
Open Access. © 2020 J. H. Cheon et al., published by De Gruyter. This work is licensed under the Creative Commons
Attribution 4.0 License

J. Math. Cryptol. 2020; 14:397–413

Research Article

Jung Hee Cheon, Wonhee Cho, Minki Hhan, Jiseung Kim, and Changmin Lee*

Algorithms for CRT-variant of Approximate
Greatest Common Divisor Problem
https://doi.org/10.1515/jmc-2019-0031
Received Jul 15, 2019; accepted Aug 25, 2020

Abstract: The approximate greatest common divisor problem (ACD) and its variants have been used to con-
structmany cryptographic primitives. In particular, the variants of theACDproblembased onChinese remain-
der theorem (CRT) are being used in the constructions of a batch fully homomorphic encryption to encrypt
multiple messages in one ciphertext. Despite the utility of the CRT-variant scheme, the algorithms that se-
cures its security foundation have not been probed well enough.
In this paper, we propose two algorithms and the results of experiments in which the proposed algorithms
were used to solve the variant problem. Both algorithms take the same time complexity 2Õ(

𝛾

(η−ρ)2
) up to a poly-

nomial factor to solve the variant problem for the bit size of samples 𝛾, secret primes η, and error bound ρ.
Our algorithm gives the first parameter condition related to η and 𝛾 size. From the results of the experiments,
it has been proved that the proposed algorithms work well both in theoretical and experimental terms.

Keywords: CCK-ACD; Lattice; orthogonal lattice attack; SDA

2020 Mathematics Subject Classification: 11Y16

1 Introduction
Howgrave-Graham had defined and studied the approximate greatest common divisor (ACD) problem in [16].
The ACD problem and its variant problems have been used to construct cryptographic schemes such as fully
homomorphic encryption (FHE) and cryptographic multilinear map [4, 6, 9, 19].

As the first variant problem, the partial approximate common divisor (PACD) problem was suggested.
This variant problem has allowed increasing efficiency of ACD-based homomorphic encryption scheme [7].
As the series of work, in the paper [4], another variant of the ACD problem was introduced to suggest a new
FHE scheme, which is called CCK-FHE scheme, over the integers. This scheme utilizes Chinese remainder
theorem to encrypt multiple messages in one ciphertext. Informally, for integers 𝛾, n, η, and ρ such that
𝛾 ≫ n · η and η ≫ ρ, the 𝛾-bit ciphertext integer b of this scheme is characterized by satisfying modulo
equations b ≡ ri mod pi for 1 ≤ i ≤ n, where ri’s are ρ-bit integers and pi’s are η-bit fixed secret primes. The
problem that distinguishes between ciphertexts of CCK-FHE scheme and uniform samples of 𝛾-bit integer, in
which the 𝛾-bit integer N =

∏︀n
i=0 pi is given as the product of secret primes, is called the CCK-ACD. ¹ In case

n = 1, the problem is called PACD problem.
On the other hand, algorithms to directly solve the CCK-ACD problem have garnered less attention. Gal-

braith, Gebregiyorgis and Murphy said that an algorithm to solve the CCK-ACD problem exploiting CRT struc-

*Corresponding Author: Changmin Lee: ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, INRIA, UCBL), 46 Allée d’Italie,
69007 Lyon, France; Email: changmin.lee@ens-lyon.fr
Jung Hee Cheon: Seoul National University, 1 Gwanak-ro, 08826 Seoul, South Korea; Email: jhcheon@snu.ac.kr
Wonhee Cho: Seoul National University, 1 Gwanak-ro, 08826 Seoul, South Korea; Email: wony0404@snu.ac.kr
Minki Hhan: Seoul National University, 1 Gwanak-ro, 08826 Seoul, South Korea; Email: hhan_@snu.ac.kr
Jiseung Kim: Seoul National University, 1 Gwanak-ro, 08826 Seoul, South Korea; Email: kaiser351@snu.ac.kr
1 We give a formal definition of the CCK-ACD problem in Section 2.

https://doi.org/10.1515/jmc-2019-0031

398 | J. H. Cheon et al.

ture is an open problem [13]. In fact, there has been no algorithms for solving the CCK-ACD problem so far
except for the method of Chen and Nguyen [3], which depends only on ρ. Instead, in order to provide the
evidence of CCK-FHE’s security, authors in [4] suggested a reduction from PACD to CCK-ACD.

However, while the current CCK-FHE parameters are set to be secure for the Chen and Nguyen’s attack,
the authors in [4] did not use the parameter settings obtained from the reduction for known PACD parameters.
Therefore, it is necessary to determine whether the CCK-FHE parameters satisfies the desired security even
under the current conditions of η and 𝛾. In sum, one can naturally pose the following question:

Is it possible to present the time complexity for solving CCK-ACD
by using a mathematical algorithm that depends on η and 𝛾?

Previous works
In order to solve the CCK-ACD problem, several naive methods are suggested. Their main idea was to exploit
the feature of the problem that the error terms are relatively small and the product of the secret primes is given.
In otherwords, one can try a brute-force attack to recover a secret prime pi from amultipleN =

∏︀n
i=0 pi and an

sample of CCK-ACD represented by b = pi · qi + ri for some fixed i, where an integer ri ∈ (−2ρ , 2ρ) except i = 0.
Themethod is to compute the greatest commondivisor between (GCD) b−a andN for all integers a ∈ (−2ρ , 2ρ).
It would have time complexity Õ(2ρ), so ρ should be set to Ω(λ) for the security parameter λ. Furthermore, [3]
and [7] that were proposed as the variants of exhaustive search to solve (P)ACD in Õ(2ρ/2) time complexity,
can be applied to solve the CCK-ACD problem for the feature mentioned previously. In addition, one can also
use the factorization with the elliptic curve method to find a factor of N in 2Õ(

√η) time complexity, where η is
the log-size of pi. Thus, η should be set to Ω(λ2) for the security parameter λ.

As another trial to solveCCK-ACD, authors in [14] consideredwell-knownalgorithms for solvingPACD such
as orthogonal lattice attack method (OLA) and simultaneous Diophantine approximation (SDA) [6, 12, 16, 19]
in the context of CCK-ACD. The SDA and OLA make use of a lattice reduction algorithm for a specific lattice
whose entries consist of the given PACD samples and a multiple N =

∏︀n
i=0 pi. If one can obtain a short vector

from the lattice by the lattice reduction algorithm, it leads to a solution of the PACD problem which utilizes
the coordinates of the vector. Since these algorithms for (P)ACD have time complexity depending on η and
𝛾, one can expect that the expansion of the algorithms to the CCK-ACD problem will provide answers to the
main question.

However, if a lattice as similar to SDA and OLA is being constructed to solve CCK-ACD, there exist several
short vectors of similar length in the lattice due to the symmetry of pi. Thus if short vector from the lattice
by a lattice reduction algorithm is a short linear combination of some of these vectors, one cannot extract
information on a certain prime pi from the vector.

Independent work
Recently, Coron and Pereira [10] proposed an algorithm to solve the multi-prime ACD problem, which is the
same as the ‘search’ CCK-ACD problem in this paper. The main idea of the attack is also the same as our SDA-
style algorithm that combines the SDA with algebraic steps from the Cheon et al. [5]. In this paper, we also
propose another OLA-style algorithm to solve ‘decisional’ CCK-ACD problem using OLA with a new distin-
guisher determinant.

1.1 Our Work

In this paper, we propose two mathematical algorithms to solve the CCK-ACD problem by extending the OLA
and SDA methods that are well-known for solving the ACD problem using lattice technique. Both algorithms

take the same time complexity 2O
(︁

𝛾

(η−ρ)2

)︁
up to polynomial factors for the bit-size of samples 𝛾, secret primes

η and error ρ. Our algorithms are the first algorithms related to η and 𝛾 for solving the CCK-ACD problem.

Algorithms for CCK-ACD problem | 399

Let bj be a CCK-ACD sample of bj ≡ rij mod pi for 1 ≤ j ≤ k and 0 ≤ i ≤ n. Let b and ri be a vector (bj) and
(rij), respectively. Technically, the first step of the classical OLA algorithm on input bj is to compute a lattice
Λ⊥
N (b), which is a set of orthogonal vectors to b over ZN . Similarly, one can define a lattice Λ⊥({r0, · · · , rn}),

which is a set of orthogonal vectors to ri for all i over the integers. Then we have

Λ⊥({r0, · · · , rn}) ⊂ Λ⊥
N (b).

It implies that the size of k−n−1 shortest vectors of Λ⊥
N (b) is less than that of Λ⊥({r0, · · · , rn}). The classical

OLA algorithm assumes that the k − n − 1 shortest vectors is a generator of Λ⊥({r0, · · · , rn}). Even more, the
algorithm expects that k − n − 1 short vectors become a generator. So finding k − n − 1 short vectors is likely
to lead us to recover the lattice Λ⊥({r0, · · · , rn}).

However, one problem might arise after finding those short vectors. In the case of PACD, (i.e n = 1), the
recovered lattice has rank two and ‖r1‖ ≪ ‖r0‖. So we can obtain the vector r1 easily. Then, the next step
is to recover the secret integer p1 by computing the GCD between bj − rj1 and N = p0 · p1. If the last step
reveals a non-trivial factor of N, we can conclude that the bj’s are PACD samples. Unfortunately, in the case
of CCK-ACD, the classical OLA algorithm faces a hard task to recover the exact vector ri except for small n
since a short vector from the lattice would be a short linear combination of several ri’s. Instead, we employ
a determinant of the lattice as a new distinguisher to solve the decision CCK-ACD problem. We show that a
sub-lattice of the output lattice of the classic OLA has determinant of a different-sized depending on the type
of inputs. Then, computation of a determinant enables us to avoid the obstacle to find the exact vector ri. The
overall time complexity heavily depends on the cost of a lattice reduction to find a short vector. Therefore, the
time complexity shall be asymptotically same to the classical one. For more details, please refer to Section 3.

We also propose a SDA-style algorithm to find all secret parameters in the CCK-ACD problem beyond the
decision problem. The algorithm consists of two steps; find a short vector of certain lattice using a lattice
reduction algorithm and then recover the factors p1, · · · , pn by employing the Cheon et al.’s technique [5].
More precisely, we consider a column lattice generated by the following matrix:

B =
(︃
1 0
bT N · Ik

)︃
.

According to theoriginal SDAapproach, this lattice includes a short vector of the form (N/pi , r1i·N/pi , . . . , rki·
N/pi) for all i. In the case of n = 1, (i.e. PACD problem), the lattice has only one short vector and the first entry
is a multiple of N/p1. So it allows us to factorize N. When it comes to the CCK-ACD problem, any short vector
is a linear combination of the vectors and it would not be a multiple of nontrivial factor of N. It means that
the first entry of a short vector that we obtain is an integer of the form

∑︀n
i=1 ci ·N/pi for some small integers ci.

In order to use the integer, we should factor in another well-known algorithm. Namely, we would like to cite
a technique introduced in [5]. The reference we cite from [5] allows the linear summation of N/pi to be called
a dual instance. This instance allows to convert modulo equations into integer equations by exploiting the
CRT properties of the CCK-ACD samples and its relation to dual instance. Therefore, it leads to recover N/pi
for all i. The complexity of the new algorithm primarily depends on the first step, so it takes time complexity
as stated above. For more details, please refer to Section 4.

We provide experimental results to guarantee that our algorithms work well both in theoretical and ex-
perimental terms under the various parameters of CCK-ACD. We observe the OLA is more practical than SDA
while the asymptotic complexities are the same.

Organization
In Section 2, we introduce preliminary information related to the lattice. Next, we revisit the OLA to solve the
CCK-ACD problem in Section 3. Also, we extend the SDA algorithm in the context of CCK-ACD and propose
the first algorithm which recovers all secret primes pi’s of the CCK-ACD problem in Section 4. In addition, we
present some experimental results for our algorithms in Section 5.

400 | J. H. Cheon et al.

2 Preliminaries
Notation
Throughout this paper, we use a ← A to denote the operation by uniformly choosing an element a from a
finite set A or generating a sample according to a distribution A. We let Zq denote the set Z ∩ (−q/2, q/2] for
the positive integer q. We use the notation [t]p to denote the integer in Zp congruent to t mod p. We define
CRT(p1 ,p2 ,...,pn)(r1, r2, . . . , rn) (or abbreviated as CRT(pi)(ri)) for pairwise co-prime integers p1, p2, . . . , pn as
the integer in

(︀
−12
∏︀n
i=1 pi ,

1
2
∏︀n
i=1 pi

]︀
congruent to ri in the modulus pi for each i ∈ {1, 2, . . . , n}.

We use bold letters to denote vectors or matrices and denote the set of all m × n matrices over Z by Zm×n.
FormatrixA, we denote the transpose ofA byAT and denote the i-th row vector ofA by [A]i. WhenA = (ai,j) ∈
Zm×n is given, we define the infinite norm ‖A‖∞ as max

1≤j≤n

∑︀n
i=1|ai,j| and use the notation A mod N to denote

the matrix ([ai,j]N) ∈ Zm×n. We denote by diag(a1, . . . , an) the diagonal matrix with diagonal coefficients
a1, . . . , an. When b is an integral matrix, we define size(b) as the logarithm of the largest entries of b.

For a vector v = (v1, . . . , vn), we define the ℓ2-norm ‖v‖2 (or abbreviated as ‖v‖) and ℓ1-norm ‖v‖1 as√︁∑︀n
i=1 vi2 and

∑︀n
i=1|vi|, respectively.

2.1 Lattices

A lattice Λ is a discrete additive subgroup ofRn. We call a set of linearly independent vectors b = {b1, b2, · · · ,
bm} ⊂ Rn a basis of a lattice Λ if Λ is the set of all Z-linear combinations of the vectors b1, b2, · · · , bm. We
denote such lattice Λ generated by the basis b by Λ(b). We sometimes use the notation Λ as abbreviated,
instead of Λ(b). In particular, when a lattice Λ is a subset ofZn, it is called an integral lattice. In this work, we
only take into account the integral lattice and regard a lattice as an integral lattice without special mention.
If we regard a basis b = {b1, b2, · · · , bm} of lattice Λ as a matrix whose column vectors consist of vectors
bi for 1 ≤ i ≤ m, b is called a basis matrix of Λ. The rank and determinant of lattice Λ is defined as m and
det(Λ) =

√︀
det(bTb) for any basis matrix b, respectively. When n = m, this lattice is called a full-rank lattice

and det(Λ) = det(b) holds. Throughout this paper, we denote lattice Λwhose basis vectors are b1, b2, · · · , bm
as Λ = ⟨b1, b2, · · · , bm⟩.

It is known that for a lattice Λ = Λ(b) ∈ Rn with basis b = {b1, b2, · · · , bm}, the following premise holds:

det(Λ) ≤
m∏︁
i=1
‖bi‖

In addition, when a set of column vectors u = {u1, u2, · · · , uk} ⊂ Zn is given, we define the orthogonal
lattices

Λ⊥(u) := {v ∈ Zn | ⟨v, uj⟩ = 0 for all 1 ≤ j ≤ k}.

Λ⊥
q (u) := {v ∈ Zn | ⟨v, uj⟩ ≡ 0 mod q for all 1 ≤ j ≤ k}.

Successive Minima
Let Λ be a lattice of rank n. The successive minima of Λ are λ1, · · · , λn ∈ R and λi is minimal for any 1 ≤ i ≤ n
such that there exist i linearly independent vectors v1, . . . , vi ∈ Λ with ‖vj‖ ≤ λi for 1 ≤ j ≤ i.

In order to reduce the size of successive minima, the Gaussian Heuristic [1] is deemed effective.

Gaussian Heuristic
LetΛ be a rank-n lattice. TheGaussianHeuristic states that the size of successiveminimaofΛ is approximately
as follows.

λi(Λ) ≈
√︂

n
2πe det(Λ)

1/n for all i ∈ {1, 2, · · · , n}.

Algorithms for CCK-ACD problem | 401

Ajtai showed that the above equation holds for a random lattice with overwhelming probability [1].

Finding a short vector of a lattice is essential in our attack. There are some algorithms to find a short
vector of a lattice, which is called lattice reduction algorithms.

Lattice Reduction Algorithm
The LLL algorithm [17] and the BKZ algorithm [15] are well-known lattice reduction algorithms.Wemainly use
BKZ algorithms to find an approximately short vector of a lattice. According to [15], the block size β of the BKZ
algorithm determines how short should the output vector of the BKZ algorithm be. With the BKZ algorithm
to the rank-n lattice Λ with basis matrix b, we can achieve a short vector v in poly(n, size(b)) · CHKZ(β) times
which satisfies the following

‖v‖ ≤ min{2(𝛾β)
n−1

2(β−1)+
3
2 · (detΛ)1/n , 4(𝛾β)

n−1
β−1 +3 · λ1(Λ)},

where 𝛾β ≤ β is the Hermite constant of a rank-β lattice and CHKZ(β) denotes the time spent to get the shortest
vector of a rank-β lattice and can be regarded as 2O(β).

In the case of LLL algorithm, according to [17], the LLL algorithm upon the rank-n lattice Λ with basis
matrix B gives an LLL-reduced basis {b1, · · · , bn} in poly(n, size(b)) times which satisfies the following

‖b1‖ ≤ 2
n−1
4 · (detΛ)1/n , ‖bi‖ ≤ 2

n−1
2 · λi(Λ) for 1 ≤ i ≤ n.

In particular, it is known that a LLL-reduced basis {b1, b2, · · · , bm} ⊂ Rn with δ = 1/4 + 1/
√
2 ≈ 0.957

for a lattice Λ, the following holds

‖bj‖ ≤ 2i/4 · ‖bi*‖ for 1 ≤ j ≤ i ≤ m. (1)

when we let {b1*, · · ·bm*} be the Gram-Schmidt orthogonalization.
For the convenience of calculation, throughout this paper, we useAδ to denote a lattice reduction whose

output contains a short vectorvwithEuclideannorm less than δn ·det(Λ)1/n or δ2n ·λ1(Λ) for an n-dimensional
lattice Λ instead of 2(𝛾β)

n−1
2(β−1)+

3
2 · (detΛ)1/n or 4(𝛾β)

n−1
β−1 +3 · λ1(Λ), respectively. In this case, the root Hermite

factor δ is achieved in time 2O(1/ log δ) · poly(k) by the BKZ algorithm with block size β = Θ(1
log δ).

From now on, we would like to present the formal definition of the CCK-ACD problem, which is a major
concern of this paper.

Definition 1. (CCK-ACD) Let 𝛾, n, η, ρ be positive integers such that χρ be an uniform distribution over
Z ∩ (−2ρ , 2ρ). For η-bit primes p1, · · · , pn, the sampleable distributionD𝛾,η,ρ,n(pi) is defined as

D𝛾,η,ρ,n(pi) = {T ·
n∏︁
i=1
pi + CRT(pi)(ri) | T ← Z ∩ [2𝛾−1/

n∏︁
i=1
pi , 2𝛾 /

n∏︁
i=1
pi), ri ← χρ}.

The (𝛾, η, ρ)-CCK-ACD problem is: Given N = p0
n∏︀
i=1
pi for uniformly chosen p0 ∈ Z ∩ [2𝛾−1/

n∏︀
i=1
pi , 2𝛾 /

n∏︀
i=1
pi)

and polynomially many samples fromD𝛾,η,ρ,n(pi) or χ𝛾 , distinguish CCK-ACD samples from random samples.

In the CCK-ACD problem, we use r0,j to denote bj mod p0 for each j ∈ {1, · · · , k}, where bj ∈ D𝛾,η,ρ,n(pi)’s
are given as CCK-ACD samples. We remark that r0,j may not be small, unlike other ri,j for i ∈ {1, · · · , n}.

3 OLA for the CCK-ACD Problem
In this section, we revisit the orthogonal lattice attackmethod (OLA) and explain how to guarantee the upper

bound of the OLA proposed in [9] for the CCK-ACD problem in time 2O
(︁

𝛾

(η−ρ)2

)︁
.

402 | J. H. Cheon et al.

Our extended OLA algorithm outputs a determinant of certain lattice, which is constructed by CCK-ACD
samples or random integers. In this section, for the CCK-ACD samples, we show that the size of determinant
is bounded by 2 n+1

4 +n(ρ+log k), where k denotes the optimized number of CCK-ACD samples, under the Gaus-
sian Heuristic. In the case of random elements, our algorithm outputs a determinant larger than the value.
From the results, we can solve the CCK-ACD problem by checking the determinant. The full details of our OLA
algorithm shall be given in full in the below.

3.0.1 Analysis of CCK-ACD instances.

Assume that we have k CCK-ACD samples {bj = CRT(pi)(ri,j)}1≤j≤k with N =
∏︀n
i=0 pi, and let b = (b1, · · · , bk)T ,

ri = (ri,1, · · · , ri,k)T for 0 ≤ i ≤ n.
Thefirst stepofOLA,which is described in [9, Section 5.1], is tofind the set of short vectors {u1, · · · , uk−n−1}

in a k-dimensional lattice
Λ⊥
N (b) = {u ∈ Zk | ⟨u, b⟩ ≡ 0 mod N}.

Since bj ≡ ri,j mod N, we observe the relations using the CRT structure⎛⎜⎜⎜⎜⎝
r0,1 r1,1 · · · rn,1
r0,2 r1,2 · · · rn,2
...

...
. . .

...
r0,k r1,k · · · rn,k

⎞⎟⎟⎟⎟⎠ ·
⎛⎜⎜⎜⎜⎝
(p̂−10 mod p0) · p̂0
(p̂−11 mod p1) · p̂1

...
(p̂−1n mod pn) · p̂n

⎞⎟⎟⎟⎟⎠ ≡
⎛⎜⎜⎜⎜⎝
b1
b2
...
bk

⎞⎟⎟⎟⎟⎠ mod N .

If a vector u ∈ Zk satisfies ⟨u, ri⟩ = 0 in integers for all i = 0, · · · , n, then ⟨u, b⟩ ≡ 0 mod N because of the
above relations. Thus, it holds that

Λ⊥({r0, · · · , rn}) ⊂ Λ⊥
N (b)

Moreover, we observe λi(Λ⊥
N (b)) ≤ λi(Λ⊥({r0, · · · , rn})) by the definition of successive minima for all 1 ≤ i ≤

k − n − 1.
We assume the Gaussian heuristic holds on the lattice Λ⊥({r0, · · · , rn}) since all components of ri with

0 ≤ i ≤ n are uniformly chosen from each set. Therefore, it holds that

log |λi(Λ⊥({r0, · · · , rn}))| =
𝛾 − nη + nρ
k − n − 1

for all i = 1, 2, · · · , k−n−1. Note that we omit the small values including log k for the convenience of writing.
We aim at recovering generators of Λ⊥({r0, · · · , rn}). To obtain such vectors uj’s, we run a lattice reduc-

tion algorithm Aδ with root Hermite factor δ on the lattice Λ⊥
N (b). By the approximate factor δ of a lattice

reduction algorithm Aδ, the j-th output vector uj of Aδ on the lattice Λ⊥
N (b) satisfies ‖uj‖ ≤ δ2k · λj(Λ⊥

N (b)).
Thus, for all j = 1, 2, · · · , k − n − 1,wj is bounded as follows

‖uj‖ ≤ δ2k · λj(Λ⊥
N (b)) ≤ δ2k · λi(Λ⊥({r0, · · · , rn}))

≤ δ2k · 2
𝛾−nη+nρ
k−n−1 .

We now argue that the vector uj is in Λ⊥({r0, · · · , rn}) under some condition. Since we know ‖ri‖ ≤ k ·2ρ,
it holds for 1 ≤ i ≤ n, 1 ≤ j ≤ k − n − 1

|⟨uj , ri⟩| ≤ ‖wj‖ · ‖ri‖

< (δ2k · 2
𝛾−nη+nρ
k−n−1) · (k · 2ρ)

= 22k log δ+
𝛾−nη+nρ
k−n−1 · 2ρ+log k .

The last value of the equation includes log k, which is however much smaller than the current value. There-
fore, for simplicity purposes, we omit this term.

Algorithms for CCK-ACD problem | 403

By the CRT construction, we have ⟨uj , b⟩ ≡pi ⟨uj , ri⟩ and it is zero in modulo pi for all i. Since pi’s are
η-bit primes, we can therefore ensure the vector uj ∈ Λ⊥

N (b) if |⟨uj , ri⟩| < pi/2 for all i. This condition can be
written as

2k · log δ + 𝛾 − nη + nρ
k − n − 1 + ρ ≤ η, (2)

2(k − n − 1) · log δ + 𝛾

k − n − 1 ≤
(k − 1)(η − ρ)
k − n − 1 − 2(n + 1) log δ.

When we choose k − n − 1 =
√︁

𝛾
2 log δ and apply the AM-GM inequality, it is enough to satisfy log δ as

following inequality
2
√︀
2𝛾 log δ ≤ η − ρ.

Therefore, when we obtain k = n + 1 +
√︁

𝛾
2 log δ CCK-ACD samples and choose δ satisfying log δ < (η−ρ)2

8𝛾 ,

|⟨uj , ri⟩| ≤ pi/2 is established for any 1 ≤ i ≤ n. Thus, {uj}1≤j≤k−n−1 are the generator set of Λ⊥({r0, · · · , rn})
under the condition.

The overall time complexity to recover the generator of Λ⊥({r0, · · · , rn}) is 2
O
(︁

𝛾

(η−ρ)2

)︁
·poly(k) = 2O

(︁
𝛾

(η−ρ)2

)︁
up to polynomial factors.

As the second step, we construct a new lattice that is orthogonal to the lattice generated by {uj}, instead
of opting in direct calculation of ri. More precisely, let Ũ denote a matrix (u1 | · · · | uk−n−1) and consider the
orthogonal lattice

Λ⊥(Ũ) = {v ∈ Zk | ⟨v, uj⟩ = 0 for all 1 ≤ j ≤ k − n − 1}.

Due to the CRT-structure of CCK-ACD samples, {ri}1≤i≤n are short linearly independent vectors that belong
to Λ⊥(Ũ).² The lattice Λ⊥(Ũ) ⊂ Zk has rank n + 1. We apply the LLL algorithm on the lattice Λ⊥(Ũ) to obtain
b′ = {b′

1, · · · , b′
n+1}, the LLL-reduced basis. In this case, the time complexity is poly(n, size(Λ⊥(Ũ))), which

is dominated by 2O
(︁

𝛾

(η−ρ)2

)︁
.

We now show that determinant of Λ({b′
1, . . . , b′

n}) is bounded. Since {ri}1≤i≤n are n linearly indepen-
dent vectors in Λ⊥(Ũ), there exists a vector b′

j such that {r1, · · · , rn , b′
j} are n + 1 linearly independent

vectors in Λ⊥(Ũ). Additionally, ‖ri‖ is smaller than k · 2ρ for all i, we note that λn(Λ⊥(Ũ)) ≤ 2ρ+log k. Let
b̃′ = {b′*

1 , · · · , b′*
n+1} be Gram-Schmidt basis of b′. Then we calculate the determinant of lattice Λ′ spanned

by {b′
1, · · · , b′

n}.

det(Λ′) =
n∏︁
i=1
‖b′*

i ‖ =
∏︀n+1
i=1 ‖b

′*
i ‖

‖b′*
n+1‖

= det(Λ⊥(Ũ))
‖b′*

n+1‖
≤
‖b′

j‖ ·
∏︀n
i=1‖ri‖

‖b′*
n+1‖

≤ ‖b′
j‖ ·

n∏︁
i=1
‖ri‖ ·

2 n+1
4

‖b′
j‖

(By inequality (1))

≤ 2
n+1
4 +n(ρ+log k)

According to the analysis above, the log-size of determinant of the rest n column vectors after LLL algo-
rithm is smaller than n+1

4 + n(ρ + log k) with k − n − 1 =
√︁

𝛾
2 log δ =

2𝛾
η−ρ .

3.0.2 Heuristic analysis of random instances.

Assume that we have k random samples and run the same algorithm on the random samples. To analyze
the size of determinant heuristically, we first assume that the logarithm of determinant of rank-n lattice is

2 We can assume that {ri : 1 ≤ i ≤ n} are n linearly independent vectors because their entries are randomly chosen in χρ .

404 | J. H. Cheon et al.

approximately n log B, when each entry of a basis matrix is uniformly sampled from [−2B , 2B]. This approxi-
mation agrees the bound fromHadamard inequality, and for squarematrix it is known to hold up to difference
Θ(n log n) assuming that entries are uniform [18]. In our case, n log n is negligibly small compared to other
terms.

– Random instances: As a former cases, we consider a lattice

Λ⊥
N (b) = {u ∈ Zk | ⟨u, b⟩ ≡ 0 mod N}

with random integers bi. Next we run a lattice reduction algorithm on Λ⊥
N (b). The expected size of uj,

the j-th output of the lattice reduction algorithm, are δk · N1/k for all 1 ≤ j ≤ k − n − 1. We may suppose
these vectors are random, given that the instances are random. Then, the logarithm of the determinant
of a lattice Λ(Ũ) generated by {u1, . . . , uk−n−1} is approximately

k − n − 1
k logN + (k − n − 1)k log δ ≈ k − n − 1k · 𝛾.

Since the second term is relatively smaller than the first term, we will only handle the last term. The as-
sumption that thebasis vector ofΛ(Ũ) is randomalso allows that det(Λ(Ũ)) anddet(Λ⊥(Ũ)) are the same.
Thenwe obtain the desired result that the logarithm of determinant of Λ⊥(Ũ) is approximately 𝛾 · k−n−1k .
Then, the expected size of vectors obtained as a result of the LLL algorithm shall be 2n/4 ·det(Λ⊥(Ũ)) 1

n+1 .
Then the logarithm of determinant of the matrix composed by any n vectors is approximately

n
n + 1 ·

k − n − 1
k · 𝛾 + n

2

4 .

In summary, under Gaussian Heuristic and assumption from Hadamard inequality, we show that the
logarithm of the determinant is less than n+1

4 + n(ρ + log k) = O(n · ρ) if the given instances are the CCK-ACD
instances whereas it is asypmtotically 𝛾 · k−n−1k · n

n+1 = Ω(𝛾) for the random instances. Hence, if those two

values do not overlap, we can solve the CCK-ACD problem in 2O
(︁

𝛾

(η−ρ)2

)︁
time complexity. Wewill later see if the

experimental results fit well with this approximation in Section 5. From the analysis, we have the following
result,

Theorem 2 (Heuristic). Let n, η, ρ be parameters of the CCK-ACD problem and k = n + 1 +
√︁

𝛾
2 log δ CCK-ACD

samples are given with log δ < (η−ρ)2
8𝛾 . When the following equation holds

n + 1
4 + n(ρ + log k) < 𝛾 · k − n − 1k · n

n + 1 ,

one can solve the CCK-ACD problem in 2O
(︁

𝛾

(η−ρ)2

)︁
time complexity.

The following is our extended OLA algorithm.

4 SDA Algorithm for the CCK-ACD problem
In this section,wefirst describe a lattice-based algorithm to solve theCCK-ACDproblemby applying the Simul-
taneously Diophantine approximation (SDA) algorithmwhich has served as a useful method to solve the ACD
problem. Compared to the OLA algorithm, SDA algorithm allows us to recover all secret primes pi of CCK-ACD
problem. Therefore, in this section, wewill take into account a search CCK-ACD problem instead of decisional
one.

In the paper [14], Galbraith et al. try to apply the SDA algorithm in the context of CCK-ACD and comment
that this attack is not directly applicable to the CCK-ACD problem. In order to review this work, one can con-

Algorithms for CCK-ACD problem | 405

Algorithm 1 OLA Algorithm for the CCK-ACD problem

Input: 𝛾-bit integer N =
∏︀n
i=0 pi

Input: Root Hermite factor δ
Input: b = (b1, b2, · · · , bk), where k = n +

⌊︁√︁
𝛾

2 log δ

⌉︁
Output: distinguish whether bi’s are sampled fromD𝛾,η,ρ,n(pi) or a χ𝛾 .
1: Construct a lattice Λ⊥

N (b) with the following basis matrix

U =

⎛⎜⎜⎜⎜⎝
N [−b2/b1]N · · · [−bk/b1]N
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎞⎟⎟⎟⎟⎠ .

2: Call the lattice reduction algorithm with a Hermite factor δ on U, and let (ui) denote the output.
3: Compute an orthogonal lattice Λ⊥(Ũ) for Ũ = (u1 | · · · | uk−n−1) and let b̃ denote the its basis matrix.
4: Call the LLL algorithm on b̃ and let (b̃i) denote the output.
5: Find b̃j ∈ {b̃i} such that ‖b̃j‖ = maxi ‖b̃i‖ and let Λ(b̃) denote a lattice generated by {b̃i} \ b̃j.
6: if log(det(Λ(b̃))) ≤ n+1

4 + n(ρ + log k) then
7: returnD𝛾,η,ρ,n(pi)
8: else
9: return χ𝛾 .
10: end if

sider a column lattice Λ generated by a matrix B

B =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 · · · 0
b1 N 0 · · · 0
b2 0 N · · · 0
...

...
...

. . .
...

bk 0 0 · · · N

⎞⎟⎟⎟⎟⎟⎟⎠
with given CCK-ACD samples bj = CRT(pi)(ri,j) for each 1 ≤ j ≤ k and N =

∏︀n
i=0 pi. It follows that the lattice

contains the short vectors
vi = p̂i · (1, ri,1, ri,2, · · · , ri,k)T .

for all 1 ≤ i ≤ n and these all have similar lengths. Once we compute p̂i from the first entry of the vector,
we can recover the prime factors pi = N/p̂i. But if u = (u0, u1, · · · , uk) ∈ Λ is a short linear combination of
several of these vectors, (i.e., u =

∑︀n
i=1 ei · vi), we cannot expect that ⌊N/u0⌉ is one of the primes of N, where

u0 =
∑︀n

i=1 ei · p̂i. That is why the origianl SDA algorithm is not directly applicable to the CCK-ACD problem.
However, an instance of the form d =

∑︀n
i=1 di · p̂i with small di’s has a special property. This integer is

called dual instance in this paper. More precisely, if we can ensure that di’s are sufficiently small, the instance
d =

∑︀n
i=1 di · p̂i allows the below modular equations to be established without modulus N due to the CRT-

structure of CCK-ACD samples.

[d · bj]N = [
n∑︁
i=1

di · bj · p̂i]N =
n∑︁
i=1

di · ri,j · p̂i ∈ Z

[d · bj · bl]N =
n∑︁
i=1

di · ri,j · ri,l · p̂i ∈ Z

This property plays a crucial role in solving the CCK-ACD problem and even recovering the secret primes in
our algorithm. In Section 4.1, we give a formal definition of a dual instance to give a standard for how small
di’s should be in an instance d =

∑︀n
i=1 di · p̂i. Once we obtain such dual instances, we modify Cheon et

406 | J. H. Cheon et al.

al.’s algorithm in [5] to solve the CCK-ACD problem using the dual instances, which is the second step of our
algorithm for solving the CCK-ACD problem.

All in all, we first obtain a dual instance from the original SDA algorithm. Next we recover any secret
primes pi by applying the modified Cheon’s algorithm. For convenience purposes, the second step will be
firstly described and the first step will be suggested later. In the below, the full details of an extended SDA
algorithm will be explained.

4.1 Revisiting the Algorithm of Cheon et al.

In this section, we revisit the Cheon et al.’s algorithm in [5] to solve the CCK-ACD problem. In the original
paper, the authors presented an algorithm when an auxiliary input CRT(pi)(p̂i) =

∑︀n
i=1 p̂i is given.

However, in order to use an instance d =
∑︀n

i=1 di · p̂i in Cheon et al.’s algorithm, all of di’s does not
necessarily be 1. If di’s are sufficiently small, d =

∑︀n
i=1 di · p̂i can also play the same role as an auxiliary input.

From this, we define a dual instance for the CCK-ACD problem, which is a generalization of an auxiliary input
and introduce a polynomial-time algorithm to solve the CCK-ACD problemwhen two dual instances are given
instead of one auxiliary input by slightly modifying Cheon et al.’s algorithm.

Definition 3 (Dual Instance). Let n, η, ρ be positive integers. For given η-bit primes p1, · · · , pn and p0 ∈ Z ∩

[2𝛾−1/
n∏︀
i=1
pi , 2𝛾 /

n∏︀
i=1
pi) in CCK-ACD, define N =

∏︀n
i=0 pi and p̂i = N/pi, for 0 ≤ i ≤ n. We define a dual instance

d as the integer which can be written as d =
n∑︀
i=0
di · p̂i for some integers di’s satisfying |di| ≤ pi · 2−2ρ−log n−1 for

each 1 ≤ i ≤ n and d0 = 0.

An algorithm to generate a dual instancewhen given polynomially many CCK-ACD samples will be described
in Section 4.2.

For an integer d =
n∑︀
i=0
di · p̂i and CCK-ACD samples bj = CRT(pi)(ri,j) and bl = CRT(pi)(ri,l), one can see the

followings

[d]N ≡
n∑︁
i=0

di · p̂i (mod N), (3)

[d · bj]N ≡
n∑︁
i=0

di · ri,j · p̂i (mod N), (4)

[d · bj · bl]N ≡
n∑︁
i=0

di · ri,j · ri,l · p̂i (mod N). (5)

Under the condition in which each size of di is sufficiently small for 1 ≤ i ≤ n and d0 = 0, the above equations
hold over the integers, not modulo N. In other words, for a dual instance d =

∑︀n
i=1 di · p̂i defined as above,

the following inequalities hold

|di · p̂i| = |di| ·
N
pi

< N · 2−2ρ−log n−1,

|
n∑︁
i=0

di · ri,j · ri,k · p̂j| ≤
n∑︁
i=1
|ri,j| · |ri,k| · |di · p̂i| ≤

n∑︁
i=1

N · 2− log n−1 ≤ N/2.

Thus, we observe the right of the three equations (3), (4) and (5) have the size less than N/2 so that those
equations hold over the integer. Nowwe show how to solve the CCK-ACDwhen given polynomially many CCK-
ACD samples and two distinct dual instances d =

∑︀n
i=0 di · p̂i and d

′ =
∑︀n

i=0 d
′
i · p̂i. This computation is

quite similar to the Cheon’s algorithm [5]. More precisely, we are 2n CCK-ACD samples: bj = CRT(pi)(ri,j) and
b′ℓ = CRT(pi)(r

′
i,ℓ) for 1 ≤ j, ℓ ≤ n. We denote wj,ℓ and w′

j,ℓ as [d · bj · b′ℓ]N and [d′ · bj · b′ℓ]N , respectively. Thanks

Algorithms for CCK-ACD problem | 407

to the dual instance properties, then it can be written as

wj,ℓ =
n∑︁
i=1

ri,j · (di · p̂i) · r′i,ℓ =
(︁
r1,j r2,j · · · rn,j

)︁
⎛⎜⎜⎜⎜⎝
d1 · p̂1 0 · · · 0

0 d2 · p̂2 · · · 0
...

...
. . .

...
0 0 · · · dn · p̂n

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
r′1,ℓ
r′2,ℓ
...
r′n,ℓ

⎞⎟⎟⎟⎟⎠ ,

w′
j,ℓ =

n∑︁
i=1

ri,j · (d′i · p̂i) · r′i,ℓ =
(︁
r1,j r2,j · · · rn,j

)︁
⎛⎜⎜⎜⎜⎝
d′1 · p̂1 0 · · · 0

0 d′2 · p̂2 · · · 0
...

...
. . .

...
0 0 · · · d′n · p̂n

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
r′1,ℓ
r′2,ℓ
...
r′n,ℓ

⎞⎟⎟⎟⎟⎠ .

By collecting the above values of several 1 ≤ j, ℓ ≤ n, we can construct two matrices w = (wj,ℓ) and w′ =
(w′

j,ℓ) ∈ Zn×n, which can be written as

w = rT · diag(d1 · p̂1, · · · , dn · p̂n) · r′

w′ = rT · diag(d′1 · p̂1, · · · , d′n · p̂n) · r′

for r = (rj,i) and r′ = (r′i,ℓ) ∈ Zn×n. By computing (w′)−1 overQ, we obtain the matrix Y as following form

Y = w · (w′)−1 = rT · diag(d1/d′1, · · · , dn/d′n) · (rT)−1

whose eigenvalues are exactly the set {d1/d′1, · · · , dn/d′n} ⊂ Q. We can compute those rational eigenvalues
in polynomial-time of η, n and ρ from Y. Since the modular equations d ≡ di · p̂i (mod pi) and d′ ≡ d′i · p̂i
(mod pi) hold, one can check that pi divides d ·d′i −d′ ·di for each i. Thus, by computing gcd(N, d ·d′i −d′ ·di),
we can find the pi for each 1 ≤ i ≤ n. Considering the required cost of the computations required, we obtain
the following theorem.

Theorem 4. (Adapted from [5, Section 3.2]) For given O(n) CCK-ACD samples from Dη,ρ,n(pi) with N =
n∏︀
i=1
pi

and two distinct dual instances, one can recover secret primes p1, · · · , pn in ̃︀O(n2+ω · η) time with ω ≤ 2.38
and overwhelming probability in ρ.

4.2 Generating a Dual Instance from SDA

In this section, we present an algorithm to generate a dual instance from polynomially many given CCK-ACD
samples bj = CRT(pi)(rij) and N =

n∏︀
i=0
pi.

Consider the column lattice Λ generated by the following basis matrix.

B =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 · · · 0
b1 N 0 · · · 0
b2 0 N · · · 0
...

...
...

. . .
...

bk 0 0 · · · N

⎞⎟⎟⎟⎟⎟⎟⎠ .

We confirm that any lattice vector c ∈ Λwith ‖c‖ ≤ N
2 can bewritten in the form of ([d]N , [d ·b1]N , · · · , [d ·

bk]N)T , where d =
n∑︀
i=0
di · p̂i for some di’s and the modular equation [d · bj]N ≡

n∑︀
i=0
ri,j · [di]pi · p̂i (mod N)

holds for each j. In the next theorem, we prove that if c ∈ Λ is a sufficiently short vector for a proper integer
k, the first entry of the vector c,

∑︀n
i=1[di]pi · p̂i is a dual instance. Then we will be able to solve the CCK-ACD

problem by combining it with the Theorem 4.

408 | J. H. Cheon et al.

Theorem 5. Let n, η, ρ be parameters of the CCK-ACD problem. When O(𝛾/η) CCK-ACD samples are given, one

can find a dual instance in 2O
(︁

𝛾

(η−ρ)2

)︁
time up to polynomial factors.

Proof. Suppose that k > n CCK-ACD samples bj = CRT(pi)(ri,j) and N =
n∏︀
i=0
pi are given. We denote r0,j as [bj]p0 .

Consider the column lattice Λ generated by the following basis matrix b

B =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 · · · 0
b1 N 0 · · · 0
b2 0 N · · · 0
...

...
...

. . .
...

bk 0 0 · · · N

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where bj’s are givenCCK-ACD samples andN =
n∏︀
i=0
pi. Note that any vector v in the lattice Λ can be represented

as the following form

v ≡ a0 · p̂0

⎛⎜⎜⎜⎜⎜⎜⎝
1
r0,1
r0,2
...
r0,k

⎞⎟⎟⎟⎟⎟⎟⎠ + a1 · p̂1

⎛⎜⎜⎜⎜⎜⎜⎝
1
r1,1
r1,2
...
r1,k

⎞⎟⎟⎟⎟⎟⎟⎠ + · · · + an · p̂n

⎛⎜⎜⎜⎜⎜⎜⎝
1
rn,1
rn,2
...
rn,k

⎞⎟⎟⎟⎟⎟⎟⎠ (mod N).

for some integers ai’s.Wedenote p̂i ·(1, ri,1, ri,2, · · · , ri,k)T byvi for each i. Then,vi’s are linearly independent
and ‖vi‖ ≤ B :=

√
k + 1 · N · 2−η+ρ+1 for all i ≠ 0, so λi(Λ) ≤ B holds for 1 ≤ i ≤ n.

We apply Gaussian Heuristic to estimate λn+1(Λ) which is approximately
√︁

k+1
2πe · (detΛ)

1
k+1 . Suppose the

size of a vector c ∈ Λ obtained by the lattice reduction algorithmAδ is shorter than δ2(k+1) ·λ1(Λ) ≤ δ2(k+1) ·B <√︁
k+1
2πe · (detΛ)

1
k+1 ≈ λn+1(Λ). Then, we conclude c ∈ ⟨v1, · · · , vn⟩ and p0 divides gcd(N, d), where d is the first

entry of the vector c. Hence, it is required that the length of vector c, the first output of the lattice reduction
algorithm, is shorter than

√︁
k+1
2πe · (detΛ)

1
k+1 . It can be written as

‖c‖ ≤ δ2(k+1) · λ1(Λ) < δ2(k+1) · B <
√︂
k + 1
2πe · (detΛ)

1
k+1 .

Taking logarithm to both sides of the inequality, we obtain the following:

2(k + 1) log δ + logN − η + ρ + 1 ≤ k
k + 1 logN − 1

2 log 2πe

2(k + 1) log δ + 1
k + 1 logN < η − ρ − log 2

√
2πe (6)

In particular, when applying the AM-GM inequality on the left side of (6), we obtain the following inequality

2
√︀
2 log δ · logN ≤ η − ρ − O(1)

where equality holds if and only if (k + 1)2 = 𝛾
2 log δ and 𝛾 · log δ = (η−ρ)2

8 .

Thus, when we choose δ satisfying log δ < (η−ρ)2
8𝛾 and k = 2𝛾

η−ρ = O(
𝛾
η), we can conclude that output vector

c ofAδ can bewritten as c =
n∑︀
i=1
di ·vi for some di’s. If we denote the first entry of c as d, the vector c is the form

of (d, [d · b1]N , · · · , [d · bk]N)T . Then d =
n∑︀
i=1
di · p̂i and [d · bj]N =

n∑︀
i=1
ri,j · di · p̂i hold for each j. In this case, d

is a multiple of p0 so that one can recover the factor p0 by computing gcd(d, N). Since the root Hermite factor

Algorithms for CCK-ACD problem | 409

δ is achieved in time poly(k) ·2O(β) times by the BKZ algorithmwith β = Θ(1/ log δ), we conclude that one can

recover the factor p0 in 2
O
(︁

𝛾

(η−ρ)2

)︁
time up to polynomial factors using the BKZ algorithm with β ≈ O

(︁
𝛾

(η−ρ)2

)︁
.

Next, we propose the condition for terms di’s to be sufficiently bounded so that it can be regarded as a
dual instance. We denote c̃ as k-dimensional vector which can be obtained by removing the first coordinate

of c (i.e. c̃ = ([d · b1]N , · · · , [d · bk]N)T). Using the property [d · bj]N =
n∑︁
i=1

ri,j · di · p̂i for each j, c̃ can be

decomposed as follows:

c̃ = (d1 · p̂1, · · · , dn · p̂n) ·

⎛⎜⎜⎜⎜⎝
r1,1 r1,2 · · · r1,k
r2,1 r2,2 · · · r2,k
...

...
. . .

...
rn,1 rn,2 · · · rn,k

⎞⎟⎟⎟⎟⎠
= d · P̂ · r,

where d = (d1, · · · , dn), P̂ = diag(p̂1, . . . , p̂n), and R = (ri,j) ∈ Zn×k.
Wewill later show that there is a right inverseR* ∈ Zk×n such thatR · R* = In, where In is the n×n identity

matrix. Then, for each i, |di · p̂i| can be bounded as follows:

|di · p̂i| ≤ ‖d · P̂ ‖∞ = ‖c̃ · R* ‖∞ ≤ ‖c̃‖ · ‖R*‖∞.

If there is a matrix R* which satisfies ‖c‖ · ‖R*‖∞ ≤ N · 2−2ρ−log n−1, it implies that each di is smaller than

N · 2−2ρ−log n−1/p̂i. Thus, under the above condition, the integer d =
n∑︀
i=1
di · p̂i, the first entry of output vector

c, can be regarded as a dual instance.
Thus, it is enough to show the existence of matrixR* which ensures that the size of ‖c‖·‖r*‖∞ is less than

N · 2−2ρ−log n−1 with ‖c‖ ≤ δ2(k+1) ·
√
k + 1 · N · 2−η+ρ+1 to obtain a dual instance by using the lattice reduction

algorithm.

Construction of R*

Now, we construct the right inverse matrix R* and estimate the size of ‖r*‖∞ using Babai’s nearest plane
algorithm [2] and Gaussian Heuristic assumption.

More precisely, let q1 be a prime integer, which is independent from
n∏︀
i=1
pi, and z1 ∈ Zk be any vector

with r ·z1 ≡ e1 (mod q1), where e1 is a n-dimensional standard vector. Consider a full rank lattice Λ1 = {x ∈
Zk : r · x ≡ 0 (mod q1)}, whose determinant is qn1 and the set of linearly independent vectors {xi}1≤i≤k ⊂ Zk

such that ‖xi‖ ≤ λk(Λ1) for each i. We accept Gaussian heuristic to estimate λk(Λ1) ≈
√︂

k
2πe · det(Λ1)

1/k =√︂
k

2πe · q1
n/k so that we can bound ‖xi‖ ≤

√︂
k

2πe · q1
n/k for each i.

Using the Babai’s nearest plane algorithm on vector z, we obtain the vector
k∑︁
i=1

ui · xi so that ‖z −
k∑︁
i=1

ui ·

xi‖ ≤

⎯⎸⎸⎷1
4

k∑︁
i=1
‖x*i ‖2 holds, where each x*i is Gram-Schmidt vector of xi. We denote z1′ as z1 −

k∑︁
i=1

ui · xi and

we obtain the following:

‖z1′‖ = ‖z1 −
k∑︁
i=1

ui · xi‖ ≤

⎯⎸⎸⎷1
4

k∑︁
i=1
‖x*i ‖2 ≤

1
2

⎯⎸⎸⎷ k∑︁
i=1
‖xi‖2 ≤

k
2 · q1

n/k .

For the modular equation

0 ≡ r · z1′ − e1 ≡
(︀
[r]1 · z1′ − 1, [r]2 · z1′, · · · , [r]n · z1′

)︀T (mod q1),

410 | J. H. Cheon et al.

if |[R]i · z1′| ≤ ‖[R]i‖ · ‖z1′‖ ≤
√
k · 2ρ · k2 · q1

n
k is less than 1

2q1 for all i (i.e. q1 > (k 3
2 · 2ρ) k

k−n), the equation
r · z1′ = e1 holds over the integers.

By setting the size of prime q1 to be similar with (k 3
2 · 2ρ) k

k−n , we can conclude that there exists a vector
z1′ which satisfies the equation r · z1′ = e1 and the following condition

‖z1′‖1 ≤
√
k · ‖z′1‖2 ≤

1
2 · k

3
2 · q1

n
k ≈ 1

2 · k
3k

2(k−n) · 2
n
k−n ρ .

Similarly, we can also apply it to other zi’s to construct r* = (z1′, · · · , zk ′) with the vectors zi ′ satisfying
r · zi ′ = ei, so we can bound ‖r*‖∞ as follows

‖r*‖∞ = max
1≤i≤k
‖zi ′‖1 ≤

1
2 · k

3k
2(k−n) · 2

n
k−n ρ .

Hence, we can obtain the upper bound of ‖c‖ · ‖R*‖∞ as follows

‖c‖ · ‖R*‖∞ ≤ δ′
2(k+1) ·

√
k + 1 · N · 2−η+ρ+1 · 12 · k

3k
2(k−n) · 2

n
k−n ρ .

We remind that the size of ‖c‖ ·‖R*‖∞ needs to be less than N ·2−2ρ−log n−1. Therefore the following inequality
should be satisfied:

δ2(k+1) ·
√
k + 1 · N · 2−η+ρ · k

3k
2(k−n) · 2

n
k−n ρ ≤ N · 2−2ρ−log n−1

Taking logarithm to both sides of the inequality, we obtain as follows

2(k + 1) log δ ≤ η − 3ρ − n
k − n ρ −

3k
2(k − n) log k − log(2n

√
k + 1). (7)

Since we set k = 2𝛾
η−ρ > 2n, the condition k

k−n = O(1) holds so we can rewrite the above equality and
obtain the following condition for n, k, η, and ρ

2(k + 1) log δ ≤ η − 3ρ − n
k − n ρ − O(log k).

The left side of the above inequality 2(k+1) log δ is approximated as 4𝛾
η−ρ ·

(η−ρ)2
8𝛾 = η−ρ

2 so that the equality

holds with our optimized parameters k = 2𝛾
η−ρ and log δ < (η−ρ)2

8𝛾 for the condition (6). Thus we can conclude

that using the lattice reductionAδ with log δ < (η−ρ)2
8𝛾 and about 2𝛾

η−ρ CCK-ACD samples to construct the lattice
Λ satisfies the conditions (6) and (7). In other words, we can obtain a dual instance from the first entry of

output vector in 2O
(︁

𝛾

(η−ρ)2

)︁
time up to polynomial factors. �

Remark 1. The time 2O
(︁

𝛾

(η−ρ)2

)︁
up to polynomial factors required for the above algorithm does not depend on

the number of secret primes n and bit-length of themultiple of n secret primes n ·η but depends on the bit-length
of CCK-ACD samples 𝛾.

By putting together the two theorem, we have the following result,

Theorem 6 (Heuristic). Let n, η, ρ be parameters of the CCK-ACD problem and k = n + 1 +
√︁

𝛾
2 log δ CCK-ACD

samples are given with log δ < (η−ρ)2
8𝛾 . When the following equation holds

2(k + 1) log δ ≤ η − 3ρ − n
k − n ρ,

one can recover any secret primes of the CCK-ACD problem in 2O
(︁

𝛾

(η−ρ)2

)︁
time complexity.

Now we give our SDA algorithm.

Algorithms for CCK-ACD problem | 411

Algorithm 2 SDA algorithm for the CCK-ACD problem

Input: N =
∏︀n
i=0 pi

Input: Root Hermite factor δ0
Input: CCK-ACD samples bj = CRT(pi)(ri,j) for 1 ≤ j ≤ 2k with k = ⌊

√︁
𝛾

2 log δ0 ⌉.
Output: prime factors pi’s of N
1: m ← 0
2: while m ≤ 1 do
3: Set b← (b1+mk , b2+mk , · · · , bk+mk)

4: Construct a lattice Λ = Λ(b) with a basis matrix B =
(︃
1 0
bT N · Ik

)︃
5: Call the lattice reduction algorithm with a Hermite factor δ on Λ, and let v0 denote the first entry

of the shortest output vector.
6: if 2(k + 1) log δ0 + 1

k+1 logN < η − ρ − log 2
√
2πe then

7: d(m) ← v0
8: m ← m + 1
9: end if
10: end while
11: Construct matricesw = ([d(0) · bi · bn+j]N) ∈ Zn×n andw′ = ([d(1) · bi · bn+j]N) ∈ Zn×n.
12: Calculate (w′)−1 overQ and Y = w · (w′)−1 ∈ Qn×n

13: Compute eigenvalues {λ1, λ2, · · · , λn} ⊂ Q of Y
14: Compute pairs of integers (d(0)i , d(1)i) from λi =

d(0)i
d(1)i

for 1 ≤ i ≤ n.

15: pi ← gcd(N, d(0) · d(1)i − d(1) · d(0)i) for 1 ≤ i ≤ n
16: return pi’s.

5 Experiments
In this section, we provide the experimental results of OLA, SDA for the CCK-ACD problem. All experiments
were carried out on a single Intel Core i5 running at 2.1GHz processor and 16GB memory.

We remark that we use a few simplifications for the experiments to run our algorithm; we run fplll algo-
rithm [11] instead of BKZ algorithm. For the efficiency of the experiment, we choose the number of samples,
k, to satisfy the required conditions for attack instead of the asymptotic optimum.

According to our experiments in Table1, from various parameters, we can see that the determinant of the
orthogonal lattice is very similar to our prediction. Thus, our assumptions of OLA are reasonable for CCK-ACD
and random instances. Particularly in the actual use of parameters, the difference of determinant between
CCK-ACD and random is more stark because n and ρ are set much smaller than 𝛾.

Experimental results of OLA refer that our expectation of the condition for OLA is accurate. OLA works
well even when the ρ is quite large as long as the condition (2) is satisfied.

We also experimentedwith a toy parameter in [8]. OLA is slower than conventional attacks, GCD attack in
[3], in toy parameters. Since conventional attacks that are the GCD algorithms in [3] are Õ(2ρ/2) polynomial-
time operation, they largely depend on the size of ρ unlike OLA. If ρ is larger than current parameters, then
OLA can be the faster than other direct algorithms for the CCK-ACD problem.

When the number of secret primes, n, is small, OLA can evenfind the exact some ri through LLL algorithm
on Λ⊥(Ũ). But if n is more than 100, the outputs of the LLL algorithm are linear combinations of ri’s with a
high probability. For the above reason, we find it difficult to find out an exact ri when n is large.

In Table2, we can see SDA experimental results with regards to the CCK-ACD problem. According to our
results, we have confirmed that experimental results of SDA are above our expectation, even in parameters
that do not satisfy our condition. In SDA, we cannot only distinguish them from a uniform distribution but
also find the factor of N and recover the secret primes.

412 | J. H. Cheon et al.

Table 1: Experiments about OLA on the CCK-ACD problem. Random means that we do the OLA with random instances whose size
is 𝛾−bits. Parameters* is the toy parameters in [8] with λ = 42 and our attack cost is 247. Parameters** is increasing the size of
ρ to withstand the GCD attack in [3], although our attack cost is almost the same.

OLA
CCK-ACD

Experimental parameters Experimental Det Expected Det
n k η ρ 𝛾/104 time(min) CCK-ACD Random CCK-ACD Random
20 65 1500 500 6 3 10022 38707 10000 38682
30 90 1000 100 8 14 3040 50804 3000 50753
40 120 600 120 5.4 21 5661 34785 5600 34683
50 150 1000 300 10 128 15085 64871 15000 64706
80 150 400 70 4.7 36 5727 21530 5600 21354
80 240 400 100 6.7 615 8162 44239 8000 43840
90 270 200 40 3.8 490 3790 25433 3600 24916
100 240 400 50 8 790 5199 46306 5000 45875
*10 320 988 26 29 14600 284 254770 260 254574
**10 325 988 80 29 15540 824 254813 800 254713

Table 2: Experiments about SDA on the CCK-ACD problem.

SDA
CCK-ACD

n k η ρ 𝛾/104 time(min)
20 60 1500 500 6 59
30 90 1000 100 8 550
40 120 600 120 5.4 692
50 150 1000 300 10 3650
80 150 400 70 4.7 760
80 240 400 100 6.7 9300
90 270 200 40 3.8 5900
100 300 120 10 2.5 8870
100 250 400 50 8 13950

In the CCK-ACD problem, OLA is much faster than SDA like the ACD problem. The result is not surprising
though, considering the size of the determinant of lattice applying lattice reduction algorithm.

6 Conclusion
OLA and SDA are best known attacks for the ACD problem to decide the size of the 𝛾. In this paper, we ex-
teneded those two algorithms to the variants of the ACD problem, CCK-ACD.

Our results show that the extension of the ACD problem using CRT structure has the same security as the
ACD problem under the same 𝛾 and η. In other words, according to the known reduction [4], it can be said
that CCK-ACD is more difficult than PACD, but at least in terms of SDA and OLA, both problems have the same
difficulty.

On the other hand, our algorithms were applicable only when there was an exact multiple of the secret
primes. Therefore, advancing our current algorithms and enabling to solve the problem without no exact
multiple of secret primes would be another interesting point for further exploration.

Algorithms for CCK-ACD problem | 413

Acknowledgement: The authors of Seoul National University were supported by Institute for Information
& communication Technology Promotion (IITP) grant funded by the Korea government (MSIT) (No. 2016-6-
00598, Themathematical structure of functional encryption and its analysis), and the ARO andDARPAunder
Contract No.W911NF-15-C-0227. The author of ENS de Lyon was supported by the LABEX MILYON (ANR-10-
LABX-0070) of Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) oper-
ated by the French National Research Agency (ANR).

References
[1] M. Ajtai. Generating random lattices according to the invariant distribution. draft, (2006).
[2] L. Babai. On lovász’lattice reduction and the nearest lattice point problem. Combinatorica, 6(1):1–13, 1986.
[3] Y. Chen and P. Q. Nguyen. Faster algorithms for approximate common divisors: Breaking fully-homomorphic-encryption

challenges over the integers. Annual International Conference on the Theory and Applications of Cryptographic Techniques,
pages 502–519, 2012.

[4] J. H. Cheon, J. S. Coron, J. Kim, M. S. Lee, T. Lepoint, M. Tibouchi, and A. Yun. Batch fully homomorphic encryption over the
integers. Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages 315–335, 2013.

[5] J. H. Cheon, K. Han, C. Lee, H. Ryu, and D. Stehlé. Cryptanalysis of the multilinear map over the integers. Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages 3–12, 2015.

[6] J. H. Cheon and D. Stehlé. Fully homomorphic encryption over the integers revisited. Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 513–536, 2015.

[7] J. Coron, D. Naccache, and M. Tibouchi. Public key compression and modulus switching for fully homomorphic encryption
over the integers. Advances in Cryptology - EUROCRYPT, pages 446–464, 2012.

[8] J. S. Coron, T. Lepoint, andM. Tibouchi. Batch fully homomorphic encryption over the integers. IACR Cryptology ePrint Archive,
page 36, 2013.

[9] J. S. Coron, T. Lepoint, and M. Tibouchi. Practical multilinear maps over the integers. Annual Cryptology Conference, pages
476–493, 2013.

[10] J. S. Coron and H. V. Pereira. On kilian’s randomization of multilinear map encodings. Cryptology ePrint Archive, page 1129,
2018.

[11] T. F. development team. fplll, a lattice reduction library. Available at https://github.com/fplll/fplll, (2016).
[12] J. Ding and C. Tao. A new algorithm for solving the approximate common divisor problem and cryptanalysis of the �e based

on gacd. IACR Cryptology ePrint Archive, page 42, 2014.
[13] S. D. Galbraith, S. W. Gebregiyorgis, and S. Murphy. Algorithms for the approximate common divisor problem. LMS J. Comput.

Math., 19(A):58–72, 2016.
[14] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate indistinguishability obfuscation and functional

encryption for all circuits. SIAM J. Comput., 45(3):882–929, 2016.
[15] G. Hanrot, X. Pujol, and D. Stehlé. Terminating bkz. IACR Cryptology ePrint Archive, page 198, 2011.
[16] N. Howgrave-Graham. Approximate integer common divisors. Cryptography and lattices, pages 51–66, 2001.
[17] A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational coeflcients. Math. Ann., 261(4):515–534,

1982.
[18] H. H. Nguyen and V. Vu. Random matrices: Law of the determinant. Ann. Probability, 42(1):146–167, 2014.
[19] M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic encryption over the integers. Annual International

Conference on the Theory and Applications of Cryptographic Techniques, pages 24–43, 2010.

https://github.com/fplll/fplll

	1 Introduction
	1.1 Our Work

	2 Preliminaries
	2.1 Lattices

	3 OLA for the CCK-ACD Problem
	3.0.1 Analysis of CCK-ACD instances.
	3.0.2 Heuristic analysis of random instances.

	4 SDA Algorithm for the CCK-ACD problem
	4.1 Revisiting the Algorithm of Cheon et al.
	4.2 Generating a Dual Instance from SDA

	5 Experiments
	6 Conclusion

