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Abstract
AI-driven approaches are widely used in drug discovery, where candidate molecules are generated and tested on a target 
protein for binding affinity prediction. However, generating new compounds with desirable molecular properties such as 
Quantitative Estimate of Drug-likeness (QED) and Dopamine Receptor D2 activity (DRD2) while adhering to distinct 
chemical laws is challenging. To address these challenges, we proposed a graph-based deep learning framework to generate 
potential therapeutic drugs targeting the SARS-CoV-2 protein. Our proposed framework consists of two modules: a novel 
reinforcement learning (RL)-based graph generative module with knowledge graph (KG) and a graph early fusion approach 
(GEFA) for binding affinity prediction. The first module uses a gated graph neural network (GGNN) model under the RL 
environment for generating novel molecular compounds with desired properties and a custom-made KG for molecule screen-
ing. The second module uses GEFA to predict binding affinity scores between the generated compounds and target proteins. 
Experiments show how fine-tuning the GGNN model under the RL environment enhances the molecules with desired 
properties to generate 100% valid and 100% unique compounds using different scoring functions. Additionally, KG-based 
screening reduces the search space of generated candidate molecules by 96.64% while retaining 95.38% of promising binding 
molecules against SARS-CoV-2 protein, i.e., 3C-like protease (3CLpro). We achieved a binding affinity score of 8.185 from 
the top rank of generated compound. In addition, we compared top-ranked generated compounds to Indinavir on different 
parameters, including drug-likeness and medicinal chemistry, for qualitative analysis from a drug development perspective.

Keywords Binding affinity prediction · Graph neural network · Knowledge graph · Molecule generation · Reinforcement 
learning

1 Introduction

Artificial Intelligence (AI) models are being used in a grow-
ing number of disciplines and have effectively been used 
for sequential processes (like text or speech) (Vaswani et al. 
2017), and in different image-related tasks (like object 

detection, classification, etc.) (Ren et al. 2015). These mod-
els are also finding applications in the chemistry domain. 
They are being utilized to improve drug design by narrowing 
the initial search space in the early phases of drug discovery. 
Drug discovery (Drews 2000) includes the process of gen-
erating new molecular compounds with a particular set of 
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targeted therapeutic potential from scratch. These processes 
can be accomplished using an AI-based algorithm trained 
on the required data to create novel compounds with the 
desired properties.

In contributing to the rise of the COVID-19 global epi-
demic, researchers have worked hard to discover the existing 
medications that could be adapted for SARS-CoV-2 diagno-
sis (Lu 2020; Zhou et al. 2020). However, generating mol-
ecules with specific desirable properties for SARS-CoV-2 
remains a challenging task for the scientific community. 
The process of producing new drugs has to go through the 
distinct aspect of polymer structure space, and also the enor-
mous size of chemical space (Arús-Pous et al. 2019) which 
makes it rather complicated, time-consuming, and costly. 
These limitations arise from the fact that the possible chemi-
cal space contains over 1060 compounds that should ideally 
be investigated for therapeutic design before discovering a 
lead for a target protein, and the candidates with appropriate 
activity against specific proteins only decrease the search 
space to 104–105 structures.

Additionally, a slight change in molecule design can 
result in a significant difference in the molecular attribute 
like binding strength. This process can take several years to 
complete and is relatively inefficient. Therefore, AI-driven 
workflows should speed up the design process for appro-
priate drug development that serves as a search-and-screen 
process of the reduced chemical space as a simplified molec-
ular-input line-entry system

The candidate molecules are first generated by deep genera-
tive models and then further verified via drug–protein-binding 
prediction techniques (Ranjan et al. 2022). Further research has 
been carried out for molecule generation, where the molecules 
are recognized as simplified molecular-input line-entry system 
(SMILES) sequences. When using SMILES, specific crucial 
chemical properties of a molecule, such as structural informa-
tion, are lost, affecting the prediction accuracy of a model and 
the functional validity of the learned latent space. To over-
come these limitations, researchers developed models based on 
heterogeneous graph representations of compounds (Li et al. 
2018a, b), which provide a realistic depiction of chemical com-
pounds, where the node represents the atom, and an edge rep-
resents the bond between atoms. Different varieties of Graph 
Neural Networks (GNNs) (Scarselli et al. 2008a) have since 
been documented in the literature, the majority of which have 
only recently been applied to molecular compounds (Gilmer 
et al. 2017a; Kipf and Welling 2016). Another technique relies 
on reinforcement learning (RL) (Mnih et al. 2015), a kind of 
artificial intelligence in which models learn how to make deci-
sions to maximize their reward. A wide range of work uses RL 
algorithms for fine-tuning the generative model with desired 
properties to produce SMILES string of molecules (Guimaraes 
et al. 2017; Putin et al. 2018), but a majority of these models 
use SMILES strings for learning. They were able to produce 

molecules with the desired properties, but they ran into prob-
lems with chemical validity. Although RL-based models pro-
vide direct learning on graph structures, still these models 
are less researched on compound generation tasks. Recently, 
(Zhou et al. 2019; You et al. 2018) introduced deep RL-based 
models for generating graph representations of molecules and 
obtained 100% validity.

Similarly, various graph-based approaches have been pro-
posed for estimating the binding affinity score of medical 
compounds with a particular protein (Nguyen et al. 2021a; 
Öztürk et al. 2018; Tsubaki et al. 2019; Torng and Altman 
2019; Jiang et al. 2020). To estimate binding affinity, most 
of these models employ a late fusion technique, in which 
compounds and protein features are collected separately and 
then fused. These models leave out the fact that binding 
happens inside a protein residue rather than throughout the 
complete protein. When a medicine attaches to a protein, 
the protein’s function gets altered, resulting in the expected 
pharmacological effects. These change the protein’s struc-
ture and, as a result, its appearance. Similarly, the late fusion 
approach fails to detect these structural alterations when a 
compound binds to the protein. It also ignores the concept of 
site-specific interaction, making it challenging for the model 
to focus on affiliated sites, resulting in slower learning and 
less interpretable results. One approach to addressing this 
problem is presented in (Nguyen et al. 2021b), wherein the 
description features for a particular drug from its molecu-
lar structure are identified. In this approach, the molecular 
graph representation is included in the protein network graph 
before the actual protein embedding process begins. It is 
indeed a graph architecture that is stacked within another 
graph architecture. Because of the graph-in-graph technique, 
the model can reflect changes in the protein network graph 
caused by drug molecule-bond formation.

Continuing with the above concepts, in this work, we pro-
posed a graph-based framework for high-throughput genera-
tion of anti-SARS therapeutic candidates. We utilized and 
extended two ideas into a single unified framework. The first 
idea incorporates the concept of RL for fine-tuning a pre-
trained graph generative model (i.e., GGNN) to generate 
candidate molecules and later perform molecular screening 
using a custom-made knowledge graph. The second idea 
uses the concept of a GEFA-based approach for binding 
affinity prediction of screened compounds and the target 
3C-Like protease.

2  Methodology

This section presents the technical specifications of our 
proposed graph-based framework that contains two major 
modules. The first module of our framework utilizes the 
RL-based fine-tuning of Gated Graph Neural Network 
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model, which is responsible for generating unique and valid 
molecules with desired properties using different scoring 
functions while preserving the chemistry laws. And later, 
the generated molecules are screened using a custom-made 
knowledge graph to reduce the search space. The second 
module is used for the validation of top-ranking candidates 
against a Graph Early Fusion-based approach (Nguyen et al. 
2021b) to assess their potential activity against SARS-CoV-2 
viral protein. The flowchart of our proposed framework is 
shown in Fig. 1.

2.1  Gated graph neural network

Graph Neural Networks (GNNs) (Scarselli et al. 2008b) are 
a type of graph network that has lately gained popularity 
as a powerful technique for graph representation learning 
(Kipf and Welling 2016). The graph representation learning 
feature of GNNs is used to generate a graphical structure of 
molecules. GNNs can be seen as a generic neural network 
architecture that takes input in the form of graph-structured 
data G = (V , E) and generates a latent representation of the 
input data as output, with nodes v ∈ V  taking unique values 
from 1, ..., |V| and edges being paired e = (v, v0) ∈ V × V  . 
The output of graph representation is produced by aggregat-
ing the hidden node states received in the various propaga-
tion blocks of the graph network.

GNNs work in two stages to map the input graphs to out-
puts. The first stage is a propagation step in which node rep-
resentations for each node are computed. The propagation 
step of GNNs can be seen as a convolution layer in an arti-
ficial neural network. Mathematically, a GNN architecture 
with an L propagation block that uses a non-linear propaga-
tion rule can be represented as

where E represents the adjacency matrix, and H0 represents 
the state of a hidden node.

The second stage is a graph readout function 
Y = freadout (H

L) that maps the node representations (or node 
embedding or node vector) and appropriate labels to each 

(1)Hl+1 = fprop(H
l,E) ∀ l ∈ L,

node’s v ∈ V  output Y to find a node embedding for the 
molecular graph. Inspired from (Mercado et al. 2021; Ran-
jan et al. 2022), a graph-based generative model used in this 
work consists of two segments: 

1. GNN segment
2. Global readout segment.

2.1.1  GNN segment

For the GNN segment, we used gated graph neural network 
(GGNN) (Li et al. 2015) as message-passing neural network 
(MPNN) (Gilmer et al. 2017b). Mathematical representation 
of GNN segment for propagation stage and graph readout 
stage is given below:

• Message-Passing Stage: Messages are sent over the 
graph network’s various nodes, and are mathematically 
described as 

 In the above equation, mi and hi denote the messages 
received from neighboring nodes and the current state of 
the node vi , respectively. The current neighboring nodes 
are given by N(vi) . The edge feature between two adja-
cent nodes vi and vj is given by eij . Ml and Ul represent 
message passing and update operations, respectively. The 
graph readout phase follows the message-passing phase.

• Graph Readout Stage: Mathematically, the graph read-
out stage is described as 

 where g represents resulted graph feature extraction 
and R stands for readout function, which takes input and 

(2)ml+1
i

=
∑

vj∈N(vi)

Ml(h
l
i
, hl

j
, eij)

(3)hl+1
i

= Ul(h
l
i
,ml+1

i
).

(4)g = R(hL
i
, h0

i
),

Fig. 1  An overview of the 
proposed framework contain-
ing the two modules: RL-based 
graph generative model for 
molecule generation followed 
by knowledge graph-based 
molecular screening and graph 
early fusion approach for bind-
ing affinity prediction
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output of various node, transforms it, and later generates 
the graph embedding.

2.1.2  Global readout segment

A global readout segment comes after the GNN segment. 
To predict the APD, global readout segment employs node-
level data and graph-level data. The global readout segment is 
organized in a layered multi-layered perceptron (MLP) archi-
tecture, with the starting two MLPs generating initial f �

add
 and 

f
�

con
 , which are subsequently concatenated with the graph 

embedding g. Later, this concatenated matrix is fed into the 
next MLP block, which returns the final APD after perform-
ing concatenation and normalization operations. It is worth 
mentioning that fterm relies on graph embedding g

where fadd represents the probability that a new node is being 
added to the existing graph. The likelihood of connecting 
the graph’s latest inserted node to another current node is 
stored in fconn . The probability of the graph termination is 
given by fterm.

(5)f
�

add
= MLPadd,1(HL)

(6)f
�

con
= MLPcon,1(HL)

(7)fadd = MLPadd,2([f
�

add
, g])

(8)fcon = MLPcon,2([f
�

con
, g])

(9)fterm = MLPterm,2(g)

(10)APD = SOFTMAX([fadd, fcon, fterm]),

The Kullback–Leibler (KL) divergence loss between 
actual and estimated APDs is used to train the model. At 
each epoch, the best model that minimized the validation 
loss was chosen and utilized as that of the prior model for 
RL framework.

2.2  Reinforcement learning framework

Several RL tasks are formulated as Markov decision pro-
cesses, indicating that the current state has all of the infor-
mation needed to make a decision. The RL-based models 
work in a manner that let us say we have given a spe-
cific state s ∈ S , and the model must decide which action 
a ∈ A(s) to take, where S denotes the set of possible states 
and A(s) represents the set of potential actions for that 
state. An agent’s policy �(a | s) links a state to the likeli-
hood of each action that has to be taken throughout.

Inspired from the previous work (Olivecrona et  al. 
2017) for fine-tuning, by updating the agent policy, our 
goal is to improve the predicted score for the action 
sequences utilized to generate a molecular graph by updat-
ing the agent policy from the pre-trained graph generative 
model. A visual representation of the RL framework is 
depicted in Fig. 2. The initial agent policy is retrieved 
from the prior model (i.e., the GGNN model). Our GGNN 
model, which estimates an APD based on a given input 
graph, also parameterizes the policy. For training the 
agent, policy-based RL is used with the given states and 
actions. Also, we used a reward-shaping loss function that 
records the best agent and updates after a few iterations. 
Mathematically, the best agent reminder (BAR) loss func-
tion is given as

Fig. 2  Illustration of the RL 
framework where the agent is 
updated using the best agent 
reminder loss function
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where � is the hyper-parameter, and ℙ denotes the prior 
model. Am indicates the action set chosen to generate 
a molecular graph by the latest agent, � . Âm̂ denotes the 
action set chosen to generate a molecular graph by the best 
agent, �̂� . M represents the set of molecule m that the latest 
agent generates. M̂ represents the set of molecule m̂ that the 
best agent generates. N indicates the total no. of generated 
molecules collected from every model. Similarly, for every 
molecule

where � is the hyper-parameter. If the given input graph is 
Gi and the action probability distribution of sampling action 
bi is APD

�
(bi ∣ Gi) , then P(Seq)

�
=
∏n−1

i=0
APD

�
(bi ∣ Gi)) . 

Also P(Seq)
ℝ𝕄

 is the probability given by the reference 
model for similar sequence of actions. S(Seq) denotes the 
generated score for molecule with sequence of actions Seq. 
The detailed description for training the graph-based RL 
framework is mentioned in Algorithm 1.

(11)

J(Θ) =
1 − 𝛼

N

∑

m∈M

Jmol(𝔸,ℙ,Am;Θ)

+
𝛼

N

∑

m̂∈M̂

Jmol(𝔸, �̂�, Âm̂;Θ),

(12)
Jmol(𝕄,ℝ𝕄, Seq;Θ) =

[
logP(Seq)

𝕄

− (log P(Seq)
ℝ𝕄

+ �S(Seq))
]2
,

2.2.1  Scoring function for desired properties

We fine-tuned the prior model and applied two separate 
scoring functions to improve the potential of our RL frame-
work. The main goal of these scoring functions is to guide 
the prior model toward molecule generation with specific 
desired properties.

We first start by calculating a scoring function based on 
the generated molecules’ QED values. This scoring function 
leads the prior model toward molecule generation, which is 
more drug-like. A higher QED value indicates a more drug-
like generated compound. This scoring function has a range 
of 0–1 as its value. Mathematically, it is shown as

where Mol(A) represents the molecules generated via actions 
A. PVU stands for Properly terminated, Valid, and Unique 
molecules.

The second scoring function guides the prior model to 
generate molecules that are likely to be active for DRD2 
activity. Again, the range of this scoring function also lies 
between 0 and 1. For active or inactive molecules, we set a 
threshold of 0.5, and more specifically

2.2.2  Knowledge graph for molecule screening

To uncover potential therapeutic candidates against SARS-
CoV-2 protein, we build a custom knowledge graph to 

(13)SQED(A) =

{
QED(Mol(A)) otherwise,

0 if not PVU,

(14)SDRD2(A) =

{
1 PVU, QED > 0.5, activity > 0.5,

0 otherwise.

perform screening of the molecules. Our goal is to reduce 
the number of calculations while improving the accuracy of 
the drug–target-binding affinity prediction. We begin with 
collecting the SARS-CoV-2 protein, i.e., 3C-like protease 
(3CLpro), which is responsible for propagation of the virus 
inside human cells (Chen et al. 2020) and adding them to our 
KG. We concentrate on the SARS-CoV-2 protein node and 
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choose the molecules node and protein structure nodes with 
the least path distance from it. Our KG is defined as an undi-
rected graph G = (V ,E) , where V = {v1, v2, .., vn} denotes the 
set of nodes and E = {e1, e2, .., em} denotes the set of edges; 
m denotes the number of nodes and n the number of edges 
and E ∈ V × V  . The KG used in this study is built using 
two entities and their relationships, i.e., drug and protein, 
and their interactions. These details are saved in a triplet, 
with each triplet representing the interaction of the two enti-
ties. The entities and relations are represented in a continu-
ous vector. The two entities are represented in the form of 
nodes, where the target protein node’s first-hop neighbor is 
a protein with a similar structure, the second-hop neighbor 
is a set of molecules that can bind to similar proteins, and 
the third hop is a set of generated molecules. The associa-
tion among drug–protein interaction, drug–drug interac-
tion, and protein–protein interaction is represented in the 
form of edges. The edges among the two nodes are assigned 
using two homogeneous similarity matrices, drug–drug 
and protein–protein similarity matrices, as well as the DTI 
(Drug–Target Interaction). A visual depiction of our con-
structed KG network is shown in Fig. 4. The two similarity 
measures used to construct the KG are described below.

• Drug–drug similarity measure There are two primary 
components to drug–drug similarity:

– Molecular descriptors: A metric used to compare 
the molecular structure.

– Similarity coefficient: A metric for calculating a 
quantitative score that uses weighted values of struc-
tural descriptors.

   The MACCS (Molecular ACCess System) keys 
(Dalke 2014), which are one of the most extensively 
utilized structural keys, were employed as molecu-
lar descriptors. On particular MACCS keys, Tanimoto 
Coefficient is used to calculate the similarity coefficient 
among the drugs. The drug–drug similarity matrix was 
created using the similarity score obtained from the dif-
ferent pairs of drugs in the DAVIS dataset (Fig. 3).

• Protein–protein similarity measure The protein–pro-
tein similarity was calculated using the Smith–Water-
man algorithm (Yamanishi et al. 2008). By doing local 
sequencing, the Smith–Waterman method detects simi-
lar regions among two strings of amino acids or protein 
sequence sequences. To build the KG, it is now necessary 
to define an affinity score threshold as well as a similarity 
score threshold, both of which will be used to construct a 
bond among the drug–target and protein–protein graphs. 
We picked a pKd value of 7.0 ( Kd value of 100 nM) for 
binding affinity as it is a commonly used DAVIS dataset 
threshold. The global clustering coefficient metric, which 
was computed from KG, was utilized to determine the 
threshold value of protein–protein similarity score.

2.3  Drug–target‑binding affinity prediction

The potency of both the protein and the drug’s binding force 
(Ma et al. 2018) is referred to as drug–target-binding affinity. 
The equilibrium dissociation constant ( KD ) determines the 
binding strength. A lower KD value suggests that the protein 
and ligand have a stronger binding force (Ma et al. 2018). 
Estimating the binding affinity score is a regression problem 
and is mathematically represented as

where F represents the prediction function and � represents 
model parameters, and A represents the affinity score among 
the target–protein P and given drug D.

In this work, we used the GEFA model (Nguyen et al. 
2021b), which takes the drug-graph structure and the target 
protein-graph structure as input and predicts the binding 
affinity score. For learning over the graphical representation 
of drug and target protein, GEFA employs the Graph Con-
volutional Network (GCN) (Kipf and Welling 2016). The 
justification for adopting GEFA as a DTA prediction model 
is that it considers changes in the structural representation 
of protein graphs caused by drug–protein interactions, which 
other deep learning models often do not.

First, the drug graph’s feature for a particular drug is 
extracted. Before the protein-graph learning phase, the 

(15)A = F
�
(P,D),

Fig. 3  The custom-made Knowledge Graph utilizes two different 
similarity measures and the Drug–Target interaction dataset. First 
neighbor hopped of the SARS-CoV-2 protein contains a protein with 
a 3CLpro structure. The second neighbor hop contains the compound 
from the dataset that can bind with the first neighbor protein. Finally, 
the third-hop neighbor contains compounds that are similar to the 
second-hop neighbor compounds
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extracted drug features are merged into the protein graph. 
This process can be thought of as a graph-in-graph archi-
tecture that enables the training of the deep learning model 
to learn the changes in protein graphs introduced by the 
drug–protein interactions. The tertiary structure is repre-
sented by 2D contact map information, which is used to rep-
resent the protein graph. In the protein network, 2D contact 
maps show the connections among the two nodes of residue. 
The secondary structure is essential, since it determines the 
target protein’s backbone structure, which influences the 
shape of the binding site. The protein contact map and pro-
tein sequence embedding features are then merged to create 
a graph representation of the target protein. The contextual 
residue embedding representation is generated using TAPE 
(Rao et al. 2019) in which an embedded representation is 
learned from an unlabeled sequence of protein datasets. In 
particular, TAPE is a protein representation model that uses 
a sequential language approach. Given a protein residue of 
size L, the protein’s graph node feature is represented by

where h represents size of TAPE-provided embedding ten-
sor vi . Every vi is contextual, that means the residue exists 
in relation to other residues. As a result, the structural infor-
mation of protein is implicitly contained in the embedding. 
Finally, the residue node features within a target protein net-
work are represented using a combination of the two vectors: 
the embedding vector retrieved by TAPE and the second-
ary structure feature vector. To represent the drug molecule 
graph, atoms in the drug molecule are represented as nodes, 
whereas bonds show the edges among the atoms. The node 
of a drug molecule contains five features: the symbol of 
an atom, degree of an atom, connected hydrogen atoms, 
implicit value of an atom, and aromaticity.

To learn about the changes in protein representation, a 
graph in graph fusion technique is used to integrate the drug 
graph Gd = (Vd,Ad) and protein graph Gp = (Vp,Ap) through 
a self-attention process. The weights of attention indicate 
those residues which are highly inclined toward participat-
ing in binding with drug nodes. The weights of attention are 
calculated using the following formula:

where 
∑L

i=1
�i = 1 ; vi shows the feature of ith residue; W1 and 

W2 represent the trainable parameters.
A cross-domain graph containing the nodes of drugs and 

their linkage to the target protein residues is constructed. 
Before graph feature extraction, the drug nodes are separated 
from the cross-domain graph to assure that the graph only 
comprises the residue nodes. Finally, the drug and protein 
embedding are merged and given to a 3−layered FCN (Fully 
Connected Layer) network for estimating the affinity score.

(16)Vp = {vi | vi ∈ Rh}L
i=1

,

(17)�i = sof tmax(W2tanh(W1vi)),

3  Experiments and results

We performed a simulation of our framework on the Micro-
soft Azure platform utilizing the pipeline assets of Azure 
with Standard_NC64as_T4_v3 as compute instance. With a 
configuration of 64 cores, 440 GB RAM, and 2816 GB disk, 
it took around 214 h to complete our simulation successfully.

3.1  Dataset details

We used two different datasets for training our frame-
work. For training the RL-based graph generative model, 
the MOSES dataset was utilized, taken from the MOSES 
GitHub repository (Polykovskiy et al. 2020), and for train-
ing GEFA, DAVIS dataset (Davis et al. 2011) was used. The 
description of both the datasets is mentioned in Tables 1 
and  2.

3.2  Molecule generation setup

We trained an RL-based framework for molecule generation 
tasks consisting of two major components: GGNN (prior) 
and RL-based fine-tuning. For training the GGNN, the Adam 
optimizer is used with no weight decay. We trained the model 
for a total of 30 epochs. The initial learning rate is set to 104 , 
and after several iterations, the model achieves a final learning 
rate of 107 . Since the MOSES dataset is quite large, we fixed 
the batch size with 1000 sub-graphs. We used SELUs as the 
activation function. For MLP of GGNN, we fixed the hidden 

Table 1  MOSES dataset description

Measures Values

Number of training graphs 3 M
Number of testing graphs 2 M
Number of validation graphs 500 K
Atom types (C, N, O, 

F, S, Cl, 
Br)

Max. number of nodes in a graph 27
Formal charges [0]

Table 2  DAVIS dataset description

Measures Values

Number of compounds 68
Number of proteins 442
Max. length of compound 103
Max. length of protein 2549
Formal charges [0]
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node features to 100, a depth of 4, and hidden features to 250. 
We have used a total of three message-pass for the message-
passing segment. The weights are initialized from Xavier’s 
normal distribution. To provide the reason behind opting for 
the GGNN model (as prior) for the molecule generation task, 
the results in (Ranjan et al. 2022) support the fact that how 
GGNN performs better than different state-of-the-art models 
on the MOSES dataset.

For training the agent in RL framework, we used the Adam 
optimizer and set the initial learning rate of 104 . After several 
iterations, we found the final learning rate that works best for 
the agent during training is 106 . For both scoring functions, 
we employed a batch size of 64 molecules and trained the 
model for 100 epochs. After a comprehensive examination of 
the hyper-parameter values, we discovered that the optimal 
value for � is 0.5. For the activity scoring function, the � value 
is set to 20, while for the QED scoring function, the � value 
is set to 10.

3.3  Desired properties guided molecule generation 
via scoring function

The agent was initially trained to optimize molecules with 
specific properties as a proof of principle, including the 
scoring functions mentioned in Eqs. 13 and 14. Result 
obtained from the QED scoring function from both the 
prior model and the fine-tuned model is shown in Table 3. 
Later, to explore the agent toward DRD2 activity, we used 
the second scoring function that maps the agent toward the 
generation of molecules with predicted biological activity. 
The obtained results for the DRD2 scoring function are 
also shown in Table 3.

3.4  Binding affinity prediction

We used the GEFA model trained on the standard bench-
mark DAVIS dataset for binding affinity prediction. GEFA 

extracts protein embedding features using TAPE, which 
uses the BERT model and outputs a protein embedding 
vector of size 768. The model is trained on mini-batches 
of size 128 with a learning rate of 0.0005 for 150 epochs. 
We used Adam as the optimizer. Further, we evaluated 
GEFA using the DAVIS dataset and compared the model 
performance with different state-of-the-art methods that 
use late fusion approaches like DeepDTA (Öztürk et al. 
2018), GCNConvNet (Nguyen et al. 2021a), and DGraph-
DTA (Jiang et al. 2020). We used three other evaluation 
metrics, namely Concordance Index (CI), Root Mean 
Squared Error (RMSE), and Mean Squared Error (MSE), 
to evaluate model performance. The results are shown in 
Table 4 clearly show that the GEFA outperforms differ-
ent state-of-the-art methods. The predicted and measured 
binding affinity values for drug-target pairs for the test sets 
of the DAVIS dataset are given in Fig. 4. Also the train, 
test, and validation curves for GEFA model are shown in 
Fig. 5.

3.5  Use case considering SARS‑CoV‑2 protein 
structure

Once we successfully trained our framework, we tested 
with a viral protein of SARS-CoV-2, i.e., 3CLpro. We used 
two scoring functions in our RL-based graph framework 
to fine-tune the prior model. One with the QED scoring 
function and the second with the DRD2-active scoring 
function. For each scoring function, we generated 11,647 
molecules each, and by combining these two, we have a 
total list of 23,494 SMILES sequences. We filtered out 
duplicate molecules and those with a smaller number of 
elements from the list of generated molecules. We then 
choose the top 21,000 fruitful SMILE sequences for fur-
ther processing. The generated candidate SMILES are 

Table 3  Comparison of the results obtained from the prior model and 
that of the fine-tuned model with different evaluation metrics

Metric Prior Fine-tune with QED 
as scoring function

Fine-tune with 
DRD2 as scoring 
function

Valid 1 1 1
Unique 1 1 0.99
QED 0.19 0.65 0.21
DRD2-active 0.03 0.02 0.89
Avg. no. of 

nodes in 
graph

21.38 21.61 21.61

Fig. 4  Predicted and measured binding affinity values for the test sets
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given input to the custom build KG for screening, and 
then, the screened molecules are fed into GEFA model 
along with 3CLpro to predict the binding affinity score.

Only 671(3.19%) of the 21,000 generated compounds 
were expected to have a binding affinity > 7.0 with the 
3CLpro. After screening the compounds with KG, 705 
candidate molecules were chosen, with 640(90.78%) 
having a binding affinity greater than 7.0. As shown in 
Fig. 6, out of 671 binding molecules, 640 were managed 

to retained after screening, whereas more than 20,000 non-
binding molecules were removed throughout the screening 
process.

Those SMILE which results in an affinity score greater 
than 7 can be seen as a potential drug to cure the viral 
protein. The obtained results of SMILE having a binding 
affinity > 7 are shown in Table 5, and the molecular struc-
tures of those compounds are shown in Fig. 7.

3.6  Qualitative analysis of generated compounds

From a qualitative perspective, we analyzed top-ranking 
generated compounds with higher binding affinity scores 
with the anti-HIV drug Indinavir, proposed as a potential 
drug to cure the SARS-CoV-2 protein virus (Harrison 2020). 
To support drug discovery, we compared the generated com-
pounds and the Indinavir drug on different parameters using 
(Daina et al. 2014). Table 6 shows the obtained values on 
various parameters of drug-likeliness and medicinal chem-
istry of the top generated compounds along with Indinavir.

4  Conclusion

In this work, we proposed a graph-based deep learning 
framework to generate novel drug compounds and later use 
them to predict the binding affinity score for a target pro-
tein structure. We use molecular graph-based deep learn-
ing models for both modules, i.e., molecule generation and 
binding affinity prediction, as the graph-based methods 
have a specific advantage over string-based models. Since 
using a 1D representation of the molecule, many of the 
molecules’ valuable structural characteristics may be lost 
by the model during training, which can be retrieved from 
their tertiary structures. Also, string-based models only 
manage to extract the local features of the compound; on 
the other hand, graph-based methods can extract the local 

Fig. 5  a GEFA model’s RMSE curves for train, test, and validation, b train, test, and validation curve for MSE metric, and c train, test, and vali-
dation curves for CI metric

Table 4  A comparison of the findings received from various state-of-
the-art methods with GEFA using DAVIS dataset

Model RMSE ↓ CI ↑ MSE ↓

DeepDTA (Öztürk et al. 2018) 0.511 0.878 0.261
GCNConvNet (Nguyen et al. 2021a) 0.533 0.865 0.284
DGraphDTA (Jiang et al. 2020) 0.491 0.887 0.241
GEFA 0.427 0.902 0.223

Fig. 6  Effect of molecular screening using knowledge graph. Before 
screening, only 3.19% of candidate molecules possess good binding 
affinity, while after screening, it becomes 90.78%
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Fig. 7  The molecular graphs of generated compounds that possess a good binding affinity score with 3C-like protease protein

Table 5  List of top 20 
predicted binding affinity 
scores of generated compounds 
considering 3CLPro as the 
target protein

S. no. Generated SMILES Target name Affinity score

1 CC1NNSC1C(=O)N1CCCC2(COOC2)C1 6WQF_1 8.185683
2 CC1C(-N2CNNN2)C(=O)[NH]N1C1(C)CCCC1 6WQF_1 8.044197
3 COC1CC(OC)CC(-N2NNNC2SCC(=O)N2CCCC2)C1 6WQF_1 8.034753
4 COCCCN1CCC2C(CNC3NC(C)NN32)C1=O 6WQF_1 8.018201
5 CCOC1CC(-C2NNN(CC(=O)N3CCCCC3)N2)CCC1OC 6WQF_1 7.9934325
6 CCN(CC)C(=O)CSC1NNC(C)N1-C1CCC(OC)CC1 6WQF_1 7.9907875
7 CCOC(=O)C1SC2NC(C)NC(N(CC)CC)C2C1C 6WQF_1 7.9905686
8 CCOC(=O)C1SC2NC(C)NC(N)C2C1C 6WQF_1 7.988122
9 CCN1C(SCC(=O)N2CCCC2(C)C)NNC1-C1CCSC1 6WQF_1 7.985457
10 CN1NNNC1C(C#N)=C1C2CCC1C(C)(C)C2 6WQF_1 7.9777865
11 CC1NNC(N(C)C(=O)CC(C)(C)C)S1 6WQF_1 7.975503
12 COC1CCCC(-C2NNN(CC(=O)N3CCCC3)N2)C1 6WQF_1 7.9716773
13 CCN(CC)C(=O)CSC1NNNN1-C1CCCC(OC)C1 6WQF_1 7.966434
14 O=C(CSC1NNC2C(N1)[NH]C1CCCCC12)N1CCOCC1 6WQF_1 7.9602075
15 CC1NOC(C)C1C(=O)OCC1NC(N)NC(N(C)C)N1 6WQF_1 7.9530053
16 COC(=O)N1C(SC)NC2SC3C(C2C1=O)CC(C)(C)OC3 6WQF_1 7.952138
17 CCOC(=O)C1SC2NCNC(NC(C)C)C2C1C 6WQF_1 7.949462
18 COCC(C)NC(=O)CSC1NC(C)NC2SC(C)C(C)C12 6WQF_1 7.946905
19 CC1CCCCC1-N1C(C)NNC1SCC(=O)N1CCC(C)CC1 6WQF_1 7.9461155
20 CCCNC(=O)CC1CSC2NC(NC)C(C(N)=O)N12 6WQF_1 7.9441066
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and global features of a molecular graph. The two modules 
in our framework are assigned to perform different tasks. 
This first module uses a GGNN on the molecular graph of 
drugs to generate drug compounds. Later, reinforcement 
learning is used to fine-tune the GGNN model with desired 
properties using different scoring functions to get active, 
valid, and unique molecules. Then, the generated candi-
date molecules are screened using KG. The KG is used to 
reduce the search space using different similarity matrices. 
The second module uses GEFA, a graph-based deep learn-
ing model that predicts the screened compound’s affinity 
score for a target 3C-like protease (3CLpro) protein struc-
ture. The GEFA can efficiently handle the changes inside 
the protein structure by incorporating the drug embed-
ding into the protein embedding. This allows the model 
to identify the active binding sites in the protein structure 
after forming new chemical bonds. Our result supports 
this claim, which shows we generated 100% valid and 100% 
unique molecules by following different chemistry rules. 
Also, using reinforcement learning techniques toward 
QED and DRD2-active property optimization with differ-
ent scoring functions enhances the quality of generated 

molecules. This concept can further be utilized to add 
additional substituent optimization at the desired target. 
Additionally, the use of KG, constructed using different 
similarity matrices for screening the generated molecules, 
provides efficient optimization in the identification of 
highly effective pharmaceuticals against a target protein. 
Even though only 671 (3.19%) of the 21,0000 novel com-
pounds were anticipated to bind, all of the generated novel 
molecules were required to be tested against the target 
protein without using the screening technique. However, 
after the screening process, 705 molecules (out of 21, 000) 
were chosen as candidate molecules, with 640(90.78%) of 
the binding molecules turning out to be good molecules. 
Before feeding the binding molecules into the Early Fusion 
model for affinity prediction, the screening procedure 
eliminated 99% of them. The obtained affinity scores of 
top rank generated compounds against 3CLpro show that 
they possess the potential to cure the virus. One major 
limitation of our work includes the time consumption dur-
ing simulation. It takes a lot of time to train the model in 
a reinforcement learning environment.

Table 6  Comparison of 
Indinavir and top-ranked 
generated compounds with 
different properties of drug-
likeness and medicinal 
chemistry

a Refers to the occurrence of violations

Drug-likeness Medicinal Chemistry

Compound Vebera Egana Bio- availability PAINS Lead- likeness Synthetic 
accessibility

Indinavir No No 0.55 0 alert No 5.60
C
11
H

19
N
3
O

3
S Yes No 0.55 0 alert Yes 4.39

C
11
H

22
N
6O Yes No 0.55 0 alert Yes 4.10

C
15
H

29
N
5
O

3
S Yes No 0.55 0 alert No 4.86

C
13
H

25
N
5
O

2
Yes No 0.55 0 alert Yes 4.30

C
17
H

33
N
5
O

3
Yes No 0.55 0 alert No 4.82

C
16
H

32
N
4
O

2
S Yes No 0.55 0 alert No 5.08

C
15
H

29
N
3
O

2
S Yes No 0.55 0 alert Yes 5.12

C
11
H

21
N
3
O

2
S Yes No 0.55 0 alert Yes 4.64

C
16
H

30
N
4
OS

2
Yes No 0.55 0 alert No 4.94

C
13
H

21
N
5

Yes No 0.55 0 alert No 4.86
C
10
H

21
N
3
OS Yes No 0.55 0 alert No 4.06

C
15
H

27
N
5
O

2
S Yes No 0.55 0 alert Yes 5.03

C
12
H

26
N
6
O

3
Yes No 0.55 0 alert Yes 4.85

C
15
H

29
N
3
O

2
S
2

Yes No 0.55 0 alert Yes 5.05
C
18
H

34
N
4
OS Yes No 0.55 0 alert No 5.38

C
12
H

23
N
5
O

2
S Yes No 0.55 0 alert Yes 4.47

C
12
H

25
N
5
O

2
S Yes No 0.55 0 alert Yes 5.28

C
17
H

28
N
4
O

3
S Yes No 0.55 0 alert No 6.93

C
18
H

31
N
5
O

2
Yes No 0.55 0 alert Yes 5.45

C
15
H

28
N
6
O

2
S Yes No 0.55 0 alert No 5.38
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