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The Quantified Argument Calculus
and Natural Logic

HanNocH BEN-YAMI

The formalisation of natural language arguments in a formal language
close to it in syntax has been a central aim of Moss’s Natural Logic. I
examine how the Quantified Argument Calculus (Quarc) can handle the
inferences Moss has considered. I show that they can be incorporated in
existing versions of Quarc or in straightforward extensions of it, all within
sound and complete systems. Moreover, Quarc is closer in some respects
to natural language than are Moss’s systems—for instance, it does not
use negative nouns. The process also sheds light on formal properties and
presuppositions of some inferences it formalises. Directions for future
work are outlined.

Despite the successes of the Predicate Calculus, based on Frege’s Begriffsschrift
(1879), there have been recurrent attempts to develop different logic systems,
closer in various respects to natural language. Strawson’s (1950, 1952) and
Sommers’ (1982) are two such familiar earlier ones.

More recently, Lawrence Moss has published a series of works, some co-
authored with Pratt-Hartmann, which engage in the similar project of Natural
Logic (Pratt-Hartmann and Moss 2009; Moss 20104, 2010b, 2010¢, 2011, 2015).
Natural Logic has several aims. One main aim is to “construct a system [whose]
syntax is closer to that of a natural language than is first-order logic” and
give “logical systems in which one can carry out as much simple reasoning in
language as possible” (Moss 20103, 538-39). Moss’s works “attempt to make a
comprehensive study of the entailment relation in fragments of language”, “to
go beyond truth conditions and examples, important as they are, and to aim
for more global characterizations” (20104, 561). “The subject of natural logic,”
Moss writes, “might be defined as ‘logic for natural language, logic in natural
language.’ By this, we aim,” he clarifies, “to find logical systems that deal with
inference in natural language, or something close to it” (2015, 563). Moss has
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tried to faithfully represent in his systems standard quantifiers, passive-active
voice relations, comparative adjectives, and more.

A different system with similar aspirations which has also been recently
developed is the Quantified Argument Calculus, or Quarc.' Quarc is a pow-
erful formal logic system, first introduced in Ben-Yami’s “The Quantified
Argument Calculus” (2014), based on work published by Ben-Yami in the pre-
ceding decade (primarily 2004) and closely related to the calculus introduced
in Lanzet and Ben-Yami (2004). It is closer in its syntax than is the Predicate
Calculus to natural language, sheds light on the logical role of some of the
latter’s features which it incorporates (such as copular structure, converse
relation terms and anaphora), and it is also closer to natural language in
the logical relations it validates. Ben-Yami (2014) contains a Lemmon-style
natural deduction system for Quarc and a truth-valuational, substitutional
semantics; this system has been shown to be sound and complete (Ben-Yami
2014; Ben-Yami and Pavlovi¢ forthcoming). Quarc has since been extended
into a sound and complete three-valued system with defining clauses, using
model-theoretic semantics (Lanzet 2017). In this latter version it was shown
to contain a semantically isomorphic image of the Predicate Calculus. Thus,
Quarc has been shown to be at least as strong as the first-order Predicate
Calculus, and moreover, the proofs in these papers shed light on the nature
of quantification in the Predicate Calculus (see there for details). In other
works (Pavlovi¢ 2017; Pavlovi¢ and Gratzl 2019), a sequent calculus has been
developed for several versions of Quarc and various properties of the system,
such as cut-elimination, subformula property and consistency were proved.
Quarc has also been used to investigate Aristotelian logic, both assertoric and
modal, in works mentioned above as well as in Raab (2018). Raab concludes
that the Quarc-reconstruction he provides of Aristotle’s logic is “much closer
to Aristotle’s original text than other such reconstructions brought forward
up to now” (abstract).

It would be interesting to compare what Natural Logic has achieved with
what has or can be achieved by Quarc. The present paper embarks on this
inquiry. Only embarks, for limitations of space and time force us to leave out a
comparative study of some central questions of the Natural Logic project. An
important issue for Moss is that of decidability. He would like to determine
whether the logic systems he constructs to incorporate reasoning in natural

A related approach is developed in N. Francez (2014).
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language, systems which are more limited in their expressive power than the
first-order Predicate Calculus, are decidable. Moss and Pratt-Hartmann write:

From a computational point of view [...] expressive power is a
double-edged sword: roughly speaking, the more expressive a
language is, the harder it is to compute with. In the last decade,
this trade-off has led to renewed interest in inexpressive logics, in
which the problem of determining entailments is algorithmically
decidable with (in ideal cases) low complexity. The logical frag-
ments subjected to this sort of complexity-theoretic analysis have
naturally enough tended to be those which owe their salience
to the syntax of first-order logic, for example: the two-variable
fragment, the guarded fragment, and various quantifier-prefix
fragments. But of course it is equally reasonable to consider in-
stead logics defined in terms of the syntax of natural languages.
(2009, 647-48)

Moss also thinks that decidable systems with less expressive power might
represent more faithfully actual human reasoning (2015, 563). Interesting
and important as decidability questions are, they will not be addressed in this
paper but be left for future work.

The primary concern of this paper is Quarc’s capacity to incorporate the
natural language inferences studied by Natural Logic. Natural Logic’s starting
point is a variety of inferences in natural language, all apparently formally
valid. Formal systems are then built to incorporate some of these inferences.
I shall examine whether Quarc can incorporate these inferences or how it
should be extended to accomplish that. I shall also discuss the soundness and
completeness of the systems I consider.

Quarc is introduced in the next section; I develop it there only to the extent
needed for its application later in the paper. In the section following it, I first
present several arguments which Moss considers, and then address each of
them in a separate subsection. Along the way I also consider whether, with
Moss, we should allow nouns to be negated. I end with a short conclusion,
which also includes directions for future work.

Introduction to Quarc

By now, Quarc has been presented in several works and in several versions
(Ben-Yami 2014; Lanzet 2017; Pavlovi¢ and Gratzl 2019; Ben-Yami and Pavlovié¢
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forthcoming) and there is therefore no need for an additional detailed expo-
sition. Moreover, for our purposes below we do not need to employ the full
version of Quarc that was introduced in Ben-Yami (2014). Accordingly, al-
though I shall first informally introduce the full Quarc language of that paper,
the following formal introduction will be of a reduced version (but with the
addition of identity), one which we shall then continue to use.

Informal Introduction of the System

Consider a simple subject-predicate or argument-predicate sentence:
(1) Alice is polite.

Its grammatical form can be represented by
(2) (Alice) is polite

with the argument in parenthesis, followed by the copula and then the predi-
cate. In the Predicate Calculus, we formalise this sentence by

(3) P(a)

Quarc does not deviate from this formalisation, apart from a typographical
change: the arguments, in Quarc, are written to the left of the predicate:

(4) ()P
Similarly,
(5) Alice loves Bob.
is formalised, in Quarc, as
(6) (a,b)L
Consider next the quantified sentence,
(7) Every student is polite.
Its grammatical form can be represented by

(8) (every student) is polite

Dialectica vol. 74, n° 2
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Here, grammatically, the argument is the noun phrase “every student.” In
it, the quantifier “every” attaches to the one-place predicate “student”, and
together they form a quantified argument. This is the way quantification is
incorporated in Quarc:

(9) (VS)P

Namely, quantifiers are not sentential operators. Rather, they attach to one-
place predicates to form quantified arguments. Some other examples:

(10) Some students are polite.
(11) Every girl loves Bob.
(12) Every girl loves some boy.

are formalised (respectively; likewise below) by,

(13) (3S)P
(14) (VG,b)L
(15) (VG,3B)L

This basic departure in the treatment of quantification requires a few addi-
tional ones. One is the need to reintroduce the copular structure and, with
it, modes of predication, as in Aristotelian logic. In natural language, we can
negate sentence (1), “Alice is polite”, in two ways:

(16) It’s not the case that Alice is polite.
(17) Alice isn’t polite.

The Predicate Calculus allows only the first mode of negation—the one rarer
and somewhat artificial in natural language—namely, sentential negation.
Quarc, however, also allows the negation symbol to be written between the
argument or arguments and the predicate, signifying negative predication, by
contrast to affirmative one. These two sentences are thus formalised, respec-
tively, by

(18) =((a)P)
(19) (a)—P

Parentheses can be omitted without ambiguity in these formulas, and they
can be written as —aP and a—P. Since the argument is singular, these two
formulas are equivalent, and they shall be defined as such both in the proof
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system and in the semantics below. However, the equivalence does not hold
when the argument is quantified:

(20) It’s not the case that some students are polite.
(21) Some students aren’t polite.

formalised by:

(22) =(3SpP)
(23) (3S)—P

These formulas will not be equivalent either in the proof system or in the
semantics.

Some adjectives have a corresponding negative form: polite and impolite, for
instance. Yet even if “Alice isn’t polite” means the same as “Alice is impolite”,
this is not the case with all such pairs of adjectives. Often, the negative form
designates not the contradictory but the contrary of the positive one: while
“reverent” means, feeling or showing deep and solemn respect, “irreverent”
means, showing a lack of respect for people or things that are generally taken
seriously (Oxford definitions); one’s attitude towards, say, religion can be
neither reverent nor irreverent. Moreover, many adjectives have no negative
form: tall, asleep, red; and relation words usually don’t—e.g. “loves” or “teacher
of.” For these and other reasons (see below on negative nouns), the work
done by negative predication cannot generally be accomplished by negative
predicates.

All natural languages have the means of reordering the noun-phrases in
relational sentences without changing, if the arguments are all singular, what
is said by the sentences. Different languages achieve this by different means.
English often accomplishes it by changing from active- to passive-voice:

(24) Alice loves Bob.
(25) Bob is loved by Alice.

In the singular case, the two are logically equivalent. But again, this is not
generally the case when the arguments are quantified:

(26) Every girl loves some boy.
(27) Some boy is loved by every girl.

Dialectica vol. 74, n° 2
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Quarc incorporates this reordering by having an n-place predicate written with
a permutation of the 1, 2, ..., n sequence as superscripts to its right. Sentences
(24) to (27) are then formalised by,

(28) (a,b)L
(29) (b,a)L*!
(30) (VG,3B)L
(31) (3AB,VG)I*!

As with negation, the formulas with singular arguments alone are defined as
equivalent in both proof system and semantics, while this equivalence will
not generally hold for sentences with quantified arguments.

The last additional feature of Quarc is its use of anaphora. Consider the
two sentences,

(32) John loves John.
(33) John loves himself.

The former is rarely used, although one of its uses is to explain the use of the
reflexive pronoun “himself” in the latter. The reflexive pronoun “himself”
in (33) is anaphoric on the earlier occurrence of “John”, its source, in the
sense that it can be replaced by its source and the sentence will have the same
meaning. This eliminable anaphor is what Geach called pronoun of laziness
(1962, sec.76). Quarc incorporates it by using a Greek letter for the anaphor,
also written as a subscript to the right of its source. Accordingly, it formalises

(32) and (33) by:

34) (J, )L
(35) (joc’ OC)L

The formalisation of quantified sentences in which quantified arguments
have anaphors is similar:

(36) Every man loves himself.
(37) (VMg @)L

As with negation and reordering, if all arguments are singular, then a Quarc
formula with an anaphor and the formula with that anaphor replaced by its
source are defined as equivalent in both proof system and semantics. However,
the anaphor is no longer generally replaceable by its source when the latter is
quantified, neither in natural language nor in Quarc.

doi: 10.48106/dial.v74.i2.02
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With this I conclude the informal introduction of Quarc and turn to the
more rigorous introduction of the formal system. However, for the purposes of
the discussion below, we don’t need to use formulas with anaphora. I therefore
introduce a reduced version of Quarc, in this respect, which will make it easier
to follow and focus on the main argument of this paper. The interested reader
is referred to the works mentioned above to see how anaphora is incorporated
in the full version of Quarc.

1.2 Vocabulary of Quarc

The language of Quarc contains the following symbols:
(38) (Vocabulary)

« Predicates: P, Q, R, ..., denumerably many and each with a fixed
number of places, including the two-place predicate =.

« Singular arguments (SAs): a, b, c, ..., denumerably many.

« Sentential operators: 1, A, V, =, <.

o Quantifiers: v, 3.

« Numerals used as indices, comma, parentheses.

If Pis a one-place predicate, then VP and 3P will be called quantified arguments
(QAs). An argument is a singular argument or a quantified one. For every
n-place predicate R, n > 1, apart from =, R”, where 7 is any permutation of
1, ..., n (including the identity permutation), is called a reordered form of R;
R7™ is also an n-place predicate.

1.3 Formulas of Quarc
The following rules specify all the ways in which formulas can be generated.
(39) (Formulas)

1. (Basic formula) If P is a non-reordered n-place predicate and
¢y, .- » Cp singular arguments (SAs), then (cy, ..., ¢,,)P is a formula,
called a basic formula.

2. (Reorder) If Pis a reordered n-place predicate,n > 1,andc, ..., ¢,
SAs, then (cy, ..., ¢,)P is a formula.

3. (Negative predication) If P is an n-place predicate and ¢y, ..., ¢,
SAs, then (cq, ..., ;)P is a formula.

Dialectica vol. 74, n° 2



1.4

The Quantified Argument Calculus and Natural Logic 187

4. (Identity) If ¢; and c, are SAs then ¢; = ¢, is a formula. ¢; = ¢, is
an alternative way of writing (¢c;, ¢,) =.

5. (Sentential operators) If ¢ and ¢ are formulas, so are —(¢),
(@) A @), (@) vV (), (¢) » (¥) and (¢) < (¥) The parentheses
surrounding formulas are called sentential parentheses.

6. (Quantification) If ¢ is a formula containing an occurrence of
an SA c, and substituting the quantified argument qP (i.e. VP or
3P) for ¢ will result in qP governing ¢ (see definition below), then
@lqP/c] is a formula. (¢[qP/c] is the formula in which gP replaced
the occurrence of c.)

Formulas of the form, (cy, ..., ¢, )P, in which P is a reordered predicate are not
considered basic formulas, as this simplifies the semantic definitions below.

The notion of governance, which is related to that of scope in the Predicate
Calculus, is defined as follows:

(40) (Governance) An occurrence gP of a QA governs a string of symbols A
just in case gP is the leftmost QA in A and A does not contain any other
string of symbols (B), in which the displayed parentheses are a pair of
sentential parentheses, such that B contains gP.

Once anaphors are introduced, the notion of governance becomes non-trivial
and its definition needs elaboration. Since they are not introduced in this for-
mal part, determining whether a quantified argument governs a formula
is straightforward. For instance, 3S governs the formulas (3S)P, (3S)-P,
(a,3S)L, (3S,VP)L and (3S, VP)L"? — the last two because it is to the left of
VP. By contrast, 3S does not govern —((3S)P), since it is contained in ((3S)P);
nor ((3S)P) A (xQ), as it is contained in ((3S)P); nor (VQ, 3S)L, since VQ is
to its left. For the reduced Quarc language of this paper, a somewhat simpler
definition of governance could be provided, practically listing the schemas of
formulas governed by a QA; I prefer to use this definition in order to facilitate
the transition to fuller Quarc languages. We shall often omit parentheses
where no ambiguity arises.

Truth-Valuational, Substitutional Semantics
As in Ben-Yami (2014), I use here a truth-valuational, substitutional seman-

tics for Quarc. Justification of the approach and answers to some common
or possible objections, neither specific to Quarc but as a general semantic
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approach, can be found in Ben-Yami (2014) and Ben-Yami and Pavlovi¢ (forth-
coming). The results below do not depend on the use of this semantics: a
model-theoretic semantics for Quarc can and has been developed. A precursor
of Quarc with model-theoretic semantics is found in Lanzet and Ben-Yami
(2004) and a three-valued version of Quarc with model-theoretic semantics is
found in Lanzet (2017).

(41) (Truth-Value Assignments) The following holds for any truth-value
assignment, or valuation:

1.

w

(Basic formula) Every basic formula is assigned the truth-value
of true or false, but not both.

. (Reorder) Let P be a non-reordered n-place predicate, n > 1, and

m = rl,...,mn a permutation of 1, 2, ..., n. Then, the truth-value
assigned to (c,1, --- , Cz, )P7 is that assigned to (cy, ..., ¢,)P.

(Law of Identity) Every formula of the form ¢ = c is true.
(Indiscernibility of Identicals) If t = c is true and the formula
¢[t1, ..., t,] is a basic formula containing the instances ¢y, ..., t,, of
an SA ¢, then ¢[c/ty, ..., c/t,] is true if ¢[ty, ..., t,,] is true.
(Instantiation) For every one-place predicate P there is some SA
c¢ such that (c)P is true.

(Sentential operators) Let ¢ and 3 be formulas. Then, —(¢) is
true just in case ¢ is false, etc.

(Negative predication) Let P be an n-place predicate and
C1s..-,C, SAs. The truth-value of (cp,...,c,)P is that of
¢y, -ev 5 Cp)P.

(Quantification) Let ¢[VP] (¢[3P]) be a formula governed by an
occurrence of VP (3P). If for every (some) SA ¢ for which (c)P is
true, ¢[c/VP] (¢[c/3AP]) is true, then ¢[VP] (¢[IP]) is true. If for
some (every) ¢ for which (c)P is true ¢[c/VP] (¢[c/3P]) is false,
then ¢[VP] (¢[3P]) is false.

(42) (Validity) An argument whose premises are all and only the formulas
in the set of formulas @ and whose conclusion is the formula ¢ is valid,
written & F ¢, just in case every valuation that makes all the formulas in
@ true also makes ¢ true, even if we add or eliminate singular arguments
from our language (of course, only singular arguments not occurring
in & or ¢ can be eliminated). We also say that & entails ¢.

Dialectica vol. 74, n° 2



1.5

The Quantified Argument Calculus and Natural Logic 189

For a discussion of these definitions, see Ben-Yami (2014).

Proof System

The proof system used here is based on that found in Ben-Yami (2014) and
Ben-Yami and Pavlovi¢ (forthcoming), with the omission of the rules for
anaphora. I use a Lemmon-style natural deduction system, based on the one
introduced in Jaskowski (1934) and further developed and streamlined in
Fitch (1952), Lemmon (1978) and elsewhere. Proofs are written as follows:

(43) (Proof) A proof is a sequence of lines of the form (L, (i), ¢, R), where L is
a possibly empty list of line numbers; (i) the line number in parenthesis;
¢ a formula; and R the justification, a name of a derivation rule possibly
followed by line numbers, written according to one of the derivation
rules specified below. ¢ is said to depend on the formulas listed in L.
The line numbers in L are written without repetitions and in ascending
order. The formula in the last line of the proof is its conclusion. If there
is a proof with the formula ¢ as conclusion, depending only of formulas
from the set &, then ¢ is provable from &, or & + ¢.

I next list the derivation rules of the system.
(44) (Derivation rules)

1. (Premise) As any line of a proof, any formula can be written,
depending on itself, its justification being Premise:

i(i) ¢ Premise

2. (Propositional Calculus Rules, PCR) We allow the usual deriva-
tion rules of the Propositional Calculus.

3. (Identity Introduction, =I) As any line of the proof a formula
of the form ¢ = c can be written, depending on no premises, with
its justification being =I.

@ c=c =1

doi: 10.48106/dial.v74.i2.02
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4. (Identity Elimination, =E) (This and the following rules specify
how to add a line to a proof which contains preceding lines of the
specified forms.) Let ¢ be a basic formula containing occurrences
ti, ..., t, of the singular argument ¢ (¢ may also contain additional
occurrences of t).

Ly @ ¢
L, () t=c
LI’LZ (k) ¢[C/t1,... ,C/tn] =E l,]

Where Ly, L, is the list of numbers occurring either in L, or in L,.
5. (Sentence negation to Predication negation, SP) Let P be an
n-place predicate and ¢y, ..., ¢, singular arguments.

L) ~(cpy-.scp)P
L) (cipenrcp)mP SPi

6. (Predication negation to Sentence negation, PS) Let P be an
n-place predicate and cy, ..., ¢, singular arguments.

L (@) (cpp.enrcp)P
L () ~(cp,...,cy)P PSi

7. (Reorder, R) Let P be an n-place predicate, n > 1, and 7 =
7l,...mn and p = pl,... pn two permutations of 1,2, ..., n (the
identity permutation included).

L@  (Ca1seesCan)P”
L) (cors-sCon)PP  Ri

8. (Universal Introduction, VI) Let ¢[VP] be a formula governed
by VP. Assume that neither ¢[VP] nor the formulas in lines L apart
from (c)P in line i contain any occurrence of the singular argument
c.

Dialectica vol. 74, n° 2
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i (i) (P Premise
L () ¢lc/vP]
L-i (k) ¢[VvP]  VIij

Where L — i is the possibly empty list of numbers occurring in L
apart from i.

9. (Universal Elimination, VE) Let ¢[VP] be a formula governed
by VP.

Ly @  lvP]
Ly () (©r
L,L, (k) ¢[c/VP] VEi,j

10. (Particular® Introduction, 3I) Let ¢[3P] be a formula governed
by 3P.

Ly () ¢lc/3P]
L, () ©p
L,L, (k) ¢[3P]  31(,))

11. (Instantial Import, Imp)3 Let g stand for either 3 or V, and ¢[qP]
be governed by qP. Assume c does not occur in ¢[gP], ¥ or any of
the formulas L;, and in no formula L, apart from j and k.

L, (@  ¢lqP]
J () (P Premise

Why the quantifier is called, in Quarc, particular and not existential is explained in Ben-Yami
(2004, sec.6.5; 2014, 123).

In Ben-Yami (2014, 133) this rule was called Instantiation. “Instantial Import”, however, is
preferable for several reasons. First, in this way the ambiguity of “Instantiation” is avoided, as it is
used only for the truth-value assignment rule in Definition 41.5. Secondly, unlike “Instantiation”,
the phrase “Instantial Import” does not imply that this derivation rule presupposes that any
one-place predicate has instances. What it does presuppose is that for a formula as in (i) to be
true, P should have instances; and this is the case even if we allow some one-place predicates to
be empty and adopt a three-valued system as in Lanzet (2017). Lastly, “Instantial Import” hints
at a relation of this rule to the Predicate Calculus’ existential import.
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k (k) ¢[c/qP] Premise
L, O ¢
Li,L,—j—k (m) 9o Impi,j,k,l

As examples, I provide three proofs, which between them demonstrate all
the derivation rules apart from the rules for identity, which are not special to
Quarc, and Reorder, which is used later. First, (VS)P  (3S)P:

1 (1) (VS)P Premise

2 2) aS Premise

3 (3) aP Premise

2,3 (4 @ES)P 3123

1 (5 @S)P Impl,23,4

This inference, being part of the Aristotelian Square of Opposition, is invalid
on the standard translation of these sentences to the Predicate Calculus. Quarc
is closer in this respect to Aristotelian Logic; for discussion, see Ben-Yami
(2004, 2014), Lanzet (2017), Raab (2018).

Secondly, the Aristotelian Barbara, i.e. (VS)M, (VM)P + (VS)P:

1 (1) (YS)M Premise
2 (2) (YM)P Premise
3 3) aS Premise
L3 (4 aM VE1,3
1,2,3 (5 aP VE 2,4

1,2  (6) (VS)P VI3,5

And lastly, an Aristotelian conversion: “No P is S” follows from “No S
is P.” Instead of introducing into Quarc a negative quantifier translating
“no”—something that can be done—these sentences are translated here as
synonymous with “Every/any S is not P” or (VS)—P, and (VP)—S, and we
show that (VS)=P  (VP)-S:

1 (1) (VS)mP Premise
2 (2) aP Premise

Dialectica vol. 74, n° 2
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3 (3) aS Premise

1,3 (4) a-P VE1,3

1,3 (5) -aP PS4

1,2 (6) -aS PCR (-1)3,2,5
1,2 (7) a-S SP6

1 (8) (VP)-S VI27

For additional examples, see Ben-Yami (2014) and Ben-Yami and Pavlovi¢
(forthcoming).

2 Incorporation in Quarc of the Inferences Motivating the
Natural Logic Project

2.1 The Inferences to be Considered

In different works, Moss provides different examples of the kinds of inference
he discusses in the context of his Natural Logic project. I shall use here, as
our point of departure, the inferences he lists in his “Natural Logic” (Moss
2015, 561-62). This list is more detailed and more recent than those found
elsewhere in his writings.*

1. Passive voice

Some dog sees some cat.
.. Some cat is seen by some dog.

2. Conjunctive predicates

Bao is seen and heard by every student.
Amina is a student.
.. Amina sees Bao.

3. Comparative adjectives

4 Areviewer drew my attention to two other relevant works by Moss (2016) and Moss and Topal
(2020) (the latter published, online only, shortly before this paper was submitted), in which
additional inferences involving comparative quantifiers are involved. I comment on them when
discussing comparative quantifiers below.
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Every giraffe is taller than every gnu.
Some gnu is taller than every lion.
Some lion is taller than some zebra.

*. Every giraffe is taller than some zebra.

4. Defining clauses

All skunks are mammals.
.. All who fear all who respect all skunks fear all who respect all
mammals.

5. Comparative quantifiers

More students than professors run.
More professors than deans run.
.. More students than deans run.

I shall examine the incorporation of inferences of these kinds in Quarc, each
in a separate subsection. But before turning to them, I address a different
feature which some of Moss’s systems contain, negative nouns.

2.2 Negative Nouns

Some of Moss’s formal systems contain devices intended to represent “negated
nouns such as ‘non-man’ or ‘non-animal’” (Pratt-Hartmann and Moss 2009,
648). Moss thinks that “this is rather unnatural in standard speech but it
would be exemplified in sentences like Every non-dog runs” (2015, 567-68).
Other examples Moss provides there are All non-apples on the table are blue
and Bernadette knew all non-students at the party (Pratt-Hartmann and Moss
2009, 564).

But when such sentences are used, which I suspect is rarely, they are surely
used as elliptical for sentences like, “All fruits on the table which aren’t apples
are blue” or “Bernadette knew all non-student guests at the party.” There were
also breadcrumbs on the table, but we didn’t mean to say that they were blue;
and there were also drinks and finger food at the party.

This ellipsis understanding is also shared by Moss. In his (20104, 539-40),
we find an introductory dialogue between A, Moss’s mouthpiece, and a Ques-
tioning Q. Q requests “an example of some non-trivial inference carried out
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in natural language”, to which A responds by mentioning an inference con-
taining the premise, Every non-pineapple is bigger than every unripe fruit. Q
immediately remonstrates: “ ‘non-pineapple’?! I thought this was supposed to
be natural language”; and A excuses himself with, “Take it as a shorthand for
‘piece of fruit which is not a pineapple’” Regrettably, Q acquiesces: “Ok, I get
it.”

Yet if, instead of Q, A would have encountered Critical C, she might have
retorted, “So why not stay with ‘fruits which aren’t pineapples’? Should Logic
turn a shorthand into a formal syntactic feature?! And you anyway intend to
incorporate defining clauses in your system, for instance when formalising
‘all who respect all skunks’, so you shall have the resources for ‘fruits which
aren’t pineapples.” If your goal is, as you stated, ‘logic for natural language,
logic in natural language’, then try avoiding non-men, non-dogs and other
non-natural creatures.”

C’s point is supported by an observation due to Aristotle. In his Categories
(~BC330), when discussing primary, individual substances — an individual
man or horse, for instance—and secondary substances, like “man” and “ani-
mal” as species and genera, he notes: “Another mark of substance is that it
has no contrary. What could be the contrary of any primary substance, such
as the individual man or animal? It has none. Nor can the species or the genus
have a contrary” (Cat. 5, 3b24). Since there is no contrary to man or animal,
“non-man” and “non-animal” cannot function, on their own, as noun phrases.

The actual natural language sentences which Moss formalises by means
of formal negative nouns, designated by a bar (g for non-q’s), are sentences
like, “Some p aren’t q” and “Some p don’t r any q”, formalised by 3(p, q) and
A(p,V(q,7)) (2015, 573). (We don’t need to go into the details of Moss’s syntax,
since for our purposes the idea is sufficiently clear from these examples.)
These two sentences are formalised in Quarc by (3P)—~Q and (3P,VQ)-R.
Accordingly, Quarc can formalise these sentences without recourse to negative
nouns but by using negation as a mode of predication, as it is indeed used in
natural language.

I think that finding the idea of negative nouns acceptable is influenced
by the semantic idea of a domain of discourse. If, when quantifying, the plu-
rality over which we quantify is that of a domain of discourse, then we can
single out a part of it either as containing all items to which a predicate p
applies, or all those to which it does not apply. Indeed, when Moss develops a
semantics for languages that include negative nouns, his model or structure
U contains a non-empty set A which functions as the domain, and if pu CA,
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then ﬁu = A\p" (Pratt-Hartmann and Moss 2009, 651). However, a domain of
discourse, in the technical sense in which the idea is employed in semantics,
is an artefact of Fregean Logic, whose quantified sentences contain no expres-
sion specifying the plurality over which they quantify. For this reason, the
semantics must introduce an otherwise implicit domain. Natural language
sentences, by contrast, do specify the plurality over which they quantify: when
I say, “All your students came to class”, I specify your students as the relevant
plurality. Quarc follows natural language in this respect, and needs no do-
main of discourse or of quantification (Ben-Yami 2004, 59-60; Lanzet 2017).
Once the domain is eliminated, “non-man” and “non-animal” have nothing
to designate and should be eliminated as well.

For these reasons, I think that negative nouns are not needed and should
not be included in a logic which aspires to be a logic for natural language. As
argued above, the rare sentences which apparently use them are better seen
as elliptical: as such they can be formalised in Quarc, which therefore does
not need to contain negative nouns.

Passive Voice

(45) Some dog sees some cat.
.. Some cat is seen by some dog.

Quarc was developed to incorporate reordering devices such as the active-
passive voice distinction. If “a sees b” is formalised, “(a, b)S”, then “b is seen
by a” is formalised, “(b, a)S>!.” We show that,

(46) (3D,3C)S F (3C, AD)S>!

Proof.
1 (1) (3b,30)s Premise
2 (2) aD Premise
3 3) (a,30)S Premise
4 4) bC Premise
5 (5) (a,b)S Premise
5 (6) (b,a)s>! R5

2,5 (7) (b,3AD)S>! 312,6
2,4,5 (8) (3C,3AD)S>! 314,7
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2,3 (9) (3C,3ID)S*' 1Imp3,4,5,8
1 (10) (3C,3ID)s*! Imp1,2,3,9

O

Quarc with truth-valuational semantics has been shown to be sound and
complete in Ben-Yami (2014) and Ben-Yami and Pavlovi¢ (forthcoming); a
model-theoretic version of this result is found, for an earlier version of the
system and for a three-valued version of it, in Lanzet and Ben-Yami (2004)
and Lanzet (2017). Accordingly, Quarc is a sound and complete formal system,
with a syntax modelled on natural language’s, which incorporates inferences
like (45).

Conjunctive Predicates

(47) Bao is seen and heard by every student.
Amina is a student.
.. Amina sees Bao.

The new element in this inference is the conjunctive verb, or more generally
conjunctive predicate, “see and hear.” We shall extend Quarc to incorporate it.

We take our cue for the incorporation of conjunctive predicates in Quarc
from the way negative predication, reordering and anaphora were incorpo-
rated in it. Namely, we shall define valuation- and derivation rules for the case
in which all arguments are singular terms, and show that these together with
the other rules which have already been defined provide us with desirable
results for the more complex cases as well.

Vocabulary
We do not extend the basic vocabulary of Quarc but define,

(48) (Conjunctive predicates) If P and Q are n-place predicates, so is (P) A
(Q), which is called a conjunctive predicate.

Conjunction of predicates can be iterated. Assuming P, Q and R are n-place

predicates, so are (P)A(Q)A(R), (P)AU(Q)AR)), (P)A(Q)A(R)A(P)), and
so on. However, as can be proved, formulas with the same predicates ordered
and grouped in whichever way, with or without repetition, are equivalent
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both semantically and proof-theoretically. This allows us to omit parentheses
for some conjunctive predicates: both ((P) A (Q)) A (R) and (P) A ((Q) A (R))
can be written as P A Q AR.

Notice that many-place conjunctive predicates can be reordered like any
other many-place predicate.

Formulas

No new rules. If P and Q are one-place predicates, then (a)(P) A (Q) is a
formula. Similarly for any n-place predicates and any arguments.

Semantics

(49) (Conjunctive Predication). Let P and Q be n-place predi-
cates, and c¢;,...,c, singular arguments. The truth-value as-
signed to (cq,...,¢,)(P) A (Q) on a valuation is that assigned to
(c15 -5 c)P A (cqy-ev 5 €)Q.

Examples. If, on a given valuation, aP, aQ and aR are true, then so are, accord-
ing to our definition, a(P) A (Q), a(Q) A (R) and a(R) A (P). Accordingly, so

are a((P) A (Q)) A (R), a(P) A ((Q) A (R)) and a((P) A (Q)) A ((R) A (P)). If aP
is false, then so are a(P) A (Q), a(P) A ((Q) A (R)) and a(R) A (P); and so on.
This rule yields the desirable results for the two different sentences,

(50) Every linguist knows and admires some philosopher.
formalised as,

(51) (VL,3P)(K) A (4)

and

(52) Every linguist knows some philosopher and every linguist admires some
philosopher.

Formalised as,
(53) (VL,3AP)K A (VL,3P)A

According to Universal Quantification, (51) is true on a valuation just in case so
are all formulas of the form, (I, AP)(K) A (A), where for [ the formula IL is true.
The formula (I, 3P)(K) A (A) is true, according to Particular Quantification,
just in case so is some formula of the form, (I, p)(K) A (A), where for p the
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formula pP is true. Next, according to Conjunctive Predication, (1, p)(K) A (A)
is true just in case so is (I, p)K A (I, p)A. Namely, (51) is true iff every linguist
knows some philosopher and admires the same philosopher. By contrast, since
(53) is true just in case so is each of its conjuncts, we shall not get that every
linguist need admire a philosopher he knows.

Proofs

We add an introduction and an elimination rules for conjunctive predicates:

(54) (Conjunctive Predication Introduction, CP-I) Let P and Q be n-place
predicates, cy, ... , ¢, singular arguments.

L (@) (cp--rscp)PA(Cys-.rr¢)Q
L () (c15eesen)P)A(Q) CP-li

(55) (Conjunctive Predication Elimination, CP-E) Let P and Q be n-place
predicates, cy, ... , ¢, singular arguments.

L (l) (Cl’ sre Cn)(P) A (Q)
L () (cyeercp)PA(csyen,cy)Q CP-Ei

It is straightforward to see that soundness is preserved.

The completeness of Quarc on the truth-valuational approach is proved in
Ben-Yami and Pavlovi¢ (forthcoming) by adapting Henkin’s proof (1949). We
won’t provide here the complete proof but only specify its features that are
relevant for proving that the completeness of the system is preserved with the
additional structures introduced in this paper. As part of the proof, a “Henkin
Theory” is specified, consisting of all formulas falling under certain schemas.
It is then shown that any valuation that respects the truth-value assignment
rules for the connectives of the propositional calculus while making all the
formulas of the Henkin Theory true, respects all the truth-value assignment
rules of Quarc as well. Later, some of the formulas of the Henkin Theory are
shown to be theorems of Quarc.

To prove that completeness is preserved, we should add to the Henkin
theory the axiom schema,

(56) (c1y--» c))(P) A (Q) < ((c1, -5 )P A (C1s -0, €2)Q)
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Any valuation that respects the truth-value assignment rule for the connective
« while making all the formulas of this form true, clearly respects Conjunctive
Predication (49) as well. And, given CP-I and CP-E, this is a schema of theo-
rems of Quarc. See Henkin (1949) and Ben-Yami and Pavlovi¢ (forthcoming)
for further details.

We can now turn to a proof of the argument opening this subsection. We
formalise it as follows:

Bao is seen and heard by every student: (b, VS)(C A H)*!
Amina is a student: aS
.. Amina sees Bao: (a, b)C

‘We show that,
(57) (b,¥S)(C AH)*!,aS + (a,b)C

Proof.

1 (1) (b,¥S)(C AH)>' Premise

2 (2) aS Premise
1,2 (3) (b,a)(CAH)*' VEL,2

1,2 (4) (a,b)CAH R3

1,2 (5 (a,b)CA(a,b)H CP-E4

1,2 (6) (a,b)C PCR(AE)5

Comparative Adjectives

(58) Every giraffe is taller than every gnu.
Some gnu is taller than every lion.
.. Some lion is taller than some zebra.
Every giraffe is taller than some zebra.

Most comparative adjectives are transitive: if Alice is younger than Bob, and
Bob younger than Charlie, then Alice is younger than Charlie. It might thus
seem that this transitivity is built into language as a formal rule, for any
comparative adjective of the form, ¢-er. There are, however, exceptions, as
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we learn from Rock-Paper-Scissors: in this game, paper is stronger or better
than rock, rock is stronger than scissors, yet scissors is stronger than paper.
Such exceptions notwithstanding, we shall treat in this subsection compara-
tive adjectives of the form ¢-er as transitive. I do not think that the transitivity
of adjectives of the ¢-er structure is merely a frequent albeit contingent fact.
Rather, we have here a rule of grammar which allows exceptions. That the
past tense of “go” is “went” does not show it not to be a rule that the past
tense of verbs is formed by adding “ed.” With comparative adjectives we have
a different kind of rule and exception, concerning not syntax but meaning; yet
this does not affect the fact that transitivity is a rule for the use of comparative
adjectives, to be overridden only if the exception is explicitly introduced.

Vocabulary and formulas

We add to the language denumerably many two-place comparative predicates,
P, Qers Re;... No new formula rules.

Semantics

(59) (Comparative Adjective Transitivity). Let P, be a comparative pred-
icate, and c;, ¢, and c;3 singular arguments. If the truth-value assigned
to (¢;, ¢;)P; and (c,, c3)P,, on a valuation is true, then that assigned to
(c1,¢c3)P,, is also true.

Proofs

(60) (Comparative Adjective Transitivity, CAT) Let P, be a comparative
predicate, c;, ¢, and c; singular arguments.

L1 (l) (Cly CZ)Per
L2 (.]) (02! c3)Per
L1,L2 (k) (cj,c3)P,, CATI,j

Soundness is again immediate. Completeness is proved by adding to the
Henkin theory all the formulas which fall under the schema,

(61) (Cl’ CZ)Per A (027 C3)Per - (017 C3)Per

Any valuation that respects the truth-value assignment rules for the connec-
tives A and — while making all the formulas of this form true, respects (59)
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as well. All formulas of this form are theorems of Quarc, provable from CAT.
See again Ben-Yami and Pavlovi¢ (forthcoming) for further details.

The proof of (58) is quite tedious and adds no interesting element to what
we learn from proofs of simpler inferences. I shall therefore formalise and
prove instead the following:

(62) Every giraffe is taller than every wildebeest: (VG, VW)T,,
Some wildebeest is taller than every lion: (3W, VL) T,,
.. Every giraffe is taller than every lion: (VG, VL)T,,

‘We show that:

(63) (VG,YW)T,.,(3W,VL)T., - (VG,VL)T,,

Proof.

1 1) (VG,VYW)T., Premise
2 (2 ((3wW,VL)T, Premise
3 3) gG Premise
1,3 @ (g, YW)T,, VEL,3

5 5) ww Premise
1,3,5 6) (g w)Ty VE 4,5

7 (7 (w,VL)T, Premise
8 (8) IL Premise
7,8 9 (w,DT, VE 7,8
1,3,5,7,8 (10) (g, DT, CAT 6,9
1,3,57 (1) (g VL)T, VIS, 10
1,5,7 (12) (VG,VL)T,, VI3,11
1,2 (13) (VG,VL)T., Imp2,5,7,12

2.5.4 Asymmetry

Another property of comparative adjectives is asymmetry. If Alice is younger
than Bob, then Bob isn’t younger than Alice. Unlike transitivity, asymmetry
seems to have no exception for comparative adjectives.

This property can also be straightforwardly incorporated in Quarc. Nothing
needs to be added to either vocabulary or formula rules. In the semantics,
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the rule should be that if (¢;, c;)P,, is true on a valuation, then (c,, ¢;)P,, is
false on it. And the rule of inference should allow the inference (c;, ¢;)P,,
=1(c;, ¢1)P,,. We shall not develop this further here.

Defining Clauses
(64) All skunks are mammals.
.. All who fear all who respect all skunks fear all who respect all
mammals.

Those who respect the skunks and mammals, as well as those who fear the
former, are presumably not respectful triangles or fearful ideas, say. Which
respectful and fearful “things” are referred to would depend on context, but
something more specific does seem to be meant. We shall assume here that
the conclusion is about creatures generally, and consider it as elliptical for,

(65) All creatures who fear all creatures who respect all skunks fear all crea-
tures who respect all mammals.

This will enable us to treat inference (64) by means of the extended, three-
valued Quarc system developed in Lanzet (2017), which has the syntactic and
semantic resources to represent defining clauses and can straightforwardly
translate sentences such as (65).

One might object and claim that the conclusion of (64) is about absolutely
everything. Triangles and ideas, so might one continue, also fall within its
purview, only they happen not to fear or respect anything, ipso facto skunks
and mammals. I find this approach unconvincing when applied to natural lan-
guage, whose logic both Natural Logic and Quarc aim to represent. However,
the issue need not be decided for the purpose of formalising inference (64) in
Quarc: the means for representing absolute generality are provided in both
Lanzet and Ben-Yami (2004) and Lanzet (2017), in each somewhat differently,
by the introduction of a special predicate, Thing or T. Very roughly, the idea
is that everything is a Thing: for every constant c, cT is true. (This special
predicate also helps explore the relations between Quarc and the Predicate
Calculus.) We shall not develop this idea further here, though, but continue
with the assumption that a predicate with narrower application is assumed,
and use creature as in (65).

The three-valued Quarc system of Lanzet (2017) is too complex to be fully
presented in this paper. I shall therefore introduce only some of its features,
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which will enable us to get an idea of how sentence (65) and consequently
inference (64) are handled by it. The reader is referred to Lanzet (2017) for
a full exposition. Since we are not inquiring into decidability in this paper
but leaving it as a subject for future work, neither shall we inquire whether a
restricted, simpler yet complete and decidable version of that system suffices
for the formalisation of the relevant arguments.

Compound Predicates
Consider the sentence,

(66) Alice is a woman who knows Bob.
It is logically equivalent to,

(67) Alice is a woman and Alice knows Bob.
While (67) is formalised in Quarc as,

(68) aW A (a,b)K
we shall formalise (66) by:

(69) aW,:(x,b)K

The chain of symbols, W : (x, b)K, is considered a compound predicate.
More generally, if ¢[a] is a formula and P a one-place predicate, then
B.:¢[x] is a compound predicate, which is also a one-place predicate. ¢[a]
contains no occurrence of x (to avoid ambiguity), and x replaced some or all
occurrences of a in ¢[a]. B.: ¢[x] can be read, P which is ¢. (b)B, : $[x] is true
on a valuation just in case bP and ¢[b/x] are true on that valuation.
With this in place, we can formalise the following compound predicates:

creatures who respect Mumbo C.:(x,m)R

creatures who respect all mammals C,:(x,VM)R
creatures who fear all creatures Cy:(x,YOF
creatures who fear all creatureswho  C, 1 (x,VC): (y, m)R)F

respect Mumbo
creatures who fear all creatureswho  C, 1 (x,VCy: (y, VM)R)F
respect all mammals

And we can now formalise sentence (65) as well, “All creatures who fear all
creatures who respect all skunks fear all creatures who respect all mammals”:
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(70) (VCy:(x,¥Cy:(y,YS)R)F,VC,:(y, YM)R)F

2.6.2 Proofs

Lanzet (2017) develops a three-valued system, allowing for some formulas
to lack a truth value. “All my children work in the coal mines” is neither
true nor false when uttered by a childless person. Similarly, 3SP and VSP will
lack a truth value when S has no instances. If our conception of validity in a
three-valued system is that truth entails truth, and this is Lanzet’s conception,
then this three-valued framework complicates the proof system. The classical
Negation Introduction rule, for instance, cannot be employed. In addition,
some of the rules for quantifiers should be modified, because in some cases we
should guarantee that the predicate occurring in the argument position, say P,
has instances. This can be done in several ways, one of them by having (3P)P
among our premises: this formula is true if and only if P has instances. For
these two reasons, the V-Introduction rule is replaced by two rules. Lanzet uses
a proof system which operates on sequents, although resembling a natural
deduction system in its inference rules. Adapting his rules to the system used
in this paper, his V11 rule will be:

i (i) cP Premise
L () ¢le/vP]
L, (k) 3pp

Li—i,L, () ¢[vP] VIii,jk

Where VP governs ¢[VP] and ¢ does not occur in L; apart from i, in L, or in
$[VPI.

Returning to the inference with which we opened this subsection, on the
conception of validity as truth entails truth, sentence (65), “All creatures who
fear all creatures who respect all skunks fear all creatures who respect all
mammals”, follows from “All skunks are mammals” only if we assume that
the compound predicates in the conclusion’s argument positions, “creatures
who fear all creatures who respect all skunks”, and “creatures who respect
all mammals” have instances. Otherwise, if no one respected mammals, say,
there would be no one to fear in the conclusion, and a true premise would
have a conclusion which is neither true nor false.—We can develop a different
conception of validity for three-valued systems, in which, instead of truth
leading to truth, an argument is valid just in case, if its premises are not
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false, then its conclusion isn’t false either (Halldén 1949). Another option is
to define validity for a three-valued system as, if the premises are true then
the conclusion isn’t false (strict-to-tolerant validity, Cobreros et al. 2013). On
either conception, a valid argument with true premises may have a conclusion
which has no truth-value, and no additional premise should be added to (64).
Both options are worth exploring, but here we shall limit ourselves to the
option Lanzet adopts and take validity to mean, truth entails truth.
We should, therefore, add to (64) the two premises,

(71) (3Cx:(x,VCy: (3, VS)R)F)Cy : (x,VC),: (¥, VS)R)F
(72) (3Cy,:(y, VM)R)Cy,: (y, VM)R

and show the following:

(73) VSM,
(3Cy: (x,VCy: (y, VS)R)F)Cy : (x,VCy,: (¥, VS)R)F,
(3Cy,:(y, YM)R)Cy,: (y, YM)R +
(VCy:(x,YC,: (y,YS)R)F,VC,: (y, YM)R)F

The proof is long and requires familiarity with the rules of Lanzet (2017),
so instead of providing it we shall show that the inference is valid. Since
the system of that paper was proved there to be complete, it follows that the
inference can be proved.

Proof. Proof. We should show that, if on a valuation 8 the three premises of
(73) are true, then for every instance a of C, :(x,VC):(y, VS)R)F and every
instance b of Cy: (¥, VM)R, the following is also true, (a, b)F. From premises
(71) and (72), we know that each of these compound predicates has instances.
So suppose (a)Cy : (x, VCy: (y, VS)R)F is true on B with a specific set of SAs (re-
member that on the truth-valuational semantics, we may add or eliminate sin-
gular arguments from our language). Then so are aC and (a, VC) : (y, VS)R)F.
But this means that Cy: (¥, VS)R has instances on 8, and that for any of its
instances ¢, (a, ¢)F is true on 8. For any such c, since cCy: (¥,VS)R is true on
8, c¢C and (c, VS)R are true on B. And again, for any instance d of S on B,
(c,d)R is true on B.

On B, if b is an instance of C),:(y, VM)R, then both bC and (b, VM)R are
true on B. So for any instance e of M on B, (b, e)R is true on B. Now, if d is
an instance of S on %, from the first premise of (73), VSM, dM is also true on
%8, and therefore (b, d)R is true on B. So (b, VS)R is also true on 8. Since bC
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is also true, bCy,:(y, VS)R is true on 8. But we saw that (a,VC):(y, VS)R)F is
true on B. So (a, b)F is true on B.
O

We see that inference (64) can be incorporated in an existing powerful version
of Quarc. Moreover, in the process, Quarc has brought to light two features of
Moss’s original formulation which needed to be addressed: completion of an
ellipsis and making two presuppositions explicit. We therefore proved here a
revised inference, (73).

Comparative Quantifiers

(74) More students than professors run.
More professors than deans run.
.. More students than deans run.

The four kinds of inference we discussed above did not pose serious issues for
their incorporation in Quarc, syntactically, semantically, or proof-theoretically.
The active-passive-voice distinction and defining clauses were already incor-
porated in Quarc, the latter in a three-valued version of it; and conjunctive
predicates and comparative adjectives required rather straightforward exten-
sions for their incorporation. Comparative quantifiers, however, pose several
challenges, only some of which will be met in this paper.

The quantifiers of Quarc, 3 and V, translate natural language’s “some”, “a”,
“all”, “any” and “every” in various of their uses. All these quantifiers are unary
determiners: they attach to one general noun to form a noun phrase. “Some
boys”, “a girl”, “all men”, “any woman” and “every person” are a few examples.
This is also true of some other natural language quantifiers, for instance three,
at least seven, infinitely many, most and many. Translating these quantifiers
in Quarc will require additional vocabulary but not additional syntactic roles.

By contrast, comparative quantifiers, in their use exemplified in (74), are
binary determiners: they attach to two general nouns to form a noun-phrase.
As, for instance, in “more students than professors” and “more professors
than deans” (Ben-Yami 2009). Translating them into Quarc will therefore
necessitate an additional syntactic role: a quantifier which attaches to an
ordered pair of one-place predicates to form a quantified argument.
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Vocabulary and Formulas

We add a new binary quantifier, I1, read “more”. If P and Q are one-place
predicates, then I1(P, Q) is a binary quantified argument.

Semantics

To capture the truth-conditions of “more” within a truth-valuational sub-
stitutional semantics, as well as those of many other, unary quantifiers—
e.g. “three”, “at least seven”, “many” and “most”—we should overcome a
difficulty related to the fact that several names might name the same thing
(Lewis 1985). Suppose we defined “Two men married Olivia Langdon” as true
if there are two different substitution instances of names for “two men”, each
verifying “x is a man”, which yield a true sentence of the form, “x married
Olivia Langdon.” We would then get that the sentence is true, for both “Mark
Twain is a man” and “Samuel Clemens is a man” are true, as are “Mark Twain
married Olivia Langdon” and “Samuel Clemens married Olivia Langdon.”
Yet Mark Twain is Samuel Clemens, and only this single man married Olivia
Langdon.

To overcome this difficulty, we first define for each one-place predicate P
on each valuation 8 a maximal substitution set @. This is a set for which,

« only names a for which aP is true on 8 are in @.

« for any different a and b in &, a = b is false on B

« for any c for which cP is true on B, a = c is true on B for some a in &,
possibly c itself.

In this way we make sure that every P is counted exactly once, so to say, by
the names in P’s maximal substitution set. It is easy to show that on each
valuation, all maximal substitution sets of a given predicate have the same
number of members, or cardinality.

We can now define the truth value of a formula ¢[II(P, Q)], governed by
I1(P, Q), on a valuation . We consider two maximal substitution sets @ and
G- $[II(P, Q)] is true on B just in case more substitution cases of the form,
¢la/TI(P, Q)] with a € &p are true on B than such substitution instances with
ae @Q

Turning to inference (74), we can formalise it and show the validity of the
formalisation in Quarc. Its formalisation will be,

(75) (II(S, P))R, (I1(P, D))R F (TI(S, D))R

Dialectica vol. 74, n° 2



2.7.3

The Quantified Argument Calculus and Natural Logic 209

We have to show that if both premises are true on a valuation £, then so is the
conclusion. We choose three maximal substitution sets on B, €, ©p and &p,.
If (TI(S, P))R is true on B, then there are more members a in &g for which aR
is true on B than members b in &p for which bR is true on 8B; and similarly,
there are more such members b than members ¢ of @, for which cR is true
on B. So there are more members a in &g for which aR is true on B than
members ¢ in &p for which cR is true on B. Accordingly, (II(S, D))R is true
on 8.

Proofs

This is the part of the challenge comparative quantifiers pose which will not
be met in this work. How is it possible to reflect the logic of the quantifier IT
in a proof system, is a question we shall here leave unanswered. In fact, even
the more basic question, whether it is possible to capture content by form for
IT in argument-predicate sentences, will not be addressed here either.

To the best of my knowledge, Moss does not try to incorporate inference
(74) or the quantifier “more”, as used in argument-predicate sentences, in
his Natural Logic systems (but see below on the use of this quantifier in
‘existential’ sentences). In Moss (2015), he mentions inference (74) in order to
show the apparent inadequacy of first-order logic as a means of representing
the logic of natural language:

[In] the first-order language with one-place relations student(x),
professor(x), and run(x), there is no first-order sentence ¢ with
the property that for all (finite) models M, ¢ is true in M if and
only if “More students than professors run” is true in M in the
obvious sense. This failure already suggests that first-order logic
might not be the best “host logical system” for natural language
inference. (2015, 563)

I agree with Moss on what he takes this inability to suggest. (See also Ben-Yami
2009 for a discussion of generalised quantifiers and comparative quantifiers.)
What we managed to show in this paper is that Quarc does not have this short-
coming as a system for representing the logic of natural language. Quarc can
incorporate natural language’s comparative quantifiers as binary quantifiers,
imitating their natural language syntax, and it does that by providing the cor-
rect truth conditions for these sentences. We saw this being done for “more”
with a truth-valuational substitutional semantics; the way to generalise this
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approach to other comparative quantifiers (e.g. “at least as many”) or con-
struct a model-theoretic semantics for them is straightforward. Accordingly,
we have managed to show an advantage of Quarc over the Predicate Calculus
in this respect.

Comparative Quantifiers in “Existential” Sentences

In more recent work, Moss and Topal extended Natural Logic and applied it to
sentences of the form, “There are at least as many p as q” and “There are more
p than q” (2016; 2020) (see fn. 3). They have developed sound and complete
proof systems for cardinality comparisons, for both finite (Moss 2016) and
infinite sets (Moss and Topal 2020). This is impressive work, and it would be
interesting to inquire whether Quarc can deliver anything comparable. This,
however, will not be attempted in this paper, for several reasons.

There are obvious space considerations. For instance, the proof system of
Moss (2016) contains 24 rules, of which 16 involve his formalisations of “at
least as many” and “more”; the corresponding numbers for the proof system of
Moss and Topal (2020) are 21 and 12. Accordingly, a Quarc system formalising
these inferences might involve significantly more additions than the extended
systems considered above. Similarly, a completeness proof for this extended
system would not be established by minor additions to the one provided in
Ben-Yami and Pavlovi¢ (forthcoming). This is a topic for a separate paper.

Moreover, a Quarc treatment of sentences of the form, “There are at least
as many p as q” and “There are more p than g”, will depart from Moss’s in
some important fundamental respects. Moss formalises these sentences by
sentences similar in form to those formalising “All/some p are/aren’t q.” For
instance, “Some p are q” is formalised by 3(p, q), and “There are more p
than q” by 37 (p, q). Namely, apart from the different quantifier, no syntactic
distinction is drawn between the argument-predicate sentence, “Some p are
q”, in which the argument is “some p”, and the so-called existential sentence,
“There are x”, in which x is a noun phrase formed by a comparative quantifier,
“more p than q.” However, the existential sentence, “There are more p than
q” is no argument-predicate one. A sentence similar to it in form using the
quantifier “some” will be, “There are some p”, and not, “Some p are q.” An
argument-predicate sentence with the quantifier “more” would have the form
of the sentence considered above, “More students than professors run.” As
mentioned earlier, Moss hasn’t developed a proof system for these sentences.

The distinction between existential sentences and argument-predicate
sentences seems to be a linguistic universal. Moreover, existential sentences
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show important differences from quantified argument-predicate ones (Ben-
Yami 2004, sec.6.5; I. Francez 2009; McNally 2011). Accordingly, a system that
aims to be a logic for natural language informed by the latter’s syntax should
formalise existential sentences differently than it does argument—predicate
ones. It should distinguish the two constructions and explore the logical
relations between them. As part of such a general treatment of existential
sentences, those with a noun-phrase of the form “more p than q” as their
pivot (see 1. Francez 2009; McNally 2011 for the terminology) can also be
introduced and discussed, as well as those with other comparative quantifiers.
A general inquiry into the logic and formalisation of existential sentences has
not been attempted by Moss and shall not be attempted here either.

Conclusions and Future Work

This paper tried to assess the ability of Quarc, in its current or extended ver-
sions, to represent the kinds of inference which have served as the basis of
Moss’s constructions of Natural Logic systems. We have shown how Quarc can
incorporate, sometimes with some extensions, passive-active voice distinc-
tions, conjunctive predicates (see and hear), comparative adjectives (taller),
and defining clauses (who respect all mammals). All these were incorporated
within sound and complete systems. We have also shown how Quarc can be
syntactically extended to incorporate comparative quantifiers (more ... than
...) and provided a semantics but not a proof system for this extension.

All this was done by using a language with a syntax close to that of natural
language. In this respect we followed Moss’s dictum for his Natural Logic
project, “logic for natural language, logic in natural language” (2015, 563).
believe that in some respects we improved on Natural Logic, for instance by
not using negative nouns.

The process also helped shed light on some of the inferences we discussed.
The constraints of the formal system brought us to recognise an ellipsis and
presuppositions involved in the conclusion of inference (64), “All who fear all
who respect all skunks fear all who respect all mammals.”

A main aim of the Natural Logic project which we did not address here was
the question of decidability. Apart from the theoretical interest, this is relevant
to questions of the applicability of computer programmes for determining
validity. I hope this question will be addressed in future work, by myself or
others.
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Another topic which was not addressed in this paper but which has engaged
Natural Logic is that of monotonicity (Moss 2015, sec.4). Moss’s work is based
on van Benthem’s (1986, 1991), which generated additional inquiries as well
(see Benthem 2008 for a historical survey). Whether and how can Quarc
analyse the phenomena of monotonicity is again left for future work.

The last topic mentioned as subject for future work is the formalisation of
the so-called existential sentences—“There are x”—in Quarc. Once this is
done, existential sentences with comparative quantifiers — “There are more
p than g” and “There are at least as many p as g”—can also be formalised,
and Moss’s work on these last sentences can be comparatively studied.

So, there is still work to be done. Yet hopefully, we have shown that in
addition to the earlier successes in its application to the analysis of the logic
of natural language, Quarc can also represent the inferences that motivated
Moss’s Natural Logic.*

Hanoch Ben-Yami
Central European University
benyamih@ceu.edu
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