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Introduction
People often learn from each other, and this has important implications for such diverse 
things as how they find employment, what movies they see, which products they pur-
chase, how technology becomes adopted, whether or not they participate in government 
programs or social events, and whether they protest [1–3]. The platform in which people 
can influence on the other’s choices and decisions is social networks [4]. With the devel-
opment of social network platforms in the past decade due to the growth of Internet and 
Web 2.0., such as Facebook, QQ, WeChat, and Micro-blog, increasing business begins to 
advertise their products on social networks [5–7].

One of the most important problems in social network analysis literature is influence 
maximization. In this problem, there exists a social agent who wants to diffuse some-
thing (such as a piece of information about advantages of a good) by way of existing 
social ties in a network [8]. Influence maximization is the problem of selecting a small 
set of seed nodes in a social network, such that their overall influence on other nodes 
in the network is maximized [9–11]. The selection of a minimal set of seed nodes is 
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constrained by high costs of exerting influence on key players. Those who would use 
social networks to diffuse their message seek to reach as many nodes as possible, and to 
do so as quickly as possible. The messages to be diffused, though, may be more effective 
and convincing if they are received from a friend than from the change agent, so there 
may be a desire to limit the number of initial contacts that are used to “seed” the diffu-
sion [4, 12].

There are three important parameters in each diffusion process, the first parameter 
is the number of seed nodes in a diffusion, the second one is the total time of diffusion 
and the last one is the total number of nodes that are influenced in diffusion process. To 
leverage social influence to diffuse a message, it is desired to minimize the number of 
seed nodes and the total time of diffusion while maximizing the total number of infected 
nodes in termination of diffusion.

So, the main question which is raised in this area is, which nodes should be selected 
as the seed of diffusion? The existing optimization literature deals with one of the three 
above-mentioned parameters, but not all of them simultaneously [13]. In addition, all 
the previous researches which proposed a mathematical optimization model to deal with 
influence maximization, did not consider the probabilistic essence of the problem. They 
assumed that all the considered parameters of the problem are deterministic while some 
of them are stochastic in the real world. In addition, almost all of them assumed that the 
nodes are homogeneous with regard to their activation thresholds, but differing in their 
out-degrees (e.g., [7, 9, 12–14]), While nodes in these models may differ in the number 
of others to whom they have access, the previous research assumed that all nodes utilize 
all of their social ties. We believe that the more realistic approach is to consider nodes as 
heterogeneous in their propensity to act as social influencers and considering the proba-
bilistic nature of the problem in proposed model. So, the proposed mathematical opti-
mization model in this paper is trying to optimize two dimensions of the IM problem 
(the number of seed nodes and the total number of infected nodes in termination of the 
diffusion) simultaneously given a probabilistic influence model.

Based on [14, 15], in this paper, the node’s heterogeneity is directly measured by their 
“Social Skills”. It means, we believe that the better social skill of a node the more prob-
ability of forwarding a received message. So, the utilized influence model in the present 
paper, considers message forwarding by an “infected” node as a probabilistic process, 
based on their social skills.

Due to the probabilistic nature of the problem which is related to “social tie”, “math-
ematical models of processes on social networks”, “human behavior”, “incompleteness of 
observational data” and “the model parameter” [11, 16, 17], it is important to provide a 
solution which is capable to be robust against any realization of the probabilistic uncer-
tainty. In the other words, the proposed solution should be immunized against uncer-
tainty. The uncertainty of the problem has been studied in some recent works from an 
algorithmic point of view [16, 18, 19].

One of the well-known approaches for dealing with the mentioned uncertainties is 
robust optimization. Robust optimization has been proposed in the optimization litera-
ture as a modeling approach [20].

So, for the first time in this paper, a robust optimization approach is employed to 
develop a mathematical programming model which maximizes the expected number of 
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infected nodes in termination of the spread of influence and simultaneously minimize 
the number of seed nodes. It is worth highlighting that the main contribution of this 
paper in modeling and solving the influence maximization problem given a probabilis-
tic influence model using robust optimization approach. So, the present research is pro-
posing a robust mathematical programming model for finding the influential nodes in a 
certain network and while coping with the probabilistic nature of the studied problem. 
Based on the general advantages of robust optimization, it can be claimed that utilizing 
robust optimization methods may significantly enhance the efficiency of the proposed 
model.

So, in summary, the main contribution made by this study is proposing an integer 
mathematical programming model which is:

•	 Utilizing robust optimization approach to consider the probabilistic nature of the 
influence model.

•	 Proposing a scenario-based optimization model for influence maximization.
•	 Optimizing the number of seed nodes and final infected nodes simultaneously.
•	 Considering the heterogeneity of the nodes.

From application point of view, let a company which is deciding to diffuse a piece of 
information such as news on a certain social network. So, regarding the span of mobile 
phone in all societies [21, 22], the company selects mobile phone and particularly text 
messages as a tool for sending favorable information to the customer. The considered 
diffusion process works as follows: company sends the favorable information to some of 
seed nodes in network and then they will forward the short message to their friends in 
a probabilistic process. Therefore, the diffusion process will be occurred in some steps 
and then terminates when the nodes do not forward the text messages to their friends. 
In each step, customers who have received message are deciding to forward it to which 
ones of their friends.

The remainder of paper is organized as follows: “Review of the literature” section pro-
vides a brief review of recent papers which studied the influence maximization problem. 
The proposed optimization model and its assumptions are explained in “Proposed opti-
mization model” section. Last section is dealing with illustrating the proposed model 
by implementing it on a dataset in which the nodes are students of a university and the 
links are their short-messages connections between them.

Review of the literature
The main problem addressed in this paper is known as “Influence Maximization”. This 
field of research divided to two largely separate lines of work [14]. The first deals with the 
competitive diffusion on networks [14, 23, 24] and the second with maximizing influ-
ence in a non-competitive situation [25, 26]. The current work falls in the second line 
of work. In principle, it has been proved that since the influence maximization problem 
could be considered as a reduced version of set covering problem, so, it is an NP-hard 
problem [27].

The first paper that investigated this problem from an algorithmic points of view 
was the work of Kempe et al. [8]. They proposed an approximation algorithm based 
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on a greedy strategy for finding the most influential nodes. They proved that the opti-
mal solution can be approximated to within a factor of (1− 1

e
− ε) . Kempe et al. [8] 

took the seed nodes to be constant and optimized the number of nodes that are influ-
enced in termination. Following their work, there are many studies which are propos-
ing different algorithms for finding the best set of seed nodes for influence spread.

Chen and Wang [28] investigated the problem and proposed NewGreedy and 
MixedGreedy algorithms for finding the influential nodes in a social network. They 
improved the proposed algorithm by Kempe et al. [8] through reducing the running 
time. They evaluated their algorithms by experiments on two large academic collabo-
ration networks obtained from the online archival database https://​arXiv.​org. Wang 
et  al. [29] tackled influence maximization problem in a mobile phone-based social 
network. They noted that mobile phones are one of the most powerful tools that 
could be utilized in marketing, and are particularly useful in mobilizing social influ-
ence through word-of-mouth processes. They proposed a new algorithm named Com-
munity-based Greedy Algorithm for mining top-K influential nodes. The proposed 
algorithm consists of two separate parts; the first part is dealing with community 
detection and second part of algorithm trying to find the most influential nodes in 
each community. Inspiring from [29], Jalayer et al. proposed a new community-based 
algorithm for finding the most influential nodes in a social network. They utilized 
TOPSIS method as a multi attribute decision-making tool to find the influential nodes 
in each community [26]. Chen et al. [30] pointed out that the scalability of influence 
maximization is a key factor for enabling viral marketing in large scale online social 
networks. They developed a new heuristic algorithm that is scalable to millions of 
nodes. The proposed algorithm enables users to trade-off between running time and 
spread of influence. Another research that considered the combinatorial optimization 
problem of finding most influential nodes in social networks is [31]. They proposed a 
method of efficiently estimating the number of influenced nodes at termination based 
on bond percolation and graph theory; and, they provide a practical solution do the 
influence maximization problem on G = (V ,E) under the greedy hill-climbing algo-
rithm. Wang et al. [32] investigated the influence maximization problem as the tar-
get set selection problem. They proposed a metaheuristic algorithm (set-based coding 
genetic algorithm) that converges in probability to the optimal solution of target set 
selection problems. They compare the results of their algorithm with the algorithm 
proposed by Leskovec et al. [33], the greedy algorithm developed by Kempe et al. [8], 
Shapley value-based influential nodes algorithm, high clustering coefficient heuristic 
algorithm and maximum degree heuristic algorithm.

Recently, some studies have been done in which some metaheuristic-based algo-
rithm proposed to cope the influence maximization problem. For example, Yang 
and Weng [34] proposed an ant colony optimization algorithm to cope the influence 
maximization problem. The proposed algorithm was evaluated using a co-authorship 
data set and the obtained experimental results showed that the proposed algorithm 
outperforms two well-known benchmark heuristics. Other metaheuristic algorithm 
such as genetic algorithm [35], simulated annealing algorithm [36, 37], particle swarm 
optimization algorithm [38, 39] and cuckoo search algorithm [40] have been utilized 
for dealing with the influence maximization problem too. So, the researches in this 

https://arXiv.org
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field have tried to develop approximation, heuristic or metaheuristic algorithms for 
finding the most influential nodes in social networks.

On the other hand, there are some recent published research in which the authors 
tried to used mathematical programming tools for modeling the influence maximization 
problem and its extensions. Kermani et  al. developed a bi-objective integer program-
ming model for finding most influential nodes in social network [4]. Their model dealt 
with minimizing the number of seed nodes and maximizing the final infected nodes 
simultaneously. Their research was the first one in this field which considers both cost 
of seeds’ activation and number of final infected nodes as objectives of a mathematical 
programming model. Since, the considered influence model in their paper is a deter-
ministic one, so, they solved the problem using an exact algorithm called CPLEX. They 
expressed that one of the simplifier assumptions in their work is considering a deter-
ministic influence model. Following [13], there have been developed different versions 
of mathematical programming to tackle the influence maximization problem. For exam-
ple, He et al. proposed a single-objective mathematical programming model to deal with 
the influence maximization problem [41]. They proposed a 3-hop heuristics algorithm 
to effectively determine the top-m influential nodes. Samadi et al. considered the Influ-
ence Maximization problem in presence and absence of competition. They proposed 
a mix-integer mathematical programming model to cope this problem [42]. Tanınmış 
et al. proposed a stochastic bilevel integer linear programming model to formulate the 
influence maximization. They solved the proposed model by complete enumeration 
for small-sized instances and by a metaheuristic for large-sized instances [43]. Guney 
developed a binary integer programming model for influence maximization problem. 
He proposed a linear programming relaxation-based method with a provable worst case 
bound [44]. Kermani et al. proposed a non-linear bi-objective mathematical program-
ming model to tackle an extension of influence maximization problem which is named 
opinion aware influence maximization [15]. They proposed a genetic algorithm to solve 
the problem and showed its efficiency comparing with some of the state-of-the-art 
algorithms.

There exists another related line of research in which some related uncertainties or 
probabilistic nature of the information diffusion have been considered in problem mod-
eling and solving. It seems that the study which done by He and Kempe [45] is first work 
that also tries to address the issue of uncertainty of parameter estimates impacting the 
influence maximization tasks. They investigated the problem from algorithmic point of 
view and did not proposed any robust or non-robust mathematical programming model. 
Following [45], He and Kempe investigated the concept of stability in influence maximi-
zation problem when it is dealing with noise and uncertainty [17]. Chen et al. proposed a 
new problem in which the goal is to find the best possible seed set for influence maximi-
zation purpose, while considering the adverse effect of the uncertainty. They utilized the 
robust optimization concepts and used the worse-case multiplicative ratio between the 
influence spread of the chosen seed set and the optimal seed set as their objective func-
tion. It should be noted that they did not propose a mathematical programing model in 
their research. In another published research, Kalimeris et al. [46] worked on the issue 
of robust influence maximization in hyperparametric models. The main question they 
addressed in their research is whether there is a computationally efficient algorithm to 
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perform robust optimization for hyperparametric models or not? They worked on find-
ing the related algorithm and proving its efficiency. However, they did not model the 
influence maximization problem using robust optimization mathematical tools. Based 
on the applying mathematical modeling, the closest work to the present research is 
[47]. The authors defined the general two-stage stochastic submodular optimization 
model and applied it to model the influence maximization problem. Then, they utilized 
a delayed constraint generation algorithm to find the optimum solutions. It should be 
noted that they did not model the considered influence model as constraints of their 
model. In addition, in the present work, we utilized scenario-based programming to 
cope the existing uncertainty which has not been done in [47].

There is not, however, any robust optimization model for modeling the maximization 
of the spread of information and minimization the size of seed nodes set simultaneously 
with an exact solution. So, a novelty of the present work is dealing with the above-men-
tioned objective with considering a probabilistic influence model. The other novelties 
of the present work are considering the heterogeneity of the nodes and the probabilistic 
nature of the problem in a robust optimization model simultaneously.

In addition, almost all the previous works (except [4, 15]) on the diffusion problem 
have focused on locating the optimal (fixed number of ) nodes to maximize diffusion 
without considering the cost of seed nodes’ activation In many contexts, however, efforts 
to leverage social influence to maximize diffusion in existing social networks are costly. 
Those who would diffuse their message may need to provide incentives to seed nodes, or 
invest heavily in education and influence of initial targets in order to start the process. 
Our model assumes that the optimal choice of seed nodes must minimize these costs 
simultaneously with seeking maximal diffusion of the message.

Proposed optimization model
Let us focus on a company which decides to advertise its good or service using viral mar-
keting; that is, influencing a small number of actors directly, and utilizing these nodes 
to spread the message through their social networks. One common medium for such a 
marketing campaign is a short-message-system (e.g., texting). Since sending a text mes-
sage is costly, and costs rise directly with the number of contacts that are initially made. 
In addition, the sending of more messages directly from the company, the less forward-
ing may occur, and messages may be fewer effective influencers because they have not 
been forwarded within existing relationships of trust among friends. Consequently, it is 
in the interest of the company to minimize the number of initial contacts. At the same 
time, the main goal of the company seeing that the text message reaches the largest 
number of members of the target population. So, the company would like to target seed 
nodes that have many social ties, and who are willing to pass along the message.

Considered diffusion model

The considered message passing process (diffusion model) in the present work which is 
exactly similar to the considered model in [4], is as follows:

Let a network G = (V ,E) , where V  and E is the set of nodes and links, respectively.
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•	 Persons or nodes (V ) are embedded in a social network ( G ), and may receive com-
munications from, and communicate to, discrete numbers of other individuals ( E ). 
Connections (links) are directional, and may be reciprocated ( G = (V ,E)).

•	 Message (information) diffusion occurs along existing social networks, and is sto-
chastic. That is, activated nodes ( iǫV  ) may, or may not forward messages with a fixed 
probability. In the other words, the considered diffusion model is a stochastic one.

•	 The probability that a person forwards a message, is directly proportional to their 
sociability. Persons with more social skills are more likely to forward a message, 
regardless of their out-degree.

•	 Each person (node) has either received a message (is activated), or has not (is inac-
tive). Once activated, a node remains activated. In the other words, the considered 
influence model is a progressive one.

•	 Time is treated as discrete intervals during which forwarding by activated nodes can 
occur.

•	 Activated nodes may forward a message only within one time period of receiving it.

Message diffusion occurs as a probabilistic process, based on social ties’ propensity to 
act as social influencers. In the other words, person i forwards a piece of information to 
person j with the probability of pij . Based on [4], this probability can be obtained 
through pi .pj

∑

j∈Ni
pi .pj

 , in which pi is the probability of forwarding message by i . Further-

more, pi is estimated using the social skill questionnaire score of person i [4], that is Fi ; a 
simple way to estimate pi may be pi = Fi

max
i

Fi
 . The probabilistic essence of the considered 

diffusion model is modeled by pi . It should be noted that the considered probabilistic 
diffusion model is as most as possible accordance with the real-world message passing 
through mobile phones. The considered assumptions in considered diffusion model in 
the present research are different form classical diffusion models such as Linear Thresh-
old (LT) and Independent Cascade (IC). For example, in LT diffusion model, each link 
has a certain and predefined weight which has a key role in activation regime. In addi-
tion, each node has a randomly predefined sensitive threshold for being activated. But in 
the considered diffusion model in the present paper, the nodes have no sensitive thresh-
old and could be activated based on a probability. On the other hand, in IC, each newly 
activate node ( iǫV  ) has a single chance of activating each of its inactive out-neighbors 
( jǫV  ) with probability pij . So, the considered diffusion model in this paper can be con-
sidered as an extension of IC, in which, the pij is proportional to the social skill of source 
and sink nodes.

Notation

To cope with the probabilistic nature of the problem, a robust scenario-based stochastic 
programming model is developed. Each scenario in this model specifies a set of poten-
tially activated links between the nodes which may be generated randomly based on 
pij . It should be noted that actual activation of links in each scenario is related to three 
factors:

•	 The seed nodes which are independent of scenarios.
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•	 Links potentially activated in each scenario.
•	 Nodes activated in different time periods, except the initial time, in each scenario.

The notation that is used to propose the robust optimization model (ROM) is 
shown in Table 1.
aijs is the parameter that defines different scenarios based on pij . It determines if a 

message is received by the person i at a time period whether he forwards the message 
to the person j ( j ∈ Ni ) in scenario s . It should be noted that in this model x0i  is the 
only decision variable which can be determined by the social change agent. Further-
more, this variable is independent of scenarios as a first stage variable.

Scenario‑based stochastic influence maximization problem

In terms of the expressed notations, the scenario-based stochastic influence maximi-
zation model can be formulated as follows:

s.t.

(1)Min

n
∑

i=1

x
0
i

(2)Max

S
∑

s=1

πsZs

Table 1  The notations which are used to formulate the problem

Sets and indices

i, j Index of source and destination persons i, j = 1, . . . , n;

t Index of discrete time periods t = 0, 1, . . . , T;

s Index of scenarios s = 1, . . . , S;

Ni Out-degree of person i (i.e., the persons that i  has their phone number in her contact list);

Ki In-degree of person i (i.e., the persons that have i  ’s phone number in their contact list)

Parameters

aijs Binary parameter representing that the message may be forwarded by the person i  to the 
person j  in scenario s;

πs Probability of scenario s;

M An adequate large number

Variables

x0i =

{

1 if the person i received a message at the initial time of the message diffusion,
0 otherwise;

xtis
=

{

1 if the person i received a message at time period t in scenario s(t = 1, . . . , T ),
0 otherwise;

ltijs
=

{

1 if the person i forward the message to the person j at period t in scenario s,
0 otherwise;



Page 9 of 17Agha Mohammad Ali Kermani et al. Comput Soc Netw            (2021) 8:17 	

The model seeks an optimum of maximizing the number of nodes reached by the 
message in a fixed period of time, while remaining sensitive to minimizing costs of 
influencing “key players”. Objective function (1) is related to minimizing the num-
ber (and hence cost) of nodes that are initially activated. The objective function (2) 
is associated with maximizing the expected number of activated nodes at the end of 
a fixed period. Zs in the Objective function (2) is obtained from Eq. (3). Constraints 
(4) and (5) assure that if a link is active at t in scenario s , then its source node is also 
active. If a node is inactive at t in scenario s , then its outgoing links are inactive. Fur-
ther, these constraints show that if a node is active at t in scenario s , its outgoing links 
could be active or inactive. Constraint (6) states that if a link is active at t in scenario 
s , then the destination node is active at t + 1 in scenario s . Furthermore, a node is 
inactive at t + 1 if and only if all the incoming links are inactive at t . Constraint (7) 

(3)Zs =

n
∑

i=1

xTis , ∀s,

(4)l0ijs ≤ aijsx
0
i , ∀i, j ∈ Ni, s,

(5)ltijs ≤ aijsx
t
is, ∀i, j ∈ Ni, s, t = 1, . . . ,T ,

(6)
∑

i∈Kj

aijsl
t
ijs ≤ Mxt+1

js , ∀j, s, t = 0, . . . ,T − 1,

(7)
∑

i∈Kj

aijsl
t
ijs ≥ (xt+1

js − xtjs), ∀j, s, t = 0, . . . ,T − 1,

(8)x0i ≤ x1is, ∀i, s,

(9)xtis ≤ xt+1
is , ∀i, s, t = 1, . . . ,T − 1,

(10)
∑

j∈Ni

l1ijs ≤ M
(

x1is − x0i

)

, ∀i, s,

(11)
∑

j∈Ni

lt+1
ijs ≤ M

(

xt+1
is − xtis

)

, ∀i, s, t = 1, . . . ,T − 1,

(12)x0i ∈ {0, 1}, ∀i,

(13)xtis ∈ {0, 1}, ∀i, s, t = 1, . . . ,T − 1,

(14)ltijs ∈ {0, 1}, ∀i, s, t.
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indicates that if a node is active at t + 1 and inactive at t in scenario s , then at least 
one of the incoming links should be active at the former time in the same scenario; as 
well if a node is active at both t and t + 1 in scenario s , then the incoming links may 
be active or inactive at t in scenario s . In some previous works [8] node activation is 
based on independent cascade or linear threshold logics. Since the proposed model is 
dealing with diffusion through short message systems, the influence process should 
be modeled according to reality of SMS diffusion. In reality when a short message 
is received by mobile phone, we read it and will be active. Constraints (8) and (9) 
are included to make the second objective true. These constraints try to make all the 
nodes that are active in each stage also active at last stage. Constraints (10) and (11) 
indicate that if a node is active or inactive at both t and t + 1 in scenario s , its out-
going links should become inactive. These constraints prevent against unreasonable 
activation of links by limiting the period of time that they can activate others. That is, 
nodes activate others for a limited period of time after their own situation changes. 
Parameter M in Constraints (7), (10), and (11) is a reasonably large number. Finally, 
Eqs. (12)–(14) show the type of decision variables. Notably, above system constraints 
should be satisfied in all scenarios.

The proposed robust optimization model

The philosophy of robust programming is based on risk-averse methods to conserve the 
optimal solution for any realization of uncertain parameters. A solution to an optimi-
zation problem is said to be robust if it has both “feasibility robustness” and “optimal-
ity robustness”. Feasibility robustness indicates that the solution should stay feasible for 
almost all plausible values of uncertain parameters and optimality robustness means that 
the objective function value for the solution should stay near to optimal value or have 
minimum deviation from the optimal value for almost all plausible values of uncertain 
parameters [48].

Soyster played a pioneering role in developing the robust optimization theory [49]. 
He presented a worst-case robust programming method for inexact linear program-
ming problems. Thereafter robust optimization approach has developed in three lines: 
(i) robust scenario-based stochastic programming [50]. (ii) Robust programming based 
on closed convex uncertainty sets [51–55] (iii) Robust possibilistic programming [48].

Mulvey et al. introduced a robust optimization approach for scenario-based stochastic 
programming models by presenting a trade-off between optimality robustness and fea-
sibility robustness (which is called “solution robustness” and “model robustness”, respec-
tively, in their work) [50]. The optimality robustness is modeled by adding a weighted 
variability measure of objective function of scenarios to the expected value of them. 
Varying the weight put on this variability drives the optimization process to provide 
solutions that may present higher expected total costs with lower cost-deviations under 
different scenarios. Several measures are developed to specify the variability of scenar-
ios. Mulvey et al. recommend the variance of scenarios objective function [50]. Due to 
the non-linear form of the variance function [56, 57], have attempt to convert the prob-
lem into a linear programming model.

Due to the probabilistic nature of the presented problem in this paper, the model 
should be robust against any realization of stochastic scenarios, meaning that the 
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proposed solution should have the least variability under different scenarios. Here, we 
have used the proposed approach in [57] to develop the robust stochastic counterpart of 
the proposed model which is provided as follows:

s.t.
(3)–(14);

Objective function (15) is the developed version of objective function (2). The second 
term of (15), along with constraint (16), relates to minimizing the variability of scenarios 
which is identified by the variability measure presented by Leung et al. [57]. This term 
controls optimality robustness of the model. � is a parameter which determines the 
importance degree of optimality robustness in comparison with the expected number 
of activated nodes in the last period. Furthermore, us is the variable used to convert the 
primary non-linear problem into its equivalent linear form.

Single‑objective counterpart of the model

The proposed robust optimization model is a bi-objective mixed integer linear program-
ming which its conflicted objectives are “minimizing the cost (number of seed nodes)” 
and “maximizing the number of influenced nodes”. To cope with the multiple objectives 
nature of the proposed models, the common use ε-constraint method [58] is utilized. 
This approach has been used in a similar study which is done in 2016 [4]. The equivalent 
single-objective model is presented as follows:

s.t.
(3)–(14), (16)–(17);

Noteworthy, since ε can hold integer numbers, its intuitive interpretation is the num-
ber of seed nodes.

(1)Min

n
∑

i=1

x
0
i

(15)Max

S
∑

s=1

πsZs − �

S
∑

s=1

πs

(

Zs −

S
∑

s′=1

πs′Zs′ + 2us

)

(16)Zs −

S
∑

s′=1

πs′Zs′ + us ≥ 0, ∀s,

(17)us ≥ 0, ∀s.

(15)Max

S
∑

s=1

πsZs − �

S
∑

s=1

πs

(

Zs −

S
∑

s′=1

πs′Zs′ + 2us

)

(18)
n

∑

i=1

x0i ≤ ε.
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Case study implementation and evaluation
To illustrate the utility of the model in identifying the best seed nodes of a social net-
work for maximizing the diffusion of information, the Abrar dataset [59, 60] is utilized. 
During 2010–2011, 163 students in two disciplines at Abrar University (Industrial Engi-
neering and Software Engineering) were interviewed. Each of the students was asked to 
identify the other students who were in their mobile phone contact list. These contacts 
identify a directed tie from each student to others. To assess the propensity or willing-
ness to contact others, each student also filled out a Social Skill questionnaire that indi-
cates their willingness to contact others [61]. The questionnaire has 40 items grouped 
into two scales, Prosocial Behavior, which assesses cooperative, helping, and friendly 
behaviors (for example, “I offer my classmates help to do their homework”) and Antiso-
cial Behavior, which assesses aggressive behaviors, disruptive reactions, and attention 
seeking (for example, “I hit other kids when they make me mad”). The items are rated 
on a 6-point Likert scale ranging from 1 (it doesn’t describe me at all) to 6 (it describes 
me completely). So, a high score on the index means that a person’s scores high on the 
pro-social, and low on the anti-social items. The probability of forwarding message from 
each student to others is calculated based on the Social Skill questionnaire and then 10 
scenarios are generated randomly based on this probability. It is assumed that the prob-
ability of each scenario is equal to 0.1.

Results of implementing the proposed robust optimization model (ROM) in the Abrar 
dataset (which is used in [4, 60, 62]), and its comparison to some of the existing heuris-
tic algorithms are shown in Table 2, Figs. 1, 2. Notably, all the results are obtained by 
CPLEX solver of GAMS optimization software on a Core i7 computer with 8.0 GB RAM 
in 2.1 s. In CPLEX, an optimality parameter can be specified to decide whether to find 
the optimal solution or to quickly obtain a suboptimal solution [63]. Because CPLEX 

Table 2  Results of proposed model in comparison with some heuristics with activation of three 
seed nodes

Methods RND GDB GEB GBB GCB GPB GSB GTB ROM
Influential 
nodes

41, 117, 
120

30, 32, 
85

17, 30, 
32

161, 85, 
30

173, 
162, 137

85, 81, 
142

32, 43, 
157

30, 85, 
161

74, 85, 
161

Number of final infected nodes

 Scenario 1 123 138 121 151 143 137 129 151 152

 Scenario 2 121 130 121 142 122 130 128 142 146

 Scenario 3 102 135 129 136 137 137 121 136 147

 Scenario 4 79 142 132 151 148 139 133 151 151

 Scenario 5 71 127 127 134 133 116 125 134 133

 Scenario 6 112 144 134 147 136 124 126 147 146

 Scenario 7 104 151 146 150 129 134 140 150 150

 Scenario 8 141 145 136 151 137 149 123 151 153

 Scenario 9 124 143 137 144 134 126 137 144 146

 Scenario 10 96 123 114 133 135 102 120 133 145

Average 107.3 137.8 129.7 143.9 135.4 129.4 128.2 143.9 146.9

Standard 
deviation

21.49 8.90 9.36 7.31 7.07 13.27 6.68 7.31 5.67
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uses branch-and-cut algorithm when solving integer linear programming model, the 
optimal solutions can be found by setting the possible gap equal to zero. Many stud-
ies have used obtained results through running it as the benchmark solutions [13, 64]; 
reasonably, the performance and optimality of the obtained results have been proved. 
Furthermore, as all the previous works used heuristic or approximation algorithm for 
finding the optimal solution, it is a trivial fact that the obtained solution in this research 

Fig. 1  Expected relative size of final infected nodes (influence spread) with different relative size of seed set 
using different methods

Fig. 2  Standard deviation of scenarios objective function with different relative size of seed set using 
different methods
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is better than the other research. Inspiring from [8, 14, 26, 65], the alternative heuristic 
algorithms for finding the most influential nodes are the Greedy Degree Based (GDB); a 
simple heuristic that selects the k nodes with the largest degrees [3], Greedy Eigenvec-
tor Based (GEB); a simple heuristic that selects the k nodes with the largest eigenvector. 
GEB is suggested as a heuristic algorithm in [66], Greedy Betweenness Based (GBB); a 
simple heuristic that selects the k nodes with the largest Betweenness, Greedy Close-
ness Based (GCB); a simple heuristic that selects the k nodes with the largest Closeness, 
Greedy Pagerank Based (GPB); a simple heuristic that selects the k nodes with the larg-
est Pagerank, Greedy Topsis Based (GTB); selecting the k nodes with the largest Topsis 
scores (this ranking method is proposed and used in [15, 60, 67–69]), Greedy Sociability 
Based (GSB); Beside the existing simple method, the other simple heuristic can be selec-
tion of the k nodes with the largest social skill which is extracted by Social Skill ques-
tionnaire [61], and finally Random method (RND); simply select k random nodes in the 
graph.  

Table  2 shows the results of the most influential nodes, number of final infected 
nodes in each scenario, average and standard deviation of final infected nodes using 
proposed ROM and mentioned heuristics. As can be seen, not only the average final 
infected nodes of scenarios from ROM is substantially better than other methods 
but also almost all scenarios have better performance in infecting nodes in final time 
period.

The results depicted in Fig. 1 show that among the considered methods, the ROM has 
the highest expected number of final infected nodes for all different numbers of seed 
nodes. It should be noted that despite other heuristic methods, the solution of ROM, 
i.e., the most influential nodes, is a global optimized solution. Figure  2 demonstrates 
that the ROM has the smallest standard deviation of influence spreads in different sce-
narios, which shows the greater robustness of the proposed ROM compared to the oth-
ers. For all methods, including ROM, increasing the number of seed nodes increases the 
expected number of final infected at decreasing rates. Further, increasing the number of 
seed nodes decreases the standard deviation of final infected nodes, or increases robust-
ness. This issue reflects the multi-objective nature of the problem. The desired solution 
can be determined by the social agent by making a trade-off between the two objectives, 
which are the number of seed nodes and the resulting costs and the expected number of 
final infected nodes.

Conclusions
Influence maximization is the problem of finding most influential nodes in a network 
to maximize the spread of influence. The proposed model outperforms plausible alter-
native approaches to the influence maximization/cost minimization problem on fixed 
social networks where the probabilistic nature of the problem originates from hetero-
geneity in social actors propensity to act as social influencer. So, in this paper a multi-
objective robust stochastic programming model is developed which optimizes the 
diffusion and minimizes the number of seed nodes as a costly activity simultaneously. 
The model is implemented by using a real data set and the achieved results demonstrate 
significant increases in the expected number of final infected nodes as well as robustness 
of the solution in comparison with some common heuristic algorithm. Developing the 
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proposed ROM to a model which is capable to optimize the time of diffusion can be con-
sidered as an important direction for the future research.
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