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An interpolation of the generalized duality formula for the Schur multiple

zeta values to complex functions

Maki Nakasuji, Yasuo Ohno, and Wataru Takeda

Abstract. One of the important research subjects in the study of multiple zeta
functions is to clarify the linear relations and functional equations among them. The
Schur multiple zeta functions are a generalization of the multiple zeta functions of
Euler-Zagier type. Among many relations, the duality formula and its generalization
are important families for both Euler-Zagier type and Schur type multiple zeta values.
In this paper, following the method of previous works for multiple zeta values of Euler-
Zagier type, we give an interpolation of the sums in the generalized duality formula,
called Ohno relation, for Schur multiple zeta values. Moreover, we prove that the
Ohno relation for Schur multiple zeta values is valid for complex numbers.

1. Introduction

For positive integers r, k1, k2, . . . , kr with kr ≥ 2, a multiple zeta value of Euler-Zagier
type is defined by

ζ(k1, . . . , kr) =
∑

1≤n1<···<nr

1

nk1
1 · · ·nkr

r

,

where the summation runs over all the size r sets of ordered positive integers. One
can confirm that the above series converges for r-tuples (k1, . . . , kr) of positive integers
with kr ≥ 2. These r-tuples (k1, . . . , kr) are called admissible. Many Q-linear relations
among multiple zeta values are known. Especially, the duality formula and its general-
ization are important relations. To state the generalized duality formula, we denote a
string 1, . . . , 1

︸ ︷︷ ︸

r

of 1’s by {1}r. Then, for an admissible index

(1.1) k = ({1}a1−1, b1 + 1, {1}a2−1, b2 + 1, . . . , {1}am−1, bm + 1)

with a1, b1, a2, b2, · · · , am, bm ∈ Z≥1, the following index is called a dual index of k:

k
† = ({1}bm−1, am + 1, {1}bm−1−1, am1

+ 1, . . . , {1}b1−1, a1 + 1).

The generalized duality formula, called Ohno relation in some literatures, can then be
described as follows:
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Theorem 1.2 (The generalized duality formula. [Oh]). For any ℓ ∈ Z≥0 and any

admissible index k = (k1, . . . , kr), and its dual index k
† = (k†

1., . . . , k
†
s),

(1.3)
∑

ε1+···+εr=ℓ
εi≥0

ζ(k1 + ε1, . . . , kr + εr) =
∑

ε′
1
+···+ε′s=ℓ
ε′i≥0

ζ(k†
1 + ε′1, . . . , k

†
s + ε′s).

In Theorem 1.2, when ℓ = 0, we obtain the duality formula for multiple zeta values
of Euler-Zagier type. We may write the left-hand side of (1.3) as O(k : ℓ) and call
O-sum, then (1.3) can be written as

(1.4) O(k : ℓ) = O(k† : ℓ).

In [NO], the authors generalized Theorem 1.2 to the Schur multiple zeta values under
some conditions. In the following, we review their setup:

For any partition λ, i.e., a non-increasing sequence (λ1, . . . , λn) of positive integers,
we associate the Young diagram Dλ = {(i, j) ∈ Z2 | 1 ≤ i ≤ n, 1 ≤ j ≤ λi} depicted
as a collection of square boxes with the i-th row having λi boxes. For a partition λ, a
Young tableau T = (tij) of shape λ over a set X is obtained by filling the boxes of Dλ

with tij ∈ X. We denote by Tλ(X) the set of all Young tableaux of shape λ over X and
denote by SSY Tλ the set of semi-standard Young tableaux (tij) ∈ Tλ(N) which satisfies
the condition of weakly increasing from left to right in each row i, and strictly increasing
from top to bottom in each column j. Let λ = (λ1, . . . , λr) and µ = (µ1, . . . , µs) be two
partitions such that λi ≥ µi for all i and r ≥ s, and let δ = λ/µ be a partition of skew
shape. Then we define Dδ = Dλ \ Dµ and sets of their fillings Tδ(X), SSY Tδ in the
same way as above. Then, for a given set kkk = (kij) ∈ Tδ(Z) of a tableau index, Schur

multiple zeta values of shape δ are defined as

ζδ(kkk) =
∑

M∈SSY Tδ

1

Mkkk
,

where Mkkk =
∏

(i,j)∈Dδ

m
kij
ij for M = (mij) ∈ SSY Tδ. The function ζδ(kkk) absolutely

converges in

Wδ =

{

kkk = (kij) ∈ Tδ(Z)

∣
∣
∣
∣

kij ≥ 1 for all (i, j) ∈ Dδ \ Cδ

kij ≥ 2 for all (i, j) ∈ Cδ

}

,

where Cδ is the set of all corners of δ. Here, we say that (i, j) ∈ Dδ is a corner
of δ if (i + 1, j) /∈ Dδ and (i, j + 1) /∈ Dδ; for example, if δ = (4, 3, 3, 2) \ (3, 2, 1),
Cδ = {(1, 4), (3, 3), (4, 2)}. In this article, we assume that all tableau indices of ζδ are
elements of Wδ. Nakasuji and Ohno [NO] defined a tableau which is “dual” to kkk ∈ Tδ(Z).
First, we denote a finer piece of index {1}a−1, b+ 1 as A(a, b) and call it an admissible

piece. Then, if we write Ai = A(ai, bi) and A†
i = A(bi, ai), the above admissible index

k and its dual k† can be written in terms of admissible pieces:

k = (A(a1, b1), A(a2, b2), . . . , A(am, bm)) = (A1, A2, . . . , Am)

and
k
† = (A(bm, am), A(bm−1, am−1), . . . , A(b1, a1)) = (A†

m, A
†
m−1, . . . , A

†
1).
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We now write kkk ∈ Tδ(Z) as

(1.5) kkk = kkkcol
1 · · ·kkkcol

λ1
,

where kkkcol
j is the j-th column tableau of kkk. For example, when λ = (3, 2, 1) and

kkk =

k11 k12 k13

k21 k22

k31

,

then kkkcol
1 =

k11

k21

k31

, kkkcol
2 =

k12

k22
and kkkcol

3 = k13 . Let T diag
δ (Z) = {kkk ∈ Tδ(Z) | kij =

kpq if j − i = q − p}. Let IDδ be the set of elements in T diag
δ (Z) consisting of admissible

pieces such that the right side of the top element in each column is not 1. For kkk ∈ IDδ ,
in terms of admissible pieces, the row that has the topmost component is identified as
the first row. In terms of admissible pieces, we can write as Aij the component in the
i-th row and j-th column. Note that the component in the upper-right corner in the
j-th row is A1j and that Aij = Akℓ if j − i = ℓ− k when they are not empty. Further,
we note that, in terms of tableau, the top element in Aij and the bottom element in
Ai(j+1) are located side by side.

Let δ = λ/µ be a partition of skew shape. For kkk = (kij) ∈ Wδ(Z≥1), εεε = (εij) ∈
Tδ(Z≥0), and ℓ ∈ Z≥0, we denote by

O(kkk : ℓ) =
∑

|εεε|=ℓ

ζδ(kkk + εεε),

where kkk + εεε = (kij + εij) and |εεε| =
∑

(i,j)∈Dδ
εij. For kkkcol

j ∈ ID(1n) (j1 ≤ j ≤ jr)’s, we
define

O(kkkcol
j1

· · ·kkkcol
jr : ℓ) =

∑

ℓ1+ℓ2+···+ℓr=ℓ

O(kkkcol
j1

: ℓ1) · · ·O(kkkcol
jr : ℓr).

Theorem 1.6 ([NO]). Let λ and µ be partitions and let δ = λ/µ. If kkk† is the dual
tableau of kkk ∈ IDδ and ℓ ∈ Z≥0, we have

(1.7) O(kkk : ℓ) = O(kkk† : ℓ).

We may regard (1.7) as a generalization of (1.4). Identities (1.4) and (1.7) are based
on the addition of positive integers. On the other hand, in [HMO], Hirose, Murahara
and Onozuka gave an interpolation of (1.4) to complex functions. For an admissible
index k = (k1, . . . , kr) and s ∈ C with ℜ(s) > −1, they defined the function Ik(s),
called Ohno function in [KO], by

Ik(s) =

r∑

i=1

∑

0<n1<···<nr

1

nk1
1 · · ·nkr

r

·
1

ns
i

∏

j 6=i

nj

nj − ni
.(1.8)
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In [HMO, Lemma 2.2], it is proved that if s is a non-negative integer m ∈ Z≥0, the
function Ik(s) is the same as O-sum, that is,

Ik(m) =
∑

ε1+···+εr=m
εi≥0 (1≤i≤r)

ζ(k1 + ε1, . . . , kr + εr)

= O(k : m).

Thus, by Theorem 1.2, we have Ik(m) = Ik†(m). More generally, they gave an interpo-
lation of the Ohno relation to complex numbers.

Theorem 1.9 ([HMO]). For an admissible index k and s ∈ C, we have

Ik(s) = Ik†(s).

Subsequently, Kamano and Onozuka introduced two kinds of integral representations
of (1.8):

Theorem 1.10 ([KO]). For any admissible index k represented as (1.1) and s ∈ C

with ℜ(s) > −1, we have

Ik(s) =
1

(a1 − 1)!(b1 − 1)! · · · (am − 1)!(bm − 1)!Γ(s+ 1)

×

∫

0<t1<···<t2m<1

dt1 · · ·dt2m
(1− t1)t2 · · · (1− t2m−1)t2m

(

log
t2 · · · t2m
t1 · · · t2m−1

)s

×

(

log
1− t1
1− t2

)a1−1(

log
t3
t2

)b1−1

· · ·

(

log
1− t2m−1

1− t2m

)am−1(

log
1

t2m

)bm−1

.

Theorem 1.11 ([KO]). For any admissible index k = (k1, . . . , kr) and s ∈ C with
max1≤j≤r{r − 2j + 2− (kj + · · ·+ kr)} < ℜ(s) < 0, we have

Ik(s) = −
sin(πs)

π

∑

0<n1<···<nr

1

nk1−1
1 · · ·nkr−1

r

∫ ∞

0

w−s−1

(w + n1) · · · (w + nr)
dw.

In this paper, we generalize the integral representation given in Theorem 1.11 to the
Schur multiple zeta values. In other words, we consider the function

Ikkk(s) = −
sin(πs)

π

∑

(nij)∈SSY Tλ/µ

∏

(i,j)∈Dλ/µ

1

n
kij−1
ij

∫ ∞

0

w−s−1
∏

(i,j)∈Dλ/µ

1

w + nij

dw

in Section 2 and show that this function actually interpolates O-sum for the Schur
multiple zeta values in Section 3. Moreover, we prove

Theorem 1.12 (Theorem 3.6). Let λ and µ be partitions. Put δ = λ/µ and kkk ∈ IDδ
and let kkk† be the dual tableau of kkk, for s ∈ C we have

Ikkk(s) = Ikkk†(s).
4



2. Integral representation and series expansion

In this section, we make preparations for constructing the function Ikkk(s) for Schur
multiple zeta values. As in introduction, taking Theorem 1.11 into account, proved by
Kamano and Onozuka [KO, Theorem 1.6], we can expect that Ikkk(s) can be defined as
follows:

Ikkk(s) = −
sin(πs)

π

∑

(nij)∈SSY Tλ/µ

∏

(i,j)∈Dλ/µ

1

n
kij−1
ij

∫ ∞

0

w−s−1
∏

(i,j)∈Dλ/µ

1

w + nij
dw.

We first prove the following lemma for the calculation of this integral:

Lemma 2.1. For any positive integers r, n and s ∈ C with −r < ℜ(s) < 0,

∫ ∞

0

w−s−1

(w + n)r
dw = −

π

sin(πs)

1

ns+r

r−1∏

ℓ=1

s+ r − ℓ

r − ℓ
.

Proof. Changing the variable by w = nv leads to
∫ ∞

0

w−s−1

(w + n)r
dw = n−s−r

∫ ∞

0

v−s−1

(v + 1)r
dv =

1

ns+r
B(−s, s+ r),

where B is the beta function. By a recurrence relation for beta functions and the
reflection formula, we have

∫ ∞

0

w−s−1

(w + n)r
dw =

1

ns+r

r−1∏

ℓ=1

s+ r − ℓ

r − ℓ
B(−s, s+ 1)

= −
π

sin(πs)

1

ns+r

r−1∏

ℓ=1

s+ r − ℓ

r − ℓ
.

This proves the lemma. �

We next consider, as an example, the case of λ = (2, 1) and show that the function
produced by our calculation interpolates O-sum with respect to λ = (2, 1). In −1 <
ℜ(s) < 0, by arranging the order of the running indices n11, n12 and n21, we compute

∑

(nij)∈SSY Tλ

1

nk11−1
11 nk12−1

12 nk21−1
21

∫ ∞

0

w−s−1

(w + n11)(w + n12)(w + n21)
dw

=
∑

n11=n12<n21

1

nk11−1
11 nk12−1

12 nk21−1
21

∫ ∞

0

w−s−1

(w + n11)2(w + n21)
dw

+
∑

n11<n12=n21

1

nk11−1
11 nk12−1

12 nk21−1
21

∫ ∞

0

w−s−1

(w + n11)(w + n21)2
dw

+

(
∑

n11<n12<n21

+
∑

n11<n21<n12

)

1

nk11−1
11 nk12−1

12 nk21−1
21

∫ ∞

0

w−s−1

(w + n11)(w + n12)(w + n21)
dw

5



=
∑

n11=n12<n21

1

nk11−1
11 nk12−1

12 nk21−1
21

∫ ∞

0

w−s−1

(w + n11)2(w + n21)
dw

+
∑

n11<n12=n21

1

nk11−1
11 nk12−1

12 nk21−1
21

∫ ∞

0

w−s−1

(w + n11)(w + n21)2
dw

−
π

sin(πs)

(
∑

n11<n12<n21

+
∑

n11<n21<n12

)
∑

(i,j)∈Dλ

1

nk11
11 nk12

12 nk21
21

1

ns
ij

∏

(i,j)6=(i′,j′)

ni′j′

ni′j′ − nij
.

The second and fourth terms are obtained by the same procedure as in [KO]. We
consider the integral

∫ ∞

0

w−s−1

(w + n11)2(w + n21)
dw.

The partial fraction decomposition and Lemma 2.1 lead to
∫ ∞

0

w−s−1

(w + n11)2(w + n21)
dw

=

∫ ∞

0

w−s−1

(w + n11)2
1

(n21 − n11)
−

w−s−1

w + n11

1

(n21 − n11)2
+

w−s−1

w + n21

1

(n11 − n21)2
dw

= −
π

sin(πs)

(
(1 + s)

ns+2
11

1

(n21 − n11)
−

1

ns+1
11

1

(n21 − n11)2
+

1

ns+1
21

1

(n11 − n21)2

)

.

In addition, we have

−
sin(πs)

π

∑

n11=n12<n21

1

nk11−1
11 nk12−1

12 nk21−1
21

∫ ∞

0

w−s−1

(w + n11)2(w + n21)
dw

= (1 + s)
∑

n11=n12<n21

1

nk11
11 nk12

12 nk21
21

1

ns
11

n21

(n21 − n11)
−

∑

n11=n12<n21

1

nk11
11 nk12

12 nk21
21

1

ns
11

n11n21

(n21 − n11)2

+
∑

n11=n12<n21

1

nk11
11 nk12

12 nk21
21

1

ns
21

n2
11

(n11 − n21)2
.

By changing the role of n11 and n21 in the above, we have a similar formula for the case
n11 < n12 = n21. Combining these calculations, we have

Ikkk(s) =(1 + s)
∑

n11=n12<n21

1

nk11
11 nk12

12 nk21
21

1

ns
11

n21

(n21 − n11)

−
∑

n11=n12<n21

1

nk11
11 nk12

12 nk21
21

1

ns
11

n11n21

(n21 − n11)2
+

∑

n11=n12<n21

1

nk11
11 nk12

12 nk21
21

1

ns
21

n2
11

(n11 − n21)2

+ (1 + s)
∑

n11<n12=n21

1

nk11
11 nk12

12 nk21
21

1

ns
21

n11

(n11 − n21)

(2.2)
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−
∑

n11<n12=n21

1

nk11
11 nk12

12 nk21
21

1

ns
21

n11n21

(n11 − n21)2
+

∑

n11<n12=n21

1

nk11
11 nk12

12 nk21
21

1

ns
11

n2
21

(n21 − n11)2

+

(
∑

n11<n12<n21

+
∑

n11<n21<n12

)
∑

(i,j)∈Dλ

1

nk11
11 nk12

12 nk21
21

1

ns
ij

∏

(i,j)6=(i′,j′)

ni′j′

ni′j′ − nij

.

Since we expect this Ikkk(s) to interpolate O-sum for λ = (2, 1), we substitute non-
negative integers for s. At this stage, although non-negative integers are outside of
the domain of Ikkk(s) given by the integral, we can consider Ikkk(s) to be analytically
continued to the half plane ℜ(s) > −1 since the series on the right-hand side converges.
Substituting s = 0, the right-hand side becomes

Ikkk(0) =
∑

n11=n12<n21

1

nk11
11 nk12

12 nk21
21

n21

(n21 − n11)
−

∑

n11=n12<n21

1

nk11
11 nk12

12 nk21
21

n11n21

(n21 − n11)2

+
∑

n11=n12<n21

1

nk11
11 nk12

12 nk21
21

n2
11

(n11 − n21)2

+
∑

n11<n12=n21

1

nk11
11 nk12

12 nk21
21

n11

(n11 − n21)
−

∑

n11<n12=n21

1

nk11
11 nk12

12 nk21
21

n11n21

(n11 − n21)2

+
∑

n11<n12=n21

1

nk11
11 nk12

12 nk21
21

n2
21

(n21 − n11)2

+
∑

n11<n21<n12

1

nk11
11 nk12

12 nk21
21

+
∑

n11<n12<n21

1

nk11
11 nk12

12 nk21
21

=ζλ(kkk).

Substituting s = m ∈ Z≥0, the right-hand side becomes

Ikkk(m) =(1 +m)
∑

n11=n12<n21

1

nk11
11 nk12

12 nk21
21

1

nm
11

n21

(n21 − n11)

−
∑

n11=n12<n21

1

nk11
11 nk12

12 nk21
21

1

nm
11

n11n21

(n21 − n11)2
+

∑

n11=n12<n21

1

nk11
11 nk12

12 nk21
21

1

nm
21

n2
11

(n11 − n21)2

+ (1 +m)
∑

n11<n12=n21

1

nk11
11 nk12

12 nk21
21

1

nm
21

n11

(n11 − n21)

−
∑

n11<n12=n21

1

nk11
11 nk12

12 nk21
21

1

nm
21

n11n21

(n11 − n21)2
+

∑

n11<n12=n21

1

nk11
11 nk12

12 nk21
21

1

nm
11

n2
21

(n21 − n11)2

+
∑

e1+e2+e3=m

∑

n11<n21<n12

1

nk11+e1
11 nk12+e2

12 nk21+e3
21

+
∑

e1+e2+e3=m

∑

n11<n12<n21

1

nk11+e1
11 nk12+e2

12 nk21+e3
21

7



=
∑

n11=n12<n21

1

nk11
11 nk12

12 nk21
21

(
m+ 1

nm
11

+
m

nm−1
11 n21

+ · · ·+
1

nm
21

)

+
∑

n11<n12=n21

1

nk11
11 nk12

12 nk21
21

(
m+ 1

nm
21

+
m

nm−1
21 n11

+ · · ·+
1

nm
11

)

+

(
∑

n11<n21<n12

+
∑

n11<n12<n21

)
∑

e1+e2+e3=m

1

nk11+e1
11 nk12+e2

12 nk21+e3
21

=
∑

|εεε|=m

ζλ(kkk + εεε).

The above two calculations ensure that our Ikkk(s) interpolates O-sum associated with
λ = (2, 1). Based on this, we would like to produce a series expression of Ikkk(s) for the
general case, as well. In preparation for that, we offer the following lemma, which gives
explicitly the coefficients of the partial fraction decomposition:

Lemma 2.3. Let

P (N) =

RN∏

α=1

1

(w + nα)rα

with distinct integers n1, . . . , nRN
. Then

P (N) =

RN∑

α=1

rα∑

ℓ=1

1

(w + nα)ℓ
drα−ℓ

dwrα−ℓ

(

1

(rα − ℓ)!

∏

β 6=α

1

(w + nβ)rβ

)∣
∣
∣
∣
∣
w=−nα

.

Proof. This lemma follows from the uniqueness of the Laurent series expansion. �

We apply Lemma 2.3 with Lemma 2.1, then it holds that

−
sin(πs)

π

∫ ∞

0

P (N)w−s−1 dw

=

RN∑

α=1

rα∑

ℓ=1

1

ns+ℓ
α

ℓ−1∏

p=1

s+ ℓ− p

ℓ− p

drα−ℓ

dwrα−ℓ

(

1

(rα − ℓ)!

∏

β 6=α

1

(w + nβ)rβ

)∣
∣
∣
∣
∣
w=−nα

.(2.4)

For N = (nij) ∈ SSY Tλ, we rewrite

∏

(i,j)∈Dλ/µ

1

w + nij
=

RN∏

α=1

1

(w + nα)rα

by summarizing the same nij . Identity (2.4) then leads to

Ikkk(s)

= −
sin(πs)

π

∑

N∈SSY Tλ/µ

1

Nkkk−111

∫ ∞

0

w−s−1
∏

(i,j)∈Dλ/µ

1

w + nij

dw

=
∑

N∈SSY Tλ/µ

1

Nkkk−111

RN∑

α=1

rα∑

ℓ=1

1

ns+ℓ
α

ℓ−1∏

p=1

s+ ℓ− p

ℓ− p

drα−ℓ

dwrα−ℓ

(

1

(rα − ℓ)!

∏

β 6=α

1

(w + nβ)rβ

)∣
∣
∣
∣
∣
w=−nα

.
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We can now summarize the above as follows.

Lemma 2.5 (Explicit series form of Ikkk(s)). For −1 < ℜ(s) < 0,

Ikkk(s) =
∑

N∈SSY Tλ/µ

1

Nkkk−111

RN∑

α=1

rα∑

ℓ=1

1

ns+ℓ
α

ℓ−1∏

p=1

s+ ℓ− p

ℓ− p

drα−ℓ

dwrα−ℓ

(

1

(rα − ℓ)!

∏

β 6=α

1

(w + nβ)rβ

)∣
∣
∣
∣
∣
w=−nα

.

Substituting s = 0, we have

Ikkk(0) =
∑

N∈SSY Tλ/µ

1

Nkkk−111

RN∑

α=1

rα∑

ℓ=1

1

nℓ
α

drα−ℓ

dwrα−ℓ

(

1

(rα − ℓ)!

∏

β 6=α

1

(w + nβ)rβ

)∣
∣
∣
∣
∣
w=−nα

=
∑

N∈SSY Tλ/µ

1

Nkkk−111

RN∏

α=1

1

nrα
α

= ζλ/µ(kkk).

This ensures that the series expansion converges in ℜ(s) ≥ 0, which gives the analytic
continuation of Ikkk(s) in ℜ(s) > −1. Furthermore, the series expansion given in Lemma
2.5 is a sum of products of the polynomial and zeta functions associated with a root
system of type A. Therefore, Ikkk(s) can be meromorphically continued to the whole
space of C (see [MT, Section 2]).

3. Interpolation of the generalized duality formula

In this section, we revisit [HMO, Lemma 2.1] and generalize the lemma with the case
ai = aj .

Lemma 3.1 ([HMO, Lemma 2.1]). For m ∈ Z≥0 and a1, . . . , ar ∈ R with ai 6= aj for
i 6= j, we have

∑

e1+···+er=m
ei≥0 (1≤i≤r)

ae11 · · · aerr =
r∑

i=1

am+r−1
i

∏

j 6=i

(ai − aj)
−1.

We note that if a1 = a2, then for each i = 1, 2 the product
∏

j 6=i(ai − aj)
−1 is not

defined. On the other hand, following the way to the proof of Lemma 3.1 in [HMO],
we can obtain the partial fraction decomposition form formally. For example, letting

Ai = ar−1
i

∏

j 6=i

(ai − aj)
−1,

we have

1

1− a1x

1

1− a2x

1

1− a3x
=

A1

1− a1x
+

A2

1− a2x
+

A3

1− a3x

=
A1(1− a2x) + A2(1− a1x)

(1− a1x)(1− a2x)
+

A3

1− a3x
.

9



We note that

A1(1− a2x) + A2(1− a1x) =
a1a2 + a1a2a3x− a3(a1 + a2)

(a1 − a3)(a2 − a3)
.

Therefore,

1

1− a1x

1

1− a2x

1

1− a3x
=

a1a2 + a1a2a3x− a3(a1 + a2)

(1− a1x)(1− a2x)(a1 − a3)(a2 − a3)
+

A3

1− a3x
.

Substituting a1 = a2, we have

1

(1− a1x)2
1

1− a3x
=

a21 + a21a3x− 2a3a1
(1− a1x)2(a1 − a3)2

+
A3

1− a3x

=
a1

(1− a1x)2(a1 − a3)
−

a1a3
(1− a1x)(a1 − a3)2

+
A3

1− a3x
.

Using the above identity, we have

(3.2)
∑

e1+e2+e3=m
ei≥0 (1≤i≤3)

ae11 ae22 ae33 = (m+ 1)am1
a1

a1 − a3
+ am1

a1a3
(a1 − a3)2

+ am3 A3.

Substituting a1 = n−1
11 , a2 = n−1

12 and a3 = n−1
21 into (3.2) and making a simple calcu-

lation, we obtain formula (2.2) interpolating O-sum for Schur multiple zeta values of
shape (2, 1). Indeed, keeping a1 = a2 and n11 = n12 in mind, we have

∑

e1+e2+e3=m
ei≥0 (1≤i≤3)

1

ne1
11

1

ne2
12

1

ne3
21

= (m+ 1)
1

nm+1
11

(
1

n11
−

1

n21

)−1

+
1

nm+1
11

1

n21

(
1

n11
−

1

n21

)−2

+
1

nm+2
21

(
1

n21
−

1

n11

)−2

= (m+ 1)
1

nm
11

n21

n21 − n11
+

1

nm
11

n11n21

(n21 − n11)2
+

1

nm
21

n2
11

(n11 − n21)2
.

(3.3)

This calculation corresponds to the terms of (2.2) with n11 = n12. Swapping the role of
n11 and n21, we obtain the identity corresponding to n12 = n21. Thus, it holds that

Ikkk(m) =

(
∑

n11<n12<n21

+
∑

n11<n21<n12

)

1

nk11
11 nk12

12 nk21
21

∑

e1+e2+e3=m
ei≥0 (1≤i≤3)

1

ne1
11

1

ne2
12

1

ne3
21

+

(
∑

n11=n12<n21

+
∑

n11<n12=n21

)

1

nk11
11 nk12

12 nk21
21

∑

e1+e2+e3=m
ei≥0 (1≤i≤3)

1

ne1
11

1

ne2
12

1

ne3
21

=
∑

|εεε|=m

ζλ(kkk + εεε).

The first two terms are obtained by the same calculation as in [HMO]; the last two are
obtained via computation (3.3).
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More generally, for fixed A = (ai), by summarizing the same ai, we can define

P (A) =
r∏

i=1

1

1− aix
=

RA∏

α=1

1

(1− bαx)rα

with distinct b1, . . . , bRA
. Then, as in the proof of Lemma 2.3, the uniqueness of the

Laurent series expansion gives

P (A) =

RA∑

α=1

rα∑

ℓ=1

1

(1− bαx)ℓ
drα−ℓ

dxrα−ℓ

(

1

(−bα)rα−ℓ(rα − ℓ)!

∏

β 6=α

1

(1− bβx)rβ

)∣
∣
∣
∣
∣
x=b−1

α

.

By expanding into the geometric series, we have the following Lemma:

Lemma 3.4.

∑

e1+···+er=m
ei≥0 (1≤i≤r)

ae11 · · · aerr =

RA∑

α=1

rα∑

ℓ=1

(
m+ ℓ− 1

ℓ− 1

)

bmα A
(ℓ)
α ,

where

A(ℓ)
α =

drα−ℓ

dxrα−ℓ

(

1

(−bα)rα−ℓ(rα − ℓ)!

∏

β 6=α

1

(1− bβx)rβ

)∣
∣
∣
∣
∣
x=b−1

α

.

Theorem 3.5. The function Ikkk(s), defined by

Ikkk(s) = −
sin(πs)

π

∑

(nij)∈SSY Tλ/µ

∏

(i,j)∈Dλ/µ

1

n
kij−1
ij

∫ ∞

0

w−s−1
∏

(i,j)∈Dλ/µ

1

w + nij
dw,

or

Ikkk(s) =
∑

N∈SSY Tλ/µ

1

Nkkk−111

RN∑

α=1

rα∑

ℓ=1

1

nm+ℓ
α

ℓ−1∏

p=1

s+ ℓ− p

ℓ− p

drα−ℓ

dwrα−ℓ

(

1

(rα − ℓ)!

∏

β 6=α

1

(w + nβ)rβ

)∣
∣
∣
∣
∣
w=−nα

,

interpolates O-sum for the Schur multiple zeta values of shape λ/µ.

Proof. As above, substituting bα = n−1
α into Lemma 3.4, we can compute

∑

∑
eij=m

eij≥0

∏

(i,j)∈Dλ/µ

(
1

nij

)eij

=

RN∑

α=1

rα∑

ℓ=1

(
m+ ℓ− 1

ℓ− 1

)
1

nm
α

drα−ℓ

dxrα−ℓ

(

(−nα)
rα−ℓ 1

(rα − ℓ)!

∏

β 6=α

1

(1− n−1
β x)rβ

)∣
∣
∣
∣
∣
x=nα

= N111

RN∑

α=1

rα∑

ℓ=1

(
m+ ℓ− 1

ℓ− 1

)
1

nm+ℓ
α

drα−ℓ

dxrα−ℓ

(

(−1)rα−ℓ 1

(rα − ℓ)!

∏

β 6=α

1

(nβ − x)rβ

)∣
∣
∣
∣
∣
x=nα

,
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where N111 =
∏

nij =
∏

nrα
α . Changing the variable by w = −x, we obtain

N111

RN∑

α=1

rα∑

ℓ=1

(
m+ ℓ− 1

ℓ− 1

)
1

nm+ℓ
α

drα−ℓ

dxrα−ℓ

(

1

(rα − ℓ)!

∏

β 6=α

1

(nβ + w)rβ

)∣
∣
∣
∣
∣
w=−nα

.

Therefore, we have

Ikkk(m) =
∑

N∈SSY Tλ/µ

1

Nkkk−111

RN∑

α=1

rα∑

ℓ=1

1

nm+ℓ
α

ℓ−1∏

p=1

m+ ℓ− p

ℓ− p

drα−ℓ

dwrα−ℓ

(

1

(rα − ℓ)!

∏

β 6=α

1

(w + nβ)rβ

)∣
∣
∣
∣
∣
w=−nα

=
∑

N∈SSY Tλ/µ

1

Nkkk−111

RN∑

α=1

rα∑

ℓ=1

1

nm+ℓ
α

(
m+ ℓ− 1

ℓ− 1

)
drα−ℓ

dwrα−ℓ

(

1

(rα − ℓ)!

∏

β 6=α

1

(w + nβ)rβ

)∣
∣
∣
∣
∣
w=−nα

=
∑

N∈SSY Tλ/µ

1

Nkkk

∑

∑
eij=m

eij≥0

∏

(i,j)∈Dλ/µ

(
1

nij

)eij

.

This ensures that Ikkk(s) interpolates the Ohno functions to the Schur multiple zeta
functions. �

Finally, we obtain the duality formula for Ikkk(s) as complex functions:

Theorem 3.6. Let λ and µ be two partitions such that λi ≥ µi for all i, and let
δ = λ/µ. Let kkk† be the dual tableau of kkk ∈ IDδ . Then, for s ∈ C we have

Ikkk(s) = Ikkk†(s).

Proof. By Theorem 1.6 and Theorem 3.5, we have Ikkk(s) = Ikkk†(s) for s ∈ Z≥0. As

∑

N∈SSY Tδ

1

Nkkk−111





RN∑

α=1

rα∑

ℓ=1

1

nm+ℓ
α

(
m+ ℓ− 1

ℓ− 1

)
drα−ℓ

dwrα−ℓ

(

1

(rα − ℓ)!

∏

β 6=α

1

(w + nβ)rβ

)∣
∣
∣
∣
∣
w=−nα





is a Dirichlet series for each (i, j) ∈ Dλ/µ, the function Ikkk(s) is also a Dirichlet series.
By the uniqueness theorem for the Dirichlet series (see [Ap, Theorem 11.3]), we have
Ikkk(s) = Ikkk†(s) for ℜ(s) > −1 and kkk ∈ IDδ . Moreover, Ikkk(s) is meromorphically continued
to the whole space of C. Thus, the assertion is proved. �

Remark 3.7. When we put λ = ({1}r) and µ = ∅ for a positive integer r, then
Theorem 3.6 implies Theorem 1.9. Furthermore, substituting non-negative integers for
s, we obtain Theorem 1.2.
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