed Computing and
Networking, page 16. ACM, 2017.

[2] F.Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog computing and its
role in the internet of things. In Proceedings of the first edition of the

(5]

(6]

[10]
[11]
[12]
[13]

[14]

[15]

[16]

[17]
(18]

EWiLi ’19, October 17, 2019, New York, USA

MCC workshop on Mobile cloud computing, pages 13-16. ACM, 2012.

Caligoo. http://www.caligoo.com. [Online; accessed 30-Jun-2018].

L. Cerina, S. Notargiacomo, M. G. Paccanit, and M. D. Santambrogio.
A fog-computing architecture for preventive healthcare and assisted
living in smart ambients. In Research and Technologies for Society and
Industry (RTSI), 2017 IEEE 3rd International Forum on, pages 1-6. IEEE,
2017.

T.-H. Chen, Y.-F. Lin, and T.-Y. Chen. Intelligent vehicle counting
method based on blob analysis in traffic surveillance. In Innovative
Computing, Information and Control, 2007. ICICIC’07. Second Interna-
tional Conference on, pages 238-238. IEEE, 2007.

K. Dolui and S. K. Datta. Comparison of edge computing implementa-
tions: Fog computing, cloudlet and mobile edge computing. In Global
Internet of Things Summit (GIoTS), 2017, pages 1-6. IEEE, 2017.

E. GREYC. Comparative study of background subtraction algorithms.
O. C. A. W. Group et al. Openfog reference architecture for fog com-
puting. OPFRA001, 20817:162, 2017.

K. Habak, M. Ammar, K. A. Harras, and E. Zegura. Femto clouds:
Leveraging mobile devices to provide cloud service at the edge. In
2015 IEEE 8th international conference on cloud computing, pages 9-16.
IEEE, 2015.

P. Hintjens. ZeroMQ: messaging for many applications. ” O’Reilly
Media, Inc”, 2013.

Muovee. https://www.mouvee.com. [Online; accessed 30-Jun-2018].

Pyngq platform. http://www.pynq.io/. [Online; accessed 30-Jun-2018].
Pyre runtime. https://github.com/zeromq/pyre. [Online; accessed
30-Jun-2018].

E. Rotem, A. Naveh, A. Ananthakrishnan, E. Weissmann, and D. Ra-
jwan. Power-management architecture of the Intel microarchitecture
code-named Sandy Bridge. IEEE Micro, 32(2):20-27, Mar. 2012.

S. Soma and A. Patil. Novel architecture for iot based video streaming
over cloud.

L. Stojmenovic. Fog computing: A cloud to the ground support for
smart things and machine-to-machine networks. In 2014 Australasian
Telecommunication Networks and Applications Conference (ATNAC),
pages 117-122. IEEE, 2014.

Vivado design tools. https://www.xilinx.com/products/design-tools/
vivado.html. [Online; accessed 29-Jun-2018].

Z. Wen, R. Yang, P. Garraghan, T. Lin, J. Xu, and M. Rovatsos. Fog
orchestration for internet of things services. IEEE Internet Computing,
21(2):16-24, 2017.

http://www.caligoo.com
https://www.mouvee.com
http://www.pynq.io/
https://github.com/zeromq/pyre
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html

	Abstract
	1 Introduction
	2 Related work
	3 System design
	3.1 System overview
	3.2 Networking system
	3.3 Application structure
	3.4 Node manager architecture

	4 Case study: counting cars
	5 Experimental evaluation
	5.1 Experimental setup
	5.2 Counting cars performance
	5.3 Distributed system evaluation

	6 Conclusion and future work
	References

