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I present a review of the theoretical and computational methodologies that have been used to model the
assembly of viral capsids. I discuss the capabilities and limitations of approaches ranging from equilibrium
continuum theories to molecular dynamics simulations, andI give an overview of some of the important con-
clusions about virus assembly that have resulted from thesemodeling efforts. Topics include the assembly of
empty viral shells, assembly around single-stranded nucleic acids to form viral particles, and assembly around
synthetic polymers or charged nanoparticles for nanotechnology or biomedical applications. I present some
examples in which modeling efforts have promoted experimental breakthroughs, as well as directions in which
the connection between modeling and experiment can be strengthened.
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I. INTRODUCTION

The formation of a virus is a marvel of natural selection. A large number ( 60-10,000)of protein subunits and other components
assemble into complete, reproducible structures, often with extreme fidelity, on a biologically relevant time scale. Viruses play a
role in a significant portion of human diseases, as well as those of other animals, plants, and bacteria. Thus, it is of great interest
to understand their formation process, with the goal of developing novel antivirus therapies that can block it, or alternatively
to re-engineer viruses as drug delivery vehicles that can assemble around their cargo and disassemble to deliver it without
requiring explicit external control. More fundamentally,learning the factors that make viral assembly so robust could advance
the development of self-assembling nanostructured materials.

This review focuses on the use of theoretical and computational modeling to understand the viral assembly process. We begin
with brief overviews of virus structure, assembly, and the experiments used to characterize the assembly process (section I).
We next perform an equilibrium analysis of the assembly of empty protein shells in section II. In section III we then present a
simple mathematical representation of the assembly process and its relevant timescales, followed by several types of modeling
approaches that have been used to analyze and predictin vitro assembly kinetics. We then extend the equilibrium and dynam-
ical approaches to consider the co-assembly of capsid proteins with RNA or other polyanionic cargoes in section IV. Finally,
we conclude with some of the important open questions and ways in which modeling can make a stronger connection with
experiments.

In the interests of thoroughly examining the capsid assembly process, this review will not consider a number of interesting
topics such as the structural dynamics of complete capsids (e.g. [12, 89, 129, 130]), capsid swelling or maturation transitions
(e.g. [102, 177–180, 182, 217, 244, 270]), mechanical probing of assembled capsids (e.g. [13, 16, 58, 93–95, 145, 183, 215–
218]), or the motor-driven packaging of double-stranded DNA (dsDNA) into assembled procapsids ([85, 162, 199–202, 214],
reviewed in [7, 110, 230]), or the conformations of dsDNA inside capsids (e.g. [154–156]).

A. Virus anatomies

Viruses consist of at least two types of components: the genome, which can be DNA or RNA and can be single-stranded or
double-stranded, and a protein shell called a capsid that surrounds and protects the fragile nucleic acid. Viruses varywidely
in complexity, ranging from satellite tobacco mosaic virus(STMV), whose 1063-nucleotide genome encodes for two proteins
including the capsid protein [220] to the giant Megavirus, with a 1,259,197-bp genome encoding for 1,120 putative proteins
[14] that is larger than some bacterial genomes and encased in two capsids and a lipid bilayer. Viruses such as Megavirus that
acquire a lipid bilayer coating from the plasma membrane or an interior cell compartment of the host organism are known as
‘enveloped’ viruses, whereas viruses such as STMV that present a naked protein exterior are termed ‘non-enveloped’. Since
Stephen Harrison and colleagues achieved the first atomic-resolution structure of tomato bushy stunt virus (TBSV) in 1978
[109], structures of numerous virus capsids have been revealed to atomic resolution by x-ray crystallography and/or cryo-
electron microscopy (cryo-EM) images. An extensive collection of virus structures can be found at the VIPERdb virus particle
explorer website (http://viperdb.scripps.edu) [212].

The requirement that the viral genome be enclosed in a protective shell severely constrains its length and hence the number
of protein sequences that it can encode. As first proposed by Crick and Watson [62], virus capsids are therefore comprisedof
numerous copies of one or a few protein sequences, which are usually arranged with a high degree of symmetry in the assembled
capsid. Most viruses can be classified as rodlike or spherical, with the capsids of rodlike viruses arranged with helicalsymmetry
around the nucleic acid, such as tobacco mosaic virus (TMV),and the capsids of most spherical viruses arranged with icosahedral
symmetry. There are also important exceptions discussed below. The number of protein copies comprising a helical capsid is
arbitrary and thus a helical capsid can accommodate a nucleic acid of any length. In contrast, icosahedral capsids are limited by
the geometric constraint that at most 60 identical subunitscan be arranged into a regular polyhedron. However, early structural
experiments indicated that many spherical capsids containmultiples of 60 proteins.

Caspar and Klug proposed geometrical arguments that describe how multiples of 60 proteins can be arranged with icosahedral
symmetry, where individual proteins interact through the same interfaces but take slightly different, or quasi-equivalent, con-
formations [46]. Protein subunits can be grouped into morphological units or ‘capsomers’, usually as pentamers and hexamers.
Icosahedral symmetry requires exactly 12 pentamers, located at the vertices of an icosahedron inscribed within the capsid. A
complete capsid is comprised of60T subunits, whereT is the ‘triangulation number’, which is equal to the number of distinct
subunit conformations.

In brief, a structure with icosahedral symmetry is comprised of 20 identical facets. The facets are equilateral triangles and thus
themselves comprise at least 3 identical asymmetric units (asu). The only requirement of the asymmetric units is that they are
arranged with threefold symmetry, although many capsid proteins have a roughly trapezoidal shape [219] and it has been argued
that this shape is ideal for tiling icosahedral structures [173]. The Caspar Klug (C-K) classification system can be obtained
starting from a hexagonal lattice as shown in Fig. 1. An edge of the icosahedral facet is defined by starting at the origin and
stepping distancesh andk along each of the respective lattice vectors. There is an infinite series of such equilateral triangles

http://viperdb.scripps.edu
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FIG. 1. The geometry of icosahedral lattices.(A) Different equilateral triangular facets can be constructed on a hexagonal lattice by moving
integer numbers of steps along each of theĥ andk̂ lattice vectors.(B) Construction of aT=3 lattice. Twenty copies of the triangular facet (left)
obtained by moving one step along each of theĥ andk̂ lattice vectors are arranged as shown in the middle panel, and then folded to obtain
the icosahedral structure shown on the right. To connect this construction to a capsid, note that each pentagon will comprise five proteins in
identical environments and each hexagon will comprise six subunits in two different types of local environments, resulting in a total of 180
proteins in three distinct local environments.(C) Example icosahedral capsid structures. From left to right are shown theT=1 satellite tobacco
mosaic virus capsid (STMV) PDBID 1A34 [152], theT=3 cowpea chlorotic mottle virus capsid (CCMV) PDBID 1CWP [238], and theT=4
human hepatitis B viral capsid (HBV) PDBID 1QGT [276]. Structures are shown scaled to actual size, and the protein conformations are
indicated by color. In each image the 60 pentameric subunitsare colored blue. The images of capsids in (C) were obtained from the Viper
database [212]. The images in (A) and (B) were reprinted fromJ. Mol. Biol., Johnson and Speir,269, 665-675 (1997)Quasi-equivalent
viruses: A paradigm for protein assemblies, with permission from Elsevier.

corresponding to integer values ofh andk. The area of such a triangle (for unit spacing between lattice points) is given byT/4,
whereT is the triangulation number defined as

T = h2 + hk + k2. (1)

Considering that the smallest such triangleT=1 comprises three asu, the total number of asu in the facet isthus given by3T and
the total number of asu in the icosahedron is60T . From Fig. 1 the individual asu’s are not all identical forT > 1 since they
have different local environments. Given the threefold symmetry of the facet, there areT distinct local environments and thusT
distinct asu geometries. Fig. 1B shows how to build a physical model for such a construction withT=3.

The asu (i.e. individual proteins) within the icosahedral structure can be grouped based on whether they sit at a five-fold or
threefold (quasi-sixfold) axis of symmetry into pentameric or hexameric ‘capsomers’. Given that an icosahedron contains 12
vertices with fivefold symmetry and the total number of proteins is given by60T , there are10(T − 1) hexamers.

Many icosahedral viral capsids withT > 1 are comprised of only a single protein copy, meaning that theprotein must adopt
different configurations depending on its local environment. It was originally proposed by Caspar and Klug [46] that because
the local environments are similar, or ‘quasi-equivalent’, the proteins in different environments could interact through the same
interfaces. This has since been found to be correct for many icosahedral viruses, with structural differences between proteins at
different quasi-equivalent sites often limited to loops and N- and C-termini. However, there can also be proteins with extensive
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conformational changes or even different sequences at different sites. Some examples of these structural differencesare reviewed
in Refs.[125, 288].

Some icosahedral virus capsid structures deviate from the class of lattice structures shown in Fig. 1. For example, thePoly-
omaviridae, e.g. human papilloma virus (HPV), are comprised entirely of pentamer capsomers, which depending on their local
environment are either five-fold or six-fold coordinated. Generalizations of the C-K classification scheme have been proposed
[136–138, 146, 165, 166, 253] which can describe polyomavirus capsid shapes. Mannige and Brooks identified a relationship
between hexamer shapes and capsid properties such as size [173, 174]. They also developed a metric for complexity of icosahe-
dral morphologies, which resulted in a ‘periodic table’ of capsids and, combined with the assumption that the simplest structures
are the fittest, revealed evolutionary pressures on capsid structures [175].

There are also non-spherical capsids with aspects of icosahedral symmetry. For example, the mature HIV virus capsid assem-
bles into tubular or conical shapes [29, 90–92] and some bacteriophages (viruses that infect bacteria) have capsids which are
elongated or prolate icosahedra (e.g. [84, 185]). The C-K classification system was extended to describe prolate icosahedra by
Moody [185]. We present some approaches to model the stability and formation of capsids that correspond to C-K structures or
their generalizations in section III F.

B. Virus assembly

Viral assembly most generally refers to the process by whichthe protein capsid(s) form, the nucleic acid becomes encapsulated
within the capsid, membrane coats are acquired (if the virusis enveloped), and any maturation steps occur. For many viruses the
capsid can form spontaneously, as demonstrated in 1955 by the experiments of Fraenkel-Conrat and Williams in which the RNA
and capsid protein of TMV spontaneously assembledin vitro to form infectious virions [88].

The pathway of nucleic acid encapsulation differs dramatically between viruses with single-stranded or double-stranded
genomes. Viruses with single-stranded genomes (the best studied of which have ssRNA genomes) usually assemble sponta-
neously around their nucleic acid in a single step. This category includes many small spherical plant viruses (e.g. STMVor
bromoviridae), the bacteriophage MS2, and animal viruses such as nodavirus. In many cases the RNA is required for assembly
at physiological conditions, but the capsid proteins can assemble without RNA into empty shellsin vitro under different ionic
strengths orpH. We also can include in this group theHepadnaviridaefamily of viruses (e.g. Hepatitis B Virus (HBV)), which
have a dsDNA genome but a capsid that assembles around an ssRNA pregenome [22, 116, 133].

The extreme stiffness of a double-stranded genome (the persistence length of dsDNA is 50 nm) and the high charge density
preclude spontaneous nucleic acid encapsidation. Thus packaging a double-stranded genome requires a two-step process in
which an empty protein shell is assembled followed by packaging via ATP hydrolysis and/or complexation with nucleic acid
folding proteins (e.g. histones [101, 262]). Of these viruses, the assembly processes have been most thoroughly investigated
for dsDNA viruses, such as the tailed bacteriophages, herpes virus and adenovirus. These viruses assemble an empty capsid,
without requiring a nucleic acid at physiological conditions, and a molecular motor which inserts into one vertex of thecapsid
[242]. The motor then hydrolyzes cellular ATP to pump the DNAinto the capsid.

In this review we will focus on the assembly of icosahedral viruses, first discussing the assembly of empty capsids such as
occurs during the first step of bacteriophage assembly, and then co-assembly of capsid proteins with RNA, such as occurs during
replication of ssRNA viruses, and finally co-assembly with other polyanions inin vitro experiments. We will not consider the
assembly of rod-like viruses. Although not yet completely understood, the assembly process for the rod-like virus TMV has
been studied in great detail and has been the subject of several reviews [42, 45, 144] as well as more recent modeling studies
[139, 148].

1. Experiments that characterize capsid assembly

The kinetics for spontaneous capsid assemblyin vitro have been measured with size exclusion chromatography (SEC) and
X-ray and light scattering (e.g. [32, 44, 52, 126, 142, 205, 289, 291]). Most frequently, the fraction of subunits in capsids or
other intermediates has been monitored using size exclusion chromatography (SEC) and the mass-averaged molecular weight
has been estimated with light scattering. The SEC experiments show that under optimal assembly conditions the only species
present in detectable concentrations are either complete capsids or small oligomers which we refer to as the basic assembly
unit. The size of the basic assembly unit is virus dependent;e.g. dimers for bromoviruses [1] and HBV [47, 275], or pentamers
for picornaviruses (e.g. human rhinovirus (HRV)) and thepolyomaviridaefamily [158] (e.g. human papilloma virus (HPV)).
Provided that intermediate concentrations remain small, the mass-averaged molecular weight and thus the light scattering closely
track the fraction capsid measured by SEC. Example light scattering measurements from Zlotnick and coworkers [291] areshown
in Fig. 2A for HBV assembly at several ionic strengths.

While these bulk experiments have provided tremendous information about capsid assembly kinetics, it has been difficult to
characterize assembly pathways in detail because the intermediates are transient and present only at low levels. Complementary
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FIG. 2. (A) Light scattering measured as a function of time for 5µM dimer of HBV capsid protein at indicated ionic strengths. Light scatter
is approximately proportional to the mass-averaged molecular weight of assemblages and, under conditions of productive assembly, closely
tracks the fraction of subunits in capsids (see text).(B) Simulated light scattering for 5µM subunit with indicated values of the subunit-subunit
binding free energy (gb) using the rate equation approach described in section III B. Figures reprinted with permission from Biochemistry,38,
14644-14652 (1999),A Theoretical Model Successfully Identifies Features of Hepatitis B Virus Capsid Assembly, Zlotnick, Johnson, Wingfield,
Stahl, Endres, Copyright (1999) American Chemical Society.

techniques have begun to address this limitation. Restive pulse sensing was used to track the passage of individual HBV
capsids through conical nanopores in a membrane [108, 285].This Coulter-counter-like apparatus was able to distinguish
betweenT=3 andT=4 capsids. Mass spectrometry has been used to characterizekey intermediates in the assembly of MS2 by
Stockley and coworkers [23, 239, 249] (see section III F 2) and for HBV and nodavirus by Uetrecht et al. [255]. Furthermore,
fluorescent labeling of capsid proteins [131] and in some cases RNA has enabled measuring assembly timescales for capsids in
vivo (reviewed in Refs. [24, 132]).

2. Motivation for and scope of modeling

Even with the experimental capabilities to detect and characterize key intermediates for some viruses, theoretical and compu-
tational models are important complements to elucidate assembly pathways and mechanisms. Each intermediate is a member of
a large ensemble of structures and pathways that comprise the overall assembly process for a virus. Furthermore, assembly is
driven by collective interactions that are regulated by a tightly balanced competition of forces between individual molecules. It is
difficult, with experiments alone, to parse these interactions for those mechanisms and factors that critically influence large-scale
properties. With a model, one can tune each factor individually to learn its affect on the assembly process. In this way, models
can be used as a predictive guide to design new experiments. However, whether at atomistic or coarse-grained resolution, models
involve important simplifications or other inaccuracies intheir representation of physical systems. Thus, comparison of model
predictions to experiments is essential to identify and then refine important model limitations. Iterative prediction, comparison,
and model refinement can identify the key factors that governassembly mechanisms.

The large ranges of length and time scales (Å–µm, ps–minute) that are relevant to most capsid assembly reactions hinder
simulating the process with atomic resolution, although Freddolino et al. [89] performed an all-atom simulation of theintact
STMV virus. Recently, approaches to systematically coarse-grain from atomistic simulations have been applied to interrogate
the stability of intact viruses [12, 129, 130] or to estimatesubunit positions and orientations from cryo electron microscopy
images of the immature HIV capsid [15]. All-atom molecular dynamics has been applied to specific elements of the assembly
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reaction [278]. As we describe below, most efforts to model capsid assembly to date have considered simplified models which
retain those aspects of the physics which are hypothesized to be essential; with the validity of the hypothesis to be determined
by comparison of model predictions with experiments.

II. THERMODYNAMICS OF CAPSID ASSEMBLY

We will begin our discussion of viral assembly by analyzing the formation process of an empty capsid. While this process is
most relevant to viruses that first form empty capsids duringassembly, ssRNA capsid proteins have also been examined with in
vitro experiments in which the ionic strength andpH were adjusted to enable assembly of empty capsids.

A. Driving forces

For assembly to proceed spontaneously, states with capsidsmust be lower in free energy than a state with only free subunits.
The assembly of disordered subunits (and RNA or other components if applicable) into an ordered capsid structure reduces their
translational and rotational entropy, and thus must be driven by favorable interactions among subunits and any other components
that overcome this penalty. We begin here with the protein-protein interactions; the subunit-RNA interactions that promote
ssRNA capsids to assemble around their genome are discussedin section IV and also reviewed in great detail by Siber, Bozic, and
Podgornik [230]. Capsid proteins are typically highly charged and possess binding interfaces that bury large hydrophobic areas.
Thus, as with most protein-protein interactions [2], capsid assembly results from a combination of hydrophobic, electrostatic,
van der Waals, and hydrogen bonding interactions. Covalentinteractions typically do not play a role in assembly, although they
appear during subsequent maturation steps for a number of viruses (e.g. the bacteriophage HK97 [271]).

Importantly, all of these interactions are short-ranged under assembly conditions. Van der Waals interactions and hydrogen
bonds operate on length scales of a few angstroms. Electrostatic interactions are screened on the scale of the Debye length,
λD ≈ 0.3/C

1/2
salt , with λD measured in nanometers and the salt concentrationCsalt measured in molar units. At physiological

ionic strength,Csalt = 0.15 M, the screening length isλD ≈ 1 nm; in vitro experiments typically occur within the range[0.05, 1]
M. The hydrophobic interactions are similarly characterized by a length scale of approximately a0.5− 1 nm [48, 198, 278].

In many cases the interaction is primarily driven by hydrophobic interactions, attenuated by electrostatic interactions with
directional specificity imposed by van der Waals interactions and hydrogen bonding atÅ length scales. The importance of
hydrophobic interactions and the sometimes antagonistic contributions of direct electrostatic interactions have been shown by
measuring the dimerization affinity of the C-terminal domain of the HIV capsid protein under an extensive series of mutations to
the dimerization interface [64, 65, 160]. Furthermore, Ceres and Zlotnick [47] showed that the thermodynamic stability of HBV
capsids increases with both temperature and ionic strength. The increase in stability with temperature suggests that hydrophobic
interactions are the dominant driving force [48]. The increase in stability with ionic strength, on the other hand, suggests that
the salt screens repulsive electrostatic interactions which oppose protein association. Several models based on thishypothesis
reproduce the dependence of protein-protein interaction strength on ionic strength measured in the experiments [139,203, 230].
However, it is worth noting that the experiments were performed on capsid protein with the highly charged C-terminal domain
truncated, and it is difficult to pinpoint on the crystal structure which charges are responsible for repulsive interactions. Ceres
and Zlotnick [47] suggested that higher salt concentrations could enhance assembly by favoring a capsid protein conformation
which is active for assembly.

B. Law of mass action

We now consider the assembly thermodynamics for subunits endowed with the interactions just described. We begin by
considering the equilibrium for a system of identical protein subunits assembling to form emptyT=1 capsids. To make the
calculation analytically tractable, we assume here that there is one dominant intermediate species for each number of subunitsn;
extending this assumption is conceptually straightforward. The word subunit refers to the basic assembly unit defined in section
I B 1.

The total free energyFEC for a system of subunits, intermediates, and capsids in solution can be written as

FEC/kBT =

N
∑

n=1

kBTρn [log(ρnv0)− 1] + ρnG
cap
n (2)

wherev0 is a standard state volume,ρn is the density of intermediates withn subunits, andGcap
n denotes the interaction free
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energy of such an intermediate. A plausible model for the interaction free energy is

Gcap
n (gb) =

n
∑

j=1

(nc
jgb)− TSdegen

n (3)

wherenc
j is the number of new subunit-subunit contacts formed by the binding of subunitj to the intermediate,gb is the free

energy for such a contact, andSdegenaccounts for degeneracy in the number of ways subunits can bind to or unbind from an
intermediate (see thes factors in Refs. [80, 286] and Fig. 3). These terms are specifed by the geometry of the capsid. Here we
have subsumed rotational binding entropy penalties intogb (see Ref. [28, 81, 105, 106]) and, to reduce the number of parameters,
assumed that the binding energygb is the same for all contacts. As discussed in section II A,gb depends on temperature, ionic
strength, andpH. Eq. 3 can be readily extended to allow for interface-dependent contact energies and subunit conformational
changes [75].

To obtain the equilibrium concentration of intermediates we minimizeFEC subject to the constraint that the total subunit
concentrationρT is conserved:

N
∑

n=1

nρn = ρT. (4)

This yields the well-known law of mass action (LMA) result for intermediate concentrations [40, 223]

ρnv0 = exp[−β(Gcap
n − nµ)]

µ = kBT log(v0ρ1) (5)

with µ the chemical potential of free subunits andβ = 1/kBT . Due to the constraint (Eq. 4) Eq. 5 must be solved numerically.
The result for a model dodecahedral capsid comprised of 12 pentagonal subunits is shown in Fig. 3 for several values of the
binding energygb. Notice that in all cases the capsid protein is almost entirely sequestered either as free subunits or in complete
capsids. This prediction, which is analogous to the result for spherical micelles with a preferred diameter [223] is generic to any
description of an assembling structure in which the interaction free energyGcap

n is minimized by one intermediate size (n = N )
and the total subunit concentration is conserved.

To emphasize the generic nature of the prediction that intermediate concentrations are negligible at equilibrium, we also
consider a continuum model of an assembling shell presentedby Zandi and coworkers [280]. Each partial-capsid intermediate is
described as a sphere, with a missing spherical cap. The unfavorable free energy due to unsatisfied subunit-subunit interactions
at the perimeter of the cap is represented by a line tensionσ, so the interaction free energy for a partial capsid withn subunits is

Gcap(n) = ngs + σl(n)− b (6)

with the perimeter of the missing spherical cap for a given by

l(n) = 2πR sin θ(n) = v
1/3
0 2[πn(N − n)/N ]1/2 (7)

with v
1/3
0 the size of one subunit andgs the binding free energy per subunit (not per contact) in a complete capsid. Finally, we

have includedb = gs + 2σl(1) to ensure that free subunits have no interaction energy, since the continuum model breaks down
for small intermediates. We set the line tension toσ = −gs/2, which indicates that, on average, a subunit adding to the perimeter
of the capsid satisfies half of its contacts. The resulting profile forG(n) is shown in Fig. 4b, with the intermediate concentrations
for several values ofρT/ρ

∗ shown in Fig. 4c. In all cases, the intermediate concentrations are negligible.
Two-state approximation. Based on the observation that intermediate concentrationsare negligible at equilibrium, the equa-

tions for capsid assembly thermodynamics can be simplified considerably by neglecting all intermediates except free subunits or
complete capsids, so that

ρT = ρ1 +NρN . (8)

Defining the fraction of subunits in capsids asfc = NρN/ρT, combining Eqs. 8 and 5, and rearranging, we obtain [261]

fc

1− fc
= N(v0φT)

N−1e−βGcap
N . (9)

In the limit N ≫ 1 this gives

f
1/N
c

1− fc
=

ρT

ρ∗

ρ∗v0 = exp

(

β
Gcap

N

N − 1

)

N−1/(N−1) ≈ exp
(

βGcap
N /N

)

(10)
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FIG. 3. (A) The assembly model for a dodecahedral capsid and the statistical weights associated with symmetries for the intermediates. The
columns list respectively the number of intermediates, thelowest energy configuration, the degeneracy for adding an additional subunit (sn in
Eq.20 below), the degeneracy for losing a subunit (ŝn in Eq.20), the net degeneracy (Sdegen

n in Eq. 3), the number of contacts gained by adding
a subunit(nc

j in Eq. 3), and the corresponding equilibrium constant. Onlythe first four and last two intermediates are shown; the full set are
given in Ref. [286].(B) The mole fractions of each intermediate calculated using Eq. 5 and the statistical factors in (A) are shown for total
subunit concentrationsρT of 0.44µM (2), 0.88µM (△), and1.8µM ( ). Figures reprinted from J. Mol. Biol.,241, Zlotnick,To Build a Virus
Capsid: An Equilibrium Model of the Self Assembly of Polyhedral Protein Complexes, 59-67 Copyright(1994) with permission from Elsevier.

with ρ∗ the pseudo-critical subunit concentration. In the asymptotic limits Eq. 10 reduces to

fc ≈

(

ρT

ρ∗

)N

≪ 1 for ρT ≪ ρ∗

≈ 1−
ρ∗

ρT
for ρT ≫ ρ∗ (11)

The solution to Eq. 11 is shown in Fig. 5 for several values of the capsid sizeN ; note that the transition becomes sharper with
increasing capsid size. Also notice that increasing the total subunit concentrationρT or the magnitude of the binding energy (i.e.
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FIG. 4. (A) Depiction of the continuum model description of partial capsid intermediates considered by Zandi et al [280].R is the radius of the
capsid and the angleθ characterizes the extent of completion of the capsid.(B) Interaction free energyG(n) as a function of intermediate size
n obtained from Eq.6.(C) Predicted mole fractions using Eq. 6 and Eq. 4 forρT = ρ∗ (⋄), ρT = 2ρ∗ (�), andρT = 5ρ∗ (◦). gs = −15kBT
for (B) and (C).

decreasingρ∗) always increases the fraction of subunits in complete capsids fc at equilibrium. We will see however in section
III that this trend does not always apply at finite but experimentally relevant timescales due to kinetic effects.

Higher T numbers. If one or a few ground state capsid geometries are known (or pre-assumed), the thermodynamic cal-
culation described above can be extended to describe capsids with largerT numbers in a straightforward manner. Recalling
from section I A that icosahedral capsids compriseT different subunit conformations (or in some cases protein sequences), the
capsid free energyGcap

N must be extended to include conformation energies and contact free energiesgb which depend on the
subunit conformation or species [75]. Approaches to determine the lowest free energy configuration(s) for a shell are discussed
in section III F 1.

1. Estimating binding energies from experiments

Zlotnick and coworkers have shown that the assembly of HBV [47] can be captured by Eq. 10 usinggb as a fit parameter
(see Fig. 6). These fits yield an important observation that the subunit-subunit binding free energies are quite small, on the
order ofgb = 4 kcal/mol (6.7kBT ) for productive assembly reactions. The observation that capsid assembly is driven by weak
interactions of this magnitude appears to be a general rule for capsid assembly [287], for reasons discussed in section III.

The conclusion that most of the interactions driving capsidassembly are weak appears to be broadly valid. However, it is
important to note that Eq. 10 is an equilibrium expression, and thus strictly applies only on times exceeding any relevant reaction
timescale. We can immediately see that this condition is beyond the reach of many experiments by estimating the timescale for a
single subunit to leave an assembled capsid. Consider a typical subunit-subunit association rate constant off = 105/M · s ([80,
126, 291], see section III B), and a typical binding free energy of gb = 6.7kBT . Since the dimer subunits of HBV are tetravalent,
the first subunit must break four contacts to dissociate, with a timescale of abouttdissociate ∼ f exp(4gb/kBT ) = 50 days.
Similarly, we show in section III A 1 that the approach of assembly toward equilibrium must lead to ever increasing nucleation
barriers. Based on dynamical assembly simulations, our group has estimated that the values ofgb could be underestimated by
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FIG. 5. Fraction capsidfc as a function of subunit oversaturationρ/ρ∗ predicted by Eq. 10 for the number of subunits in a complete capsid
N = 12, 60, and1000.

FIG. 6. (A) Fraction capsid measured for assembly of empty HBV capsids from capsid protein in which the RNA binding domain has been
truncated, Cp149, using SEC as a function of total dimer subunit concentration [CP149]total. Results are shown for indicated salt concentrations,
and the lines are fits to the equilibrium model withGcap

N = 240gb−T log(sN) assuming four contacts per subunit and using the contact energy
gb as a salt concentration dependent fit parameter, with the symmetry number of the completeT=4 capsid assN = 2119/120 [47]. (B)
Estimated values ofgb as a function of temperature and ionic strength. Reprinted with permission from Ceres and Zlotnick, J. Mol. Biol.,
41, 11525-11531 (2002),Weak Protein-Protein Interactions Are Sufficient To Drive Assembly of Hepatitis B Virus Capsids, Copyright (2002)
American Chemical Society.
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aboutkBT even for measurements taken at 24 hours due to this effect.
The actual timescales for subunit dissociation from complete capsids can be estimated from experiments that labeled subunits

to monitor exchange with complete P22 capsids [196] as well asT=3 andT=4 HBV capsids [256]. Subunit exchange on a period
of days to months was indeed demonstrated for the P22 capsidsand a fraction of the subunits in theT=3 HBV capsids. However,
no subunit exchange was observed forT=4 HBV capsids, even when temperature was decreased to4◦ C (recall that HBV is
less stable at lower temperature). Similarly, Singh and Zlotnick [234] measured substantial hysteresis for the dissociation of
HBV capsids under denaturant. These observations raise thepossibility that there are some steps which are irreversible (at least
on measurement timescales) in the assembly process. Irreversible steps late in assembly or during a post-assembly maturation
process make sense from the perspective of virus replication, as they would extend the period of time over which the viruscan
remain complete in infinite dilution and unfavorable environments. Of course, there must be a mechanism to release the genome
once the virus has infected a host.

The existence of irreversible steps cannot be directly revealed by assembly data alone. It has been shown that, even if
there are assembly steps which are irreversible (on relevant timescales) late in the assembly cascade, as long as most steps are
reversible the assembly data can be fit to Eq.10 with an apparent value ofgb reflecting the free energy of the reversible steps
[107, 186, 215, 292]. Similarly, comparison of the dynamical equations described in section III B to kinetics data couldonly
reveal the presence of irreversible steps on timescales exceeding the equilibration time associated with the reversible steps (e.g.
& 50 days).

III. MODELING SELF ASSEMBLY DYNAMICS AND KINETICS OF EMPTY CAPSIDS

The experimental measurements of capsid assembly kineticsdescribed in section I B 1 provide important constraints on mod-
els of capsid assembly kinetics. At the same time, they present an important opportunity for modeling; because only some
intermediates can typically be characterized, models are essential to understand detailed assembly pathways. In thissection we
describe different modeling approaches which have been used to predict or understand the assembly kinetics.

A. Timescales for capsid assembly

We begin our description of capsid assembly kinetics by defining the potential rate limiting steps and presenting scaling
estimates for their timescales. While our estimates are based on simplified models, we will see in the subsequent sections that
many of the predictions remain applicable when additional details are accounted for.

It was noted by Prevelige [205] that assembly kinetics for icosahedral capsids can be described in terms nucleation and
elongation (or growth) timescales, closely analogous to crystallization. Nucleation refers to formation of a ‘critical nucleus’, or
a structure which has a greater than 50% probability of growing to a complete capsid before disassembling. Elongation then
refers to the timescale required for a critical nucleus to assemble into a complete capsid. In contrast to crystallization, there can
be a well-defined elongation timescale since capsids terminate at a particular size.

Nucleation. For any type of spheroidal shell, including an icosahedral capsid, the first subunits to associate create fewer
interparticle contacts than those associating with largerpartial capsids (see Figs. 3A and 4B). Under conditions which lead to
productive assembly the subunit-subunit binding free energy (gb) is weak (see Fig. 6). Thus the favorable free energy of these
contacts is insufficient to compensate for the mixing and rotational entropy penalties incurred upon association, and the small
intermediates are unstable. However, at subunit concentrations above the pseudocritical concentrationρ∗ there must exist a
critical size above which there are sufficient interactionssuch that further assembly is more probable than dissociation. In fact,
the number of interactions depends on the partial capsid geometry, and thus there is an ensemble of critical nuclei with different
sizes.

It is often assumed that the dominant assembly pathways passthrough one or a few critical nuclei with the smallest sizes and
thus the assembly probability can be approximated by a single valued function of partial capsid sizen (i.e. n is a good reaction
coordinate [66]). Then, the critical nucleus corresponds to a maximum in the grand free energy, defined asΩn = Gn −µn, with
Gn the Gibbs free energy for an intermediate withn subunitsn andµ the chemical potential. For the thermodynamic models of
partial capsids presented in section II B the grand free energy is given by

Ωn = Gcap
n − kBTn log(ρ1v0). (12)

with Gcap
n the interaction energy for a partial capsid intermediate with n subunits andρ1 the free subunit concentration.

The effect of the shell geometry on the critical nucleus sizecan be understood elegantly from the continuum model of Zandi
et al.[280] in which partial capsid intermediates are described as spheres missing hemispherical caps with the partialcapsid
interaction free energyGcap given by Eq. 6. The critical nucleus is then calculated as themaximum inΩ(n) (Eq. 12) to give
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FIG. 7. Image of the CCMV pentamer of dimers that experiments[289] indicate is the critical nucleus. Atoms are shown in van der Waals
representation and colored according to their quasi-equivalent conformation, with A monomers in blue and B monomers inred. The coordinates
were obtained from the CCMV crystal structure, PDBID 1CWP [238] using the Viper oligomer generator [212] and the image was generated
with VMD [123].
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FIG. 8. The grand free energy as a function of intermediate size for different free subunit supersaturation values (ρ1/ρ
∗) as calculated by the

continuum model for a capsid with 90 subunits. These curves would correspond to the free energy profiles at increasing times for a reaction
which begins withρ1 = 3ρ∗ and proceeds toward equilibrium withρ1 = ρ∗.

[280]

nnuc = 0.5N

(

1−
Γ

(Γ2 + 1)1/2

)

(13)

with Γ = [gs − ln(ρ1v0)]/σ. Notably, the critical nucleus size depends on the binding energy and subunit concentration, and
decreases with increasing supersaturation of free subunits (ρ1/ρ∗). Plots ofΩ(n) are shown for several values of supersaturation
in Fig. III A.

The free energy forms for models which account for the icosahedral geometry of capsid structures are similar to the continuum
model just described, except that the critical nucleus tends to correspond to a small polygon, which is a local minimum in
the free energy since it corresponds to a local maximum in thenumber of subunit-subunit contacts (see Fig. 3). Although
the assumption that there is one dominant intermediate per partial capsid size is an oversimplification, simulations [106, 208]
and theory [79, 184] indicate that under many conditions assembly pathways predominantly pass through only a few nucleus
structures which correspond to completion of small polygons. Measured critical nucleus sizes under simulated conditions have
ranged from 3-10 subunits [75, 76, 141, 208].

Experimentally, nucleation has also been shown to correspond to completion of polygons, such as the pentamer of dimers
for CCMV [289] shown in Fig. 7 or a trimer of dimers for turnip crinkle virus [237]. However, it is likely that intertwiningof
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flexible terminal arms and other subunit conformation changes can provide additional stabilization upon polygon formation. In
the case of MS2, mass spectrometry [239] identified two polygonal intermediates, which modeling [187] suggested were each
critical nuclei for a different assembly pathway, with the prevalence dictated by binding to RNA. Most computational simulations
of icosahedral capsids to this point have not incorporated allostery. Including stabilization due to polygon- or RNA-associated
allostery could enable a particular structure to remain as the predominant critical nucleus over a wider range of interaction
strengths and subunit concentrations than is predicted by more basic models.

Elongation. The association of subunits after nucleation has been described as elongation or growth. In contrast to the
transient intermediates found below the critical nucleus size(s), intermediates in the growth phase are stable. Simulations indicate
that association usually proceeds by the sequential addition of one or a few subunits at a time, although binding of larger
oligomers can be significant at high concentrations or for some subunit interaction geometries [105, 243, 283]. Association of
large oligomers can also misdirect the assembly process [268] (section III C).

1. Scaling estimates for assembly timescales

To facilitate the presentation of how the timescales of nucleation and growth depend on system parameters, we first consider a
highly simplified assembly reaction. It was shown that the conclusions from this simplified reaction remained valid whenmore
sophisticated models were considered[107].

We consider a system of capsid protein subunits with total concentrationρT that start assembling at the timet = 0. Our
reaction is given by:

1
fρ1

−−⇀↽−−
bnuc

2
fρ1

−−⇀↽−−
bnuc

· · ·
fρ1

−−⇀↽−−
bnuc

nnuc
fρ1

−−−⇀↽−−−
belong

· · ·
fρ1

−−−⇀↽−−−
belong

N (14)

whereN is the number of subunits in a capsid,ρ1 is concentration of unassembled subunits,bi is the dissociation rate constant
(with i = {nuc,elong}), which is related to the forward rate constant by the equilibrium constant,v0bi = f exp (βgi), with
gi the change in interaction free energy upon subunit association to a partial capsid andv0 the standard state volume. The
nucleation and elongation phases are distinguished by the fact that association in the nucleation phase is not free energetically
favorable,ρ1 exp(−βgnuc) < 1, while association in the elongation phase is favorable,ρ1 exp(−βgelong) > 1. Similar results
can be obtained by assuming that the forward rate constant differs between the two phases [291]. For the moment, we assume
that there is an average nucleus sizennuc.

We write the overall capsid assembly timeτ as

τ = τnuc+ τelong, (15)

with τnuc andτelong the average times for nucleation and elongation, respectively. The timescale for the elongation phase can be
calculated as the mean first passage time for a biased random walk with reflecting boundary conditions atnnuc and absorbing
boundary conditions atN , with forward and reverse hopping rates given byfρ1 andbelong, respectively. This gives [21]

τelong =
nelong

fρ1 − belong
−

(

belong

fρ1 − belong

)2 (
belong

fρ1

)nelong

(16)

with nelong = N − nnuc. In the limit of fρ1 ≫ belong Eq. 16 can be approximated to givetelong ≈ nelong/fρ1, while for similar
forward and reverse reaction rates,fρ1 ≈ belong, it approaches the solution for an unbiased random walktelong≈ n2

elong/2fρ1.
Under conditions of constant free subunit concentrationρ1, we can derive the average nucleation time with an equation

analogous to Eq. 16 [80, 103]

τnuc =
nnuc− 1

fρ1 − bnuc
−

(

bnuc

fρ1 − bnuc

)2 (
bnuc

fρ1

)nnuc−1

≈f−1 exp
(

Gcap
nnuc−1/kBT

)

ρ−nnuc
1 = 1/fρ1 exp (−Ωnnuc−1/kBT ) (17)

This equation can be understood as follows. Because nucleation is rare on timescales of individual subunit binding events,
pre-nuclei reach a quasi-equilibrium with concentrationρn = ρn1 exp[−βGcap

n ] (see (5)). The nucleation rate,τ−1
nuc is then given

by the rate of subunits adding to the largest pre-nucleusnnuc− 1, τ−1
nuc = fρ1ρnnuc−1 which gives the second line of (17). A

comparable expression is derived under a continuum limit inRef. [280] in which the timescale for a subunit to associate with
the critical nucleus is replaced by a critical nucleus survival timescale.

However, because free subunits are depleted by assembly, the net nucleation rate never reaches this value and asymptotically
approaches zero as the reaction approaches equilibrium. Instead, treating the system as a two-state reaction withnnuc-th order
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FIG. 9. The scaling expression for the median assembly timeτ1/2 as a function of subunit concentration predicted by Eq. 18 iscompared to
full numerical solutions of the rate equations Eq. 14 (see section III B). The numerical results are shown for completionfractionfc (2) and
estimated light scattering (+), while the theoretical prediction Eq. 18 is shown as a dashed line. The estimate for the crossover concentration
ρc (Eq. 19) above which the light scattering and completion fraction do not match is shown with a• symbol, and the concentration at which
the monomer starvation kinetic trap increases overall assembly timesρkt is shown as a� symbol. Parameter values aregnuc = 7kBT (≈ 4
kcal/mol) [47],gelong = 2gnuc, gN = 4gnuc, capsid sizeN = 120 corresponding to 120 dimer subunits in a Hepatitis B Virus capsid [47], the
critical nucleus sizennuc = 5, and the subunit association rate constantf = 105 M−1s−1 [126]. Based on data from Ref. [107].

kinetics yields an approximation for the median assembly timeτ1/2, the time at which the reaction is 50% complete [107]

τ1/2 ≈
2nnuc−1 − 1

nnuc− 1

feq
c

Nf
exp (Gnnuc−1/kBT )ρ

−nnuc−1
0 (18)

with f
eq
c as the equilibrium fraction of subunits in complete capsids, which can measured experimentally [47]. The factor of

N−1 in Eq. 18 accounts for the fact thatN subunits are depleted by each assembled capsid. This prediction is compared to
simulated assembly times in Fig. 9.

Kinetic trap. We found that the relationships betweenτelong and Eq. 18 and assembly times begin to fail at a crossover
concentrationρc for which the initial rate of subunit depletion by nucleation (N/τnuc) is equal to the elongation rate. For larger
subunit concentrations, new nuclei form faster than existing ones complete assembly, and free subunits are depleted before most
capsids finish assembling. The system then becomes kinetically trapped at a larger concentrationρkt defined by the point at
which the median assembly timeτ1/2 matches the elongation time. These concentrations are related to binding free energies and
other parameters by

τelong ≈ τnuc/N for ρT = ρc

τelong ≈ τ1/2 for ρT = ρkt (19)

with τnuc andτ1/2 respectively given by Eq. 17 and Eq. 18.
A kinetic trap arising from depletion of free subunits (Eq.(19)) was first noted by Zlotnick [80, 286, 291] and was observed

in experiments on CCMV [289] and HBV [291] (see the largest ionic strength in Fig. 2A). Morozov, Bruinsma, and Rudnick
[186] elegantly recast a model similar to Eq. (14) in a continuum description, within which the time evolution of concentrations
of capsid intermediates resembles a shock wave. If the wave does not reach the size of a complete capsid before free subunits
are depleted then the system is trapped.

While the continuum model correctly predicts the presence of the free subunit depletion trap, the computer simulations
described in sections III B and III C show that productive capsid assembly reactions do not resemble a shockwave. Because
nucleation is a stochastic event, each capsid elongation process starts at a different time; i.e., they are out of phase.For ρT <
ρkt relatively few capsids are assembling at any given time, andthus intermediate concentrations remain at low levels. The
shockwave could only arise in the limit ofτnuc ≪ τelong, in which case the system would be severely trapped. This trap can be
avoided though for reactions in which subunits assemble around RNA or nanoparticles (section IV), provided that subunits are
in excess.
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FIG. 10. The lag time is related to the mean elongation time.(A) Completion fractionsfc measured from Brownian dynamics simulations
of a particle based model (section III C) are shown as a function of time for indicated total subunit volume fractions (vT). (B) The duration of
the lag phases from the simulations shown in (A) are comparedto mean capsid elongation times. The crossover volume fraction vc estimated
from Eq. 19 is shown as a• symbol. The plotted data is from Ref. [107].

2. Lag times

A distinctive feature of many capsid assembly kinetics measurements is an initial lag phase before detectable assemblyoccurs
(e.g. Fig. 2) whose duration decreases with increasing subunit concentration or subunit-subunit binding free energy.Although
Zlotnick and coworkers [80, 286, 291] showed that partial capsid intermediates assemble during the lag phase, it has often been
assumed that the duration of the lag phase corresponds to thetime required for the concentration of critical nuclei to reach steady
state, in analogy to models of actin nucleation. However, the simple model described above can be solved exactly in the limit
of constant free subunit concentration [103, 107], in whichcase the lag phase infc is equal to the mean elongation timeτelong

estimated in the previous section. Because the free subunitconcentration is nearly constant during the lag phase undermost
conditions, this relationship holds even when the assumption of constant free subunit concentration is relaxed.

To illustrate this relationship, mean elongation times andlagtimes calculated from Brownian dynamics simulations ofa
particle-based model (see section III C and Ref [107]) are shown in Fig. 10. We see that the correspondence is excellent
until the reaction approaches the crossover concentrationρc (estimated from Eq. 19). This correspondence could be tested
experimentally by comparing elongation times measured by single molecule experiments [24, 131, 132] with lag times measured
by bulk experiments.
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3. The slow approach to equilibrium

To this point in this section we have made the simplifying assumption that there is a fixed critical nucleus size. However,
Eq. 13 shows that in general the critical nucleus size is a function of the free subunit concentration. As subunits are converted
into capsids by the reaction, the free subunit concentration (ρ1) decreases and hence the nucleation barrier grows. In Fig. III A
nucleation barriers calculated using Eqs. 6, 7, and 12 for a capsid withN = 90 subunits are shown at three time points (i.e. three
free subunit concentrationsρ1) for a reaction which begins with a supersaturated free subunit concentrationρ1(t = 0) = 3ρ∗

with ρ∗ the pseudocritical subunit concentration (section II B). As the reaction begins far out-of-equilibrium there is a relatively
small critical nucleus size and correspondingly a small nucleation barrier. However, as the reaction approaches equilibrium
ρ1 = ρ∗ the size increases to a half-formed capsid and the barrier increases to30kBT . Substitution of this free energy barrier
into Eq.17 shows that the reaction timescale far exceeds theexperimentally accessible timescales at this point. In other words the
reaction only approaches equilibrium asymptotically. As noted in section II B, this effect can lead to underestimatingsubunit-
subunit binding energies when finite-time assembly data is fit to equilibrium expressions.

The observation that,at equilibrium, the critical nucleus corresponds to a half capsidnnuc = N/2 is rather generic. It
results from the fact that equilibrium is reached when the free subunit concentration decreases to the point at which thechemical
potential of a free subunit is equal to that of a subunit in a complete capsid,ρeq

1 = exp
(

βGcap
N /N

)

. Thus, including additional
complexities, such as subunit conformational changes or interface-dependent binding energies would not qualitatively change
the result. We reiterate, though, that for the supersaturation conditionsρ1 > ρ∗ from which productive assembly begins, the
critical nucleus size will generally be much smaller than its equilibrium value.

B. Rate equation models for capsid assembly

Zlotnick and coworkers [80, 286, 291] developed an approachto simulate empty capsid assembly via a system of rate equations
that describe the time evolution of concentrations of emptycapsid intermediates. The idea is analogous to the classic kinetic
rate equations for cluster concentrations in a system undergoing crystallization proposed by Becker and Döring [25] and then
derived from the microscopic dynamics of the lattice gas (orIsing) model by Binder and Stauffer [34]. In contrast to the
models for crystallization, however, the capsids terminate at a finite size. The initial works of Zlotnick and coworkersused the
simplifications that there is one species of intermediate for each sizen, and that only single subunits can bind or unbind in each
step, which gives the following equations

dρ1
dt

= −f1s1ρ
2
1 + b2ŝ2ρ2 +

N
∑

n=2

−fnsnρnρ1 + bnŝnρn

dρn
dt

= fn−1sn−1ρ1ρn−1 − fnsnρ1ρn n = 2 . . .N

−bnŝnρn + bn+1ŝn+1ρn+1 (20)

whereρn is the concentration of intermediates withn subunits,fn and bn are respectively association and dissociation rate
constants for intermediaten, andsn andŝn respectively describe the degeneracy for binding and unbinding [80]. While Eq. 20
resembles a Master equation, notice that the factors ofρ1 in the association reactions introduce nonlinearities which complicate
its solution. Therefore we will refer to the equations in this section as ‘rate equations’.

The association and dissociation rate constants are related by detailed balance asbn = fn−1 exp
[

(Gcap
n −Gcap

n−1)/kBT
]

/v0,
with Gcap

n the interaction free energy of a partial capsid withn subunits andv0 the standard state volume. Specifying the assembly
model requires defining the set intermediate geometries andtheir free energies (e.g. see section II B, Eqs. (3) or (6)) and the
association ratesfn.

Despite the extreme simplifications leading to Eq. 20, rate equations of this form have shown good agreement with many
features of experimental assembly kinetics data, including the assembly kinetics of HBV [291] (Fig. 2B), the assembly of
CCMV into different polymorphs depending on subunit concentration [126], the short time kinetics of BMV assembly [52],
SV40 assembly [135], the impact of RNA on MS2 assembly [187],and the assembly of HIV capsid protein into tubes [250]
(Fig. 11A).

The assumption of only a single structure per intermediate size can be relaxed at the cost of increased computational complex-
ity. For example Zlotnick and coworkers [79, 184] have enumerated the space of all possible well-formed cluster configurations
for two geometries, and catalogued the ensemble of pathwayssurpassing a threshold value of probability [184]. In an alternative
approach, Schwartz and coworkers [243, 283] have used continuous time Monte Carlo (known as the Bortz-Kalos-Lebowitz
[36] or Gillespie [96] algorithm) to stochastically samplepathways consistent with kinetic rate equations. They haveparticu-
larly considered the effects of binding between oligomers [243, 277, 283] and an optimization routine to fit parameters to light
scattering data [150, 277] (see Fig. 11).
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FIG. 11. (A) In vitro assembly of HIV CA protein into tubes monitored by absorbance (red diamonds, with thick grey lines indicating error
bars) at indicated subunit concentrations compared to bestfits using a rate equation model (black lines).(B) Light scattering for HPV LP1
assembly from Casini et al. [44] (light grey diamonds) compared to a continuous time Monte Carlo trajectory using parameters optimized to
the data (solid black line). The dashed curve corresponds toa trajectory with parameter values reduced by2.5× 105 from their optimal values
and negative values truncated to zero, to simulate a threshold level of signal to background scattering. (A) is reprinted with permission from
Biochemistry,51, 4416-4428 (2012),A Trimer of Dimers Is the Basic Building Block for Human Immunodeficiency Virus-1 Capsid Assembly,
Tsiang, Niedziela-Majka, Hung, Jin, Hu, Yant, Samuel, Liu,Sakowicz, Copyright (2012) American Chemical Society. (B)is reprinted with
permission from Phys. Biol.,7, 045005 (2010), Kumar and Schwartz,A parameter estimation technique for stochastic self-assembly systems
and its application to human papillomavirus self-assembly, Copyright (2010) IOP Publishing.

Several groups have also developed continuum-level descriptions of assembly dynamics which allow for analytical treatment
[186, 261]. Van der Schoot and Zandi applied the classical theory of spinodal decomposition (model A dynamics) to examine
the late-stage relaxation of assembly dynamics, while Ref.[186] is discussed in section II B. However, the important role of
nucleation in the kinetics has not yet been incorporated into these treatments.

Limitations and advantages of the rate equation approach. The key advantage of state-based over particle-based ap-
proaches discussed next is that the former do not track diffusive motions of individual subunits and thus can access larger
system-sizes and timescales. However, even extended state-based approaches require pre-definition of the accessiblestate space
(i.e. the structures of intermediates for each sizen) and the transition rates between them. To date these methods have not been
used to address the possibility of strained interactions between subunits which deviate from the ground state of the pairwise
interaction potential. The possibility of strained interactions would greatly expand the set of possible cluster configurations, hin-
dering predefinition of the state-space. Secondly, the state-based approaches used to date assume a uniform spatial distribution
of free subunits (a mean-field approximation), neglecting any particle-particle correlations or rebinding kinetics.However, there
is no evidence from particle-based simulations or experiments that this approximation leads to significant error.
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FIG. 12. Examples of two classes of models for icosahedral shells. (A) A patchy-sphere model with the pentavalent subunit interaction
geometry of aT=1 capsid (see Fig. 1C), but spherically symmetric excluded-volume [105]. In the top image, two interacting subunits are
shown, with numbered arrows indicating the locations of the5 distinct attractive patches. The lower image shows an assembled capsid, with
patches colored green.(B) An extended subunit representation of aT=1 capsid. In the top image, the large cyan spheres experience repulsive
excluded-volume interactions while small yellow spheres on complementary faces experience attractive interactions. The lower image shows a
complete capsid, with subunits reduced in size for visibility and the locations of attractive patches indicated by green cylinders. The images in
(B) are reprinted with permission from Rapaport, Phys. Rev.E, 70, 051905 (2004),Self-assembly of polyhedral shells: A molecular dynamics
study, Copyright (2004) by the American Physical Society.

C. Particle-based simulations of capsid assembly dynamics

In this section we consider simulations of capsids or other polyhedral shells that explicitly track the positions and orientations
of each subunit. Thus, once the model has been defined no further assumptions about pathways or the state space are required.
Capsid proteins typically have several hundred amino acidsand assemble on time scales of seconds to hours. Thus, simulating
the spontaneous assembly of even the smallest icosahedral capsid with 60 proteins at atomic resolution would entail an extreme
computational demand [89]. However, it has been shown that the capsid proteins of many viruses adopt folds with similar
excluded-volume shapes, often represented as trapezoids [173]. Several groups have therefore developed models for subunits
which, although highly simplified, retain the most important features. Namely, they have an excluded-volume geometry and
orientation-dependent attractions designed such that thelowest energy structure is shell with icosahedral symmetry[76, 105,
106, 112, 128, 172, 188–190, 209–211, 227, 272–274]

The coarse-grained particle-based simulation models can be roughly separated into three classes. We will use the term ‘patchy-
sphere models’ to refer to models in which the subunit has spherically symmetric excluded-volume and patches with short-ranged
attractions arranged such that the lowest energy configuration corresponds to a particular target structure (see Fig. 12A). Patchy-
sphere models are quite general and have long been used to represent decorated colloids (e.g. [33]) as well as proteins (e.g.
[161]). The patch-patch potential can include angular and dihedral terms to control the overall directional specificity of the
attraction [105, 227, 272] and patches with different interaction length scales to control preferred face angles of assembling
polyhedrons [128, 265].

The second class of models, first developed by Rapaport [209], considers an extended subunit comprised of spherically
symmetric ‘pseudoatoms’ arranged to have short-ranged attractions and excluded-volume geometries that mimic features of
protein geometries seen in capsid structures (Fig. 12B). For example, several groups [190, 208, 210] have considered models in
which subunits have a trapezoidal shape which is roughly consistent with that of capsid proteins with the beta-barrel architecture
[219] or models in which 20 triangular subunits (which couldcorrespond to protein trimers) form icosahedral shells [76, 106,
172, 188, 209, 210]. Extended subunits have also been used tomodel nanoparticles with a variety of shapes (e.g. [284]). In a
third class of models, subunits have polygonal interactiondirections, but rather than tracking their diffusion, theyare irreversibly
placed onto growing capsids in energy-minimized configurations [112, 157].

The early history of particle-based capsid assembly simulations. The first dynamical simulations of capsid assembly
were performed by Schwartz and co-workers [227], who considered a patchy-sphere type model with complementary attractive
interactions directed such that lowest energy configurations corresponded to 60-subunitT=1 closed shells. Their exploratory
simulations using dissipative molecular dynamics identified the importance of annealing during assembly, as uncorrected as-
sembly errors tended to lead to malformed structures. Rapaport considered models for icosahedral shells in which subunits have
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triangular [209] or trapezoidal [210] excluded-volume geometries. The early simulations [210] included dynamicallyunrealistic
rules which limited the number of nucleation sites, but suggested that a simple interaction potential could direct assembly of
well-formed capsids and that subunit association rates do not decrease dramatically as capsids near completion.

The first statistical estimates of assembly into icosahedral shells were obtained by Hagan and Chandler [105] using over-
damped Brownian dynamics with several patchy-sphere models for T=1 shells. They constructed a ‘kinetic phase diagram’
showing the dominant assembly products as a function of subunit concentration, subunit-subunit interaction strength, and the
orientational specificity of subunit interactions (see below). They also found that assembled capsids were highly metastable in
infinite dilution and disassembly showed significant hysteresis, as seen in experiments on HBV capsids [234].

Nguyen and co-workers [188] used discontinuous molecular dynamics [3, 26, 206, 207, 235] to simulate the assembly of
models in which subunits had short-range attractive interactions and excluded-volume geometry shapes of triangles orkites.
In contrast to other models in which subunits are rigid bodies, the pseudo-atoms comprising each subunit were connectedby
infinite hardwall potentials and thus the subunits had some internal degrees of freedom. They predicted a phase diagram with
many features in common with those of other models, except that incorporation of the last subunit was hindered by the internal
degrees of freedom of the nearly complete partial capsids (see below).

Doye, Louis, and coworkers [128, 272–274] used Monte Carlo simulations to study the dynamics and thermodynamics of a
variety of patchy-sphere models, with ground state geometries that include the set of regular polyhedra,T=1 shells, andT=3
shells. For interaction potentials which did not incorporate dihedral angles (motivated by patchy colloids), they found that
assembly could proceed through a disordered liquid state intermediate for some parameter ranges [273] and competitionwith
disordered states led to a dodecahedra being kinetically inaccessible [274]. The liquid state disappeared when the dihedral
potentials consistent with protein-protein interactionswere included.

Hicks and Henley [112] proposed a model for assembly of HIV capsids in which triangular subunits were irreversibly attached
to sites on a growing cluster according to the local geometryto form hexagonal or pentagonal substructures, with a subunit-
subunit interaction geometry that defined a preferred spontaneous curvature. They found that under irreversible attachment the
model produced an ensemble of irregular structures, but notthe conical shells observed in EM images of mature HIV capsids
[29, 91]. Levandovsky and Zandi [157] extended and modified the model to allow merging and for the structure to minimize
its elastic energy at each step. The model predicted an ensemble of structures which closely resemble those seen in retrovirus
capsids, and suggested that the protein spontaneous curvature plays a key role in determining the capsid shape (i.e. spherical,
conical, etc.).

Higher resolution representations of capsid proteins havebeen used to simulate parts of assembly pathways. For example
Chen and Tyco [50] developed a model for the HIV capsid protein which includes information about subunit-subunit contacts
derived from NMR studies, and simulated the early stages of assembly in two dimensions. Tunbridge et al. [252] modeled the
assembly of small oligomers of HBV proteins with the proteins modeled as rigid bodies using a transferable one-bead-per-amino
acid model [140]. Futhermore systematic coarse graining from atomistic simulations was used to estimate subunit positions and
orientations from cryo electron microscopy images of the immature HIV capsid [15]. A study of dimerization of the C-terminal
domain of the HIV capsid protein at atomic resolution with explicit water showed that water in the vicinity of the protein-protein
interface sits at the edge of a drying transition [278].

D. Conclusions from assembly dynamics models

Having presented an overview of some of the theoretical and computational models of capsid assembly dynamics, we highlight
a few of the more important conclusions that have emerged these studies. We will see that many of the predictions are consistent
across both rate equation and particle-based models and match experimental observations.

Capsid assembly kinetics are sigmoidal. Consistent with the experimental measurements, the theoretical and computational
models predict sigmoidal assembly kinetics. Example predictions are shown for rate equation models in Figs. 2B and 11 for
Brownian dynamics simulations in Fig. 10A and for moleculardynamics simulations in Fig. 13. In all cases, there is an
initial lag phase during which capsid intermediates form, followed rapid capsid production and then an asymptotic approach to
equilibrium.

Intermediates do not build up. Fig. 13 shows the fraction of subunits in intermediates of all sizes as a function of time for
a model icosahedron [208] for three values of the binding energy. For the two smaller values which lead to productive assembly
there is never a significant fraction of subunits found in intermediates. A similar result is found for both rate equationmodels
and other computational models, consistent with experiments where intermediates are generally not detectable for productive
parameters.

The duration of the lag phase is set by the mean capsid assembly time. This observation was described in section III A 2
(Fig. 10B).

Optimal assembly occurs when subunit-subunit association is reversible. Dynamical simulations predict that capsid yields
at finite observation times are nonmonotonic with respect tocontrol parameter values (e.g. subunit concentration, binding
energy, or specificity), which is consistent with experimental observations [47, 289, 291]. The plots showing yield as afunction
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FIG. 13. The time evolution of cluster size distributions are shown for three interaction strengths, parameterized bye, for molecular dynamics
simulations of the triangular subunit model shown in Fig. 12B. The model capsid comprises 20 subunits; the system has entered a kinetic
trap at the highest interaction strength. Figure reprintedwith permission from Phys. Biol.,7, 045001 (2010), Rapaport,Modeling capsid
self-assembly: design and analysis, Copyright (2010) IOP Publishing.

of time in Figs. 2B, 10A, and 13 demonstrate suppressed capsid production at the highest subunit concentration or binding
energy. Similarly, examples for which dynamical simulation results at long times have been presented in cross-sections of phase
diagrams are shown in Figs. 14, 15 and 16. [194].

It is worth noting that the subunit-subunit binding free energy (gb in (3)) cannot be directly determined from force field
parameters in the simulations referenced in Figs. 14, 15 and16, as the binding entropy penalty depends on the length scale
and directional specificity of the interaction. Binding free energies estimated from umbrella sampling (e.g. [105, 106, 274])
for optimal parameter values were of order5 − 10kBT depending on particle concentrations, consistent with experimental
observations (see Fig. 6 [47]).

The phase behavior can be separated into five regimes, whose locations are indicated on the phase diagram shown in Fig. 14:

1. No assembly at equilibrium.In this regime the interactions driving assembly are too weak to overcome the rotational
and mixing entropy of free subunits, and virtually all subunits are present as free dimer in equilibrium. As discussed in
section II B, this regime corresponds to subunit concentrations below a critical valueρ < ρ∗, whose value depends on the
subunit-subunit binding free energy; the values ofρ∗ are shown as dashed and white lines in Figs. 14 and 16 respectively.

2. No assembly on relevant time scales due to a nucleation barrier. For concentrations sufficiently close to the critical value,
ρ & ρ∗, nucleation barriers are prohibitive (see section III A 3and Fig. III A). Thus assembly is not seen on timescales
that are accessible to simulations (or experiments) at these concentrations. This is the first kinetic effect that can prevent
assembly at long but finite times. This regime is seen in the phase diagrams shown in Figs. 14 and 16, where there is a
region betweenρ∗ and parameter values at which assembly is observed.

3. Productive assembly.For moderate parameter values initial nucleation barriersare small enough such that finite-time
assembly yields can be quite large, withfc & 90%.

4. Free subunit starvation kinetic trap.The first form of kinetic trap described in section III A 1 arises due to the constraint
of mass conservation. When nucleation is fast compared to elongation (ρkt in Eq. 19), too many capsids nucleate at early
times, and the pool of free subunits or small intermediates becomes depleted before a significant number of capsids are
completed. This phenomenon can be seen readily in the time series shown in the right panel of Fig. 13. Except to the extent
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FIG. 14. Assembly products at long times for 60-subunit patchy-sphere modelT=1 shells as functions of binding energyεb, angular specificity,
θm, and total particle concentrationρT. Solid squares indicate parameter sets for which there weresignificant yields of well-formed capsids
fc ≥ 0.3, while open squares indicate poor assembly,fc < 0.3. The dashed line indicates the parameter values above whichsignificant capsid
assembly should occur at equilibrium. The location of the five regimes discussed in the text are shown on the phase diagramon the left. Figure
based on Ref. [105].

FIG. 15. Assembly products at long times for a 20-subunit extended subunitT=1 shell as a function of temperature (i.e. inverse of interaction
strength) and particle concentration. Representative structures are shown for the well-formed and mis-assembled regions. Figure adapted
with permission from Nano Lett.,7, 338-344 (2007),Deciphering the kinetic mechanism of spontaneous self-assembly of icosahedral capsids,
Nguyen, Reddy, and Brooks, Copyright (2007) American Chemical Society.

that the remaining partial capsids have geometries which allow for direct binding, further assembly requires the analog of
Ostwald ripening, in which subunits unbind from smaller partial capsids and are scavenged by larger intermediates. This is
an activated process since it requires bond-breaking; hence it is generally slow in comparison to time scales for assembly
at parameter sets that do not lead to trapping. This form of kinetic trap was first predicted with rate equations models by
Zlotnick and coworkers [80, 291], and was shown to be consistent with experiments (e.g. the largest salt concentration in
Fig. 2A).

5. Malformed capsids.The second form of kinetic trap arises when subunits formingstrained bonds that deviate from the
ground state of the interaction potential are trapped into growing clusters by subsequent subunit additions. For example,
in T=1 capsids it is common to observe hexameric defects at the five-fold vertices. In some cases defects lead to closed
shells that lack icosahedral symmetry, whereas in other cases the curvature is disrupted significantly enough that spiral
structures form. Nguyen and coworkers [190] catalogued sets of hexameric defects that lead to closed or open structures
(see Fig. 17).

The predictions and observations that capsid assembly yields are nonmonotonic with respect to driving forces have contributed
to a wider understanding that many examples of self-assembly are most efficient when structures are stabilized by numerous
relatively weak interactions [47, 75, 99, 100, 105, 124, 143, 188, 211, 268, 269, 273, 274, 292]. While strong interparticle
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FIG. 16. Assembly products at long times for a 12-subunit patchy-sphere model icosahedron. The fraction of subunits in target clusters is
shown as a function of the patch widthσ (measured in radians) and reduced temperature. The inset shows the equivalent plot for a system with
the same parameters except without dihedral terms in the interaction potential. The image at the top right shows the target structure, while
the lower images show regions of the system for simulation atthe indicated parameter values. The white lines show the temperature for the
equilibrium transition from assembled clusters to a gas of monomers calculated from umbrella sampling. Figure and images reprinted with
permission from J. Chem. Phys.,131, 175102 (2009),Monodisperse self-assembly in a model with protein-like interactions, Wilber, Doye,
Louis, and Lewis, Copyright(2009) American Institute of Physics.

bonds stabilize the ordered equilibrium state, they also promote and stabilize the two kinetic traps described above that frustrate
assembly. Thus, effective self-assembly proceeds by relatively transient bond formation, with bond-breaking eventsthat are
nearly as frequent as bond formations. This idea was first suggested in the context of virus assembly by Zlotnick and coworkers
[47, 291] ( Fig. 6) and by Schwartz and coworkers [227] based on preliminary particle-based simulations. The extent to which
capsid assembly reactions approach reversibility has beenmonitored by a variety of metrics (e.g. [106, 124, 208, 211])which
include measuring relative frequencies of bond formation and bond-breaking [124, 208, 211], fluctuation dissipation ratios [124],
and the extent to which clusters of similar size are in relative Boltzmann equilibrium [106]. It has been shown that the extent
to which reversibility is violated can be correlated to yields of well formed capsids. Similar approaches have been applied to
models for crystallization ( e.g. [99, 100, 106, 124, 143]).Despite the fact that viral capsids are monodisperse closedshells
whereas crystals are extended structures, the correlations between reversibility and assembly yields in models of crystallization
are strikingly similar to those observed for models of capsid assembly.

Given the significant amount of attention which has been accorded to reversibility, it is important to note that the strong inter-
actions (large degree of supersaturation) which lead to violations of reversibility contribute to assembly failure through both of
the kinetic traps described above. In the case of the free subunit starvation trap, the Boltzmann factor in Eq. 19 identifies that
nucleation rates increase much more quickly than elongation rates and there is a threshold binding energy or subunit supersatu-
ration above which the condition will be violated. Furthermore, once free subunit starvation sets in, the Ostwald ripening which
eventually leads to equilibration requires bond-breakingand hence is characterized by a timescale which increases exponentially
with binding energy.

The malformed capsid trap arises when subunit addition to a growing partial capsid occurs more quickly than already as-
sociated subunits can anneal defective or strained interactions. The rate of subunit addition is proportional to free subunit
concentration. Annealing in general requires some bond-breaking and hence is characterized by a timescale which increases
exponentially with binding energy.

While both the free subunit starvation trap and malformed capsids arise for strong interactions or high subunit concentrations,
which effect dominates at a given parameter set is a strong function of the directional specificity. Highly specific binding
interactions imply that imperfect subunit interactions are unstable and only very strong binding energies lead to malformed
capsids. Therefore, for interactions with sufficiently high directional specificity, the threshold binding energy formalformed
capsids is well above the threshold binding energy for the free subunit starvation trap (Eq. 19). From an evolutionary standpoint,
or from the perspective of designing synthetic or biomimetic assembly systems, it might appear that maximizing directional
specificity would be optimal for productive assembly. However, increasing directional specificity reduces the subunitkinetic
cross-section and thus leads to lower subunit-subunit binding rates [105, 268]. There is a trade-off between selectivity and
kinetic accessibility which limits the optimal degree of directional specificity for finite-time assembly reactions. In the case of
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FIG. 17. Population distribution of structures obtained atlong times for near optimal parameters using discontinuousmolecular dynamics for
a T=1 model by Nguyen et al. [190]. The structures were defined byNguyen et al. [190] as (A) complete icosahedral capsids, (B)oblate
capsules, (C) angular capsules, (D) twisted capsules, (E) tubular capsules, (F) prolate capsules, (G) conical capsules, (H) partial capsids, and
(I) open mis-aggregates. Figure reprinted with permissionfrom J. Am. Chem. Soc.131, 2606-14 (2009),Invariant polymorphism in virus
capsid assembly, Nguyen, Reddy, and Brooks, Copyright(2009) by the American Chemical Society.

capsid proteins the degree of directional specificity whichis physically realizable is limited by the nanometer lengthscale of
the underlying hydrophobic and electrostatic interactions. The degree of specificity used within coarse-grained models can be
roughly estimated based on the physical interaction lengthscales (e.g. [188]) or it can be calculated systematically via coarse
graining [15, 113].

Experimental observations of partial or malformed capsids. While light scattering experiments on HBV [291] and CCMV
[289] clearly indicate that stronger than optimal interactions lead to reduced assembly yields, these results were interpreted in
the context of the monomer starvation trap. In general products of reactions performed at stronger than optimal parameters have
not been well characterized by imaging, in part because variable sizes and defective structures limit the use of multi-particle
and/or icosahedral averaging, but also because effort has been focused on parameter sets which produce high yields of capsids.
However in a notable earlyin vitro study Sorger et al. [237] identified malformed turnip crinkle mosaic virus capsids assembling
around the genomic RNA. Furthermore, Teschke and coworkers[197] have catalogued a series of malformed structures which
result due to mutations in the P22 capsid protein, and Stray et al. [240] showed that HBV assembly is accelerated and defective
in the presence of an antiviral drug.

The role of solvent. The solvent plays several important roles in capsid assembly. As described in section II A, subunit-
subunit association is typically driven by hydrophobic interactions with moderate ionic strengths required to screenelectrostatic
interactions. These solvent-mediated effects have been incorporated implicitly in particle-based capsid assembly simulations via
the subunit-subunit interaction potentials. Second, the solvent absorbs kinetic energy released by the formation of low-energy
subunit-subunit interactions. Third, random buffeting bythe solvent helps annealing. The latter two effects have been incor-
porated through a hydrodynamic drag and stochastic buffeting force in Brownian dynamics [75, 76, 105, 106, 227] or through
explicit inclusion of inert solvent particles by Rapaport [208, 211]. Analysis of simulated trajectories from both approaches
indicated that the random buffeting plays an important rolein annealing by inducing dissociation of improperly bound subunits.
In contrast, simulations which used a thermostat but no implicit solvent [210] demonstrated much less efficient annealing during
assembly because improperly bound subunits dissociated only upon collision with another subunit.

A fourth effect of solvent is to introduce hydrodynamic interactions between subunits. This effect is typically not accounted
for within a Brownian dynamics simulation because of the computational expense [224]. Hydrodynamic coupling has been
effectively included in assembly simulations using a cluster move Monte Carlo [267] and is intrinsically included in the explicit
solvent simulations [208, 211], albeit at a significant computational expense. The primary effect of neglecting hydrodynamic
interactions is that bonded clusters are ‘freely draining’, and thus experience a hydrodynamic drag that is proportional to the
number of subunits rather than the cluster hydrodynamic radius. Hydrodynamic interactions also influence subunit collision
rates, but a quantitative estimate of collision rates is likely to require atomic-resolution models in any case. To thispoint, no
significant differences in assembly behavior between explicit solvent and Brownian dynamics simulations have been reported.

E. Differences among models

The models described in this section are highly simplified and thus designed to uncover generic assembly mechanisms for
icosahedral shells. In that regard it is encouraging that results described above are consistent across most or all of the models.
We now discuss some of the key differences between the models.

We already noted in the previous section that state-based models have not been able to describe the malformed capsid trap.
Among particle-based models, the structural details of ensembles of malformed structures predicted by dynamical simulations
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are somewhat dependent on details of the model interaction geometries. E.g., trapezoidal subunits can form defects notavailable
to triangular subunits and thus do not give rise to the same ensemble monster structures [188, 190]. Similarly, we have found
that patchy sphere models can form closed shells which are smaller than the ground state geometry under strong interactions,
which does not seem to occur for triangular or trapezoidal subunits. Also, Ref. [105] found that different subunit valencies can
lead to different sets of assembly pathways even if the overall assembly efficiency and kinetics are similar.

Insertion of the last subunit. In all particle-based models insertion rates decrease as the capsid nears completion due to steric
hindrances. This effect appears to be amplified in the model of Nguyen et al. [188, 190], where insertion of the final subunit
suppresses internal vibration modes of the partial capsid.Insertion of the final subunit was found to be rate limiting and even free
energetically unfavorable for some parameter ranges. Experimental evidence supporting this observation has been lacking; for
example mass spectrometry studies of HBV capsids indicatedan overwhelming preponderance of complete capsids [254, 256].
It is worth noting though that most imaging studies of capsidstructures use icosahedral and/or multiparticle averaging and
thus would not detect missing subunits. Although experimetally challenging, a systematic search for defects, including missing
subunits, under a variety of assembly conditions would be ofgreat interest.

F. Higher T numbers

As described in section I A, icosahedral capsids with more than 60 proteins (T > 1) require precise arrangements of pen-
tameric and hexameric capsomers, often with different protein conformations in the distinct but ‘quasi-equivalent’ sites. We
first present studies that investigated the relative thermodynamic stabilities of possible capsid structures, followed by studies
that attempted to discover how the correct arrangement of conformations (or of pentamers and hexamers) is achieved during the
dynamics of shell construction.

1. Structural stability of different capsid geometries

The relative thermodynamic stabilities of shell geometries have been investigated by Monte Carlo simulations. Zandi et al.
[40, 279] studied shells comprised of two species of discs, representing pentamers and hexamers confined to a spherical surface,
and found that the Caspar and Klug geometries correspond to minimum free energy configurations for appropriate size-ratios of
the discs. Chen, Zhang, and Glotzer [54] studied the assembly thermodynamics of cone-shaped particles. For decreasingcone
angles the particles assembled into convex shells of increasing sizes corresponding to ‘magic numbers’. Certain magicnumbers
corresponded to icosahedral shells, and the assembled structures were found to correspond to equilibrium structures of colloids
confined to spherical surfaces. Similar approaches have been used to investigate the relative stabilities of potentialprolate
structures. Chen et al. [55] performed Monte Carlo simulations of spheres packing on prolate surfaces and found structures
consistent with some prolate virus capsids, while Luque, Zandi and Reguera [170] found that free-energy minimization of disks
representing pentamers and hexamers confined to a prolate surface led to structures consistent with a number of prolate or
bacilliform capsid structures and identified selection rules for the length, structure, and number of capsomers for prolate capsids.

Fejer, Chakrabarti, and Wales [82] studied the formation ofshells by disk-shaped or ellipsoidal subunits with anisotropic
interactions that dictated a preferred curvature, via searching for minima in the configurational energy landscape. For disk-
shaped subunits the results resembled those of the assembling cones [54] with global minima corresponding to icosahedral
structures for particular preferred curvatures. For appropriate arrangements of anisotropic interactions, they were also able to
describe tubular, helical and head-tail morphologies (i.e. resembling tailed bacteriophages), as well as multi-shelled structures.

Continuum elasticity theory has also shed light on capsid shapes. The fact that small icosahedral capsids tend to be spherical
while larger capsids tend to look more faceted (i.e. icosahedral) [17] was reproduced by continuum elastic models in which the
faceting corresponds to a buckling transition [159, 229]. Asimilar approach was applied to spherocylindrical and conical shells
[191] and reproduced features of retrovirus capsid shapes [192].

2. Dynamics of forming icosahedral geometries

Berger et al. proposed a system of ‘local rules’ [31] in whichsubunit-subunit binding interactions are highly conformation
specific. I.e., subunits with a particular conformation, A,bind strongly to A-sites on a growing capsid (binding sites for which the
conformations of neighboring subunits favor the A conformation), but bind weakly or not at all to other sites. Simulations were
performed using trivalent subunits, with different subunit conformations represented by differences in interactiongeometries.
Assembly dynamics was modeled by placing subunits one-at-a-time at binding sites on a growing capsid according to the local
rules. It was found that icosahedral capsids could assemblewith high fidelity, even under a certain degree of flexibilityin subunit-
subunit interaction angles. Relaxation of local rules led to the formation of malformed structures, such as spiraling shells [226]
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and one of the first suggestions that it might be possible to develop antiviral agents that act by misdirecting capsid assembly
[204]. The local rules are generalizable and were used to describe papovirus (polyomaviridae) assembly [226].

Several of the molecular dynamics studies of capsid assembly described above modeled assembly intoT=3 orT=4 capsids
[75, 128, 190, 208, 210] and Nguyen and coworkers [189] modeled the assembly of preconstructed pentamers and hexamers
into capsids as large asT=19. In most cases these studies used conformation-dependent subunit-subunit interaction energies
corresponding to strict local rules, with each subunit locked into a particular conformation. They found that larger capsids
can assemble under conditions similar to those which lead towell-formedT=1 capsids and are constrained by similar kinetic
traps. However, in general parameters need to be more tightly tuned the larger the capsid is, as there are more opportunities
for misdirection of the assembly pathway and elongation times are longer (hence requiring longer nucleation times according to
Eq. 19). As noted above, the ensemble of malformed structures that results for non-optimal parameters is somewhat dependent
on subunit interaction geometries, and thus depends on the preferredT -number. Ref. [190] also found that details of assembly
mechanisms could differ betweenT=1 andT=3 capsids.

Breaking the local rules. There are two experimental observations which seem inconsistent with the assumption of strict
local rules, at least for small icosahedral viruses. First,for many viruses the structures of binding interfaces are quite similar for
subunits in different conformations (see e.g. Ref. [245]).Second, capsid proteins which assemble into a particular icosahedral
structure with high fidelity can adapt to form different icosahedral morphologies under different conditions [1, 18, 153]. Further-
more, as described further in section IV, capsids exhibit polymorphism when assembling around cargoes with incommensurate
sizes. For example, Dragnea and coworkers [53, 68, 70, 241] demonstrated that brome mosaic virus (BMV) proteins assemble
into T=1, pseudo-T2, andT=3 capsids around charge-functionalized nanoparticles with different diameters. These observations
of polymorphism in empty and cargo-containing capsids raise the questions of how strongly subunit-subunit interactions across
a given interface can depend on conformation (i.e., how strict are the local rules), and how strong of a conformation-dependence
is required to assemble into icosahedral structures.

Elrad and Hagan simulated assembly ofT=3 empty capsids with a model in which the conformation-dependence of the
subunit-subunit interaction energies was systematicallyvaried. They found thatT=3 capsids could form with high fidelity pro-
vided that interactions which violate the conformation-dependence of theT=3 structure were 20% weaker than those consistent
with the target geometry. If the conformation dependence ofthe interactions was less specific, asymmetric closed shells or open
spiraling structures were the dominant assembly morphologies. Interestingly, since the binding free energy at which capsids
assembled successfully is only on the order of5 − 10kBT , a 20 % reduction in free energy for subunits with the wrong set of
conformations corresponds to a free energy difference onlyon the order ofkBT , which could easily arise from minor variations
in binding interfaces. It was found that this level of conformation-dependence did allow for adaptable assembly into alternative
icosahedral geometries around nanoparticles with different sizes [75].

The difficulty of dynamically constructing icosahedral shells in the absence of conformation-specific interactions iselucidated
by the recent study of Luque et al. [169], which examined the dynamics of monolayers of spheres constrained to growing on a
spherical manifold. Recall that a series of ‘magic number’ equilibrium structures were identified for this system in Ref. [54].
Luque et al. [169] found that line tension of the growing shell drives premature closure of the shell thus hindering formation
of defect-free structures. Other mechanisms promoting disorder became important for structures comprised of more than 50
subunits. Interestingly, small defect-free shells could be assembled by adjusting the radius of the manifold. The important roles
that template can play in directing assembly will be discussed in section IV.

Recent studies indicate that RNA-protein interactions play a key role in determining assembly pathways for the ssRNA bacte-
riophage MS2 [23, 72–74, 77, 187, 213, 239, 249]. Stockley and coworkers used mass spectrometry to show that conformational
switching of the MS2 capsid protein can be regulated by binding of short RNA step-loops, with sequence-dependent activity.
Dykeman and Twarock performed all-atom normal modes calculations on the capsid protein in the presence and absence of
RNA which identified a potential allosteric connection between the RNA binding site and the flexible FG loop which undergoes
the bulk of the conformational change [73]. Coarse-grainedcomputational modeling indicated that RNA binding influences
subunit-subunit association rates and a conformation-dependent manner [77]. Furthermore, mass spectrometry identified two
intermediates in the assembly pathway [239] as well as theirconcentrations during assembly. This information was usedto build
and fit parameters for a Master equation model of assembly [187]. The results indicated that there are two dominant assembly
pathways, whose prevalence is determined by the stoichiometric ratios of RNA and capsid protein.

IV. CARGO-CONTAINING CAPSIDS

A. Structures

In this section we consider capsid assembly around RNA or other types of cargo. The structures of numerous virus capsids
assembled around single-stranded nucleic acids have been revealed to atomic resolution by x-ray crystallography and/or cryo-
electron microscopy (cryo-EM) images (e.g.[87, 98, 111, 127, 149, 168, 225, 239, 246, 249, 257–259]). The packaged nucleic
acids are less ordered than their protein containers and hence have been more difficult to characterize. However cryo-EM
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experiments have identified that the nucleotide densities are nonuniform, with a peak near the inner capsid surface and relatively
low densities in the interior[61, 246, 290]. For some viruses striking image reconstructions show that the packaged RNAadopts
the symmetry of its protein capsid (e.g. [225, 246, 249]). While atomistic detail has not been possible in these experiments,
all-atom models have been derived from equilibrium simulations [67, 89].

B. The thermodynamics of core-controlled assembly

In this section we extend the thermodynamic analysis of section II B to include interactions with an attractive core, following
the calculations of Zandi and van der Schoot [281] and Hagan [104]. We consider a dilute solution of capsid protein subunits
with total densityρT, and cores (i.e. polymers or nanoparticles) with densityxT. We define a stoichiometric ratio as the ratio of
available cores to the maximum number of capsids which can beassembled,r = NxT/ρT, with N the number of subunits in a
complete capsid. Subunits can associate to form capsid intermediates in bulk solution or on core surfaces.

Following section II B we minimize the total free energy under the constraints that the total subunit and core concentrations
are fixed:

ρT =

N
∑

n=1

n(ρn + xn)

xT =

N
∑

n=0

xn (21)

with ρn andxn respectively the concentrations of empty capsid intermediates withn subunits or cores complexed withn subunits
(for simplicity we assume here that cores cannot form complexes with more thanN subunits and thatxN gives the concentration
of well-formed capsids assembled around cores). We then arrive at two laws of mass action (compare to Eq. 5)

ρnv0 = (ρ1v0)
n exp[−βGcap

n ]

xnv0 = v0x0 (ρ1v0)
n
exp[−βGcore

n ] (22)

with x0 the concentration of empty cores. HereGcap is the empty capsid free energy (Eq. 2) discussed in section II B. The
quantityGcore

n is the free energy for a core withn subunits which includes the core-subunit interactions. These are the crucial
interactions that drive capsid proteins to assemble aroundthe core, and models for this quantity are discussed next.

As shown in section II B there is a threshold concentrationρ∗ = exp[βGcap
N /(N−1)] below which essentially no empty capsid

assembly occurs (Eq. 10). However, the core-subunit interactions can further stabilize a complete capsid so thatGcore
N < G

cap
N and

core-assisted assembly can occur at lower concentrations.This capability is exploited by many ssRNA viruses, whose capsids
assemble only in the presence of RNA or other polyanions at physiological conditions.

For core-controlled assembly we focus on two experimental observables, the fraction of subunits in capsidsfc and the packag-
ing efficiency,fp, meaning the fraction of cores contained in complete capsids. To simplify the analysis we assume cooperative
association of capsid proteins to cores, meaning that we neglect partially assembled intermediates. A full analysis including
intermediates is performed in Ref. [104]. We first considerρ < ρ∗ so no empty capsid assembly occurs andfc = rfp. The de-
pendence offc andfp on the system parameters can be understood from three asymptotic limits, depending on the stoichiometric
ratior, which were described by Zandi and van der Schoot [281]. We then consider a fourth limit,ρ > ρ∗.

1. r ≪ 1 andρ < ρ∗. For sufficient excess subunit, the free subunit concentration can be treated as approximately constant.
Using Eq. 22 and following the analysis leading to equation Eq. 11 obtains

fc = ≈ r
(ρ/ρ∗∗)

N

1 + (ρ/ρ∗∗)N
(23)

ρ∗∗v0 = exp [βGcore
N /N ] , (24)

where the threshold concentrationρ∗∗ is smaller than that for empty capsidsρ∗ due to the subunit-core interactions.

2. r = 1 andρ < ρ∗. For exactly enough capsid protein to encapsidate every core the concentration of free cores is related
to that of free capsid protein byx0 = ρ1/N and we obtain the same form as for empty capsids

fc ≈

(

ρT

ρ∗

)N

≪ 1 for ρT < ρ∗∗

≈ 1−
ρ∗∗

ρT
for ρT > ρ∗∗ (25)

but withρ∗∗ as in Eq. 24.
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3. r ≫ 1 andρ < ρ∗. For excess core and cooperative subunit-core complexation (since we are neglecting partially covered
cores) we obtain Eq. 25 but with

ρ∗∗ = exp (βGcore
N /N) (NxT)

−1/N (26)

where we have assumedN ≫ 1.

4. ρ > ρ∗. The conditions above apply in the limitρ < ρ∗ where empty capsids cannot assemble. For larger subunit
concentrations empty capsids compete with assembly on cores. Due to the entropy cost of assembling a capsid on a core,
Eq. 22 shows that there is a threshold surface free energy,Gcore

N,0−Gcap
N ≈ −kBT log(ρCa

3) for a stoichiometric amount of
capsid protein and nanoparticles, above which full capsidsare favored over empty capsids and free cores [104]. However,
if nucleation of empty capsids ooccurs with a rate comparable to that on cores, complete or partially assembled empty
capsids can assemble as a kinetic trap.

Zandi and van der Schoot also investigated the effect of stoichiometric ratio on the size of the assembled capsid. They found
that for larger (i.e. excess genome) smaller capsids form, consistent withexperimental observations [232, 264].

C. Single-stranded RNA (ssRNA) encapsidation

As noted in the introduction, most ssRNA capsids assemble around their genome during replication. This process is driven
to a large extent by electrostatic interactions between positive charges on the capsid proteins and negative charges onthe RNA
molecule. For example, the capsid proteins of many negative-stranded RNA viruses bind RNA via a positively-charged cleft
[222]. For many positive-stranded RNA viruses, the capsid proteins bind RNA via a terminal tail rich in basic amino acids,
which extends into the center of the virion and is typically unresolved in crystallographic maps[56, 83, 233, 236, 238, 248].
These peptide tails are commonly referred to as arginine rich motifs (ARMs).

A remarkable set ofin vitro experiments indicates that just the negative charge found on the RNA phosphate groups is
sufficient to drive ssRNA capsid assembly around a cargo. Namely, experiments have been performed in which capsid proteins
assemble into icosahedral capsids around various cargoes including genomic or non-genomic RNA (e.g. [18–20, 43, 114, 115,
121, 142, 149, 264]), synthetic polyelectrolytes [20, 37, 38, 60, 114, 117, 147, 171, 232], charge-functionalized nanoparticles
[68, 97, 122, 163, 164, 241, 251], DNA micelles [151] and nano-emulsions [49]. However, as discussed further below features
specific to biological RNA molecules such as their tertiary structure and sequence-specific interactions likely promote selective
assembly around the viral genome or help direct assembly toward particular morphologies.

Optimal genome length. The importance of nonspecific electrostatic interactions in driving RNA packaging has been pro-
posed as a constraint on the length of viral genome. For instance, Belyi and Muthukumar [27] and Hu and Shklovskii [119]
reported a striking correlation between the total number ofpositive charges in the tails and the length of the genomic RNA.
Interestingly, most ssRNA viruses are overcharged, meaning that the charge on the encapsidated RNA exceeds that of the charge
on the inner surface of the capsid, often by about a factor of two. In support of this proposal, experiments on various viruses
showed that partial deletions of the positively-charged residues in ARMs lead to virions that packaged a reduced amountof viral
RNAs as compared to the wild-type capsid proteins [69, 134, 263]. In further support of this proposal, a number of theoretical
works have investigated the free energy to encapsidate a linear polyelectrolyte as a function of its length. The primaryquantity
of interest has been the thermodynamic optimal charge ratio, or the ratio between the negative charge on the polyelectrolyte and
the positive charge on the capsid surface or peptide tails (ARMs) that minimizes the free energy. It has been proposed that the
observed correlation reflects the functional dependence ofthe optimum charge ratio, thus suggesting a thermodynamic constraint
on the co-evolution of genome length and capsid charge. We summarize the results of these calculations here.

Hu and Shklovskii assumed that RNA wraps around peptide tails and found that the free energy is minimized when the RNA
contour length is approximately equal to the total contour length of peptide tails, resulting in an optimal charge ratioof packaged
nucleotides to capsid charges of2 : 1. Belyi and Muthukumar [27] treated the RNA as a polyelectrolyte and the peptide tails
as oppositely charged brushes and used the ground state dominance approximation to predict an optimal charge ratio of1 : 1.
They noted that if the charge on the RNA and the peptide tails were renormalized according to counterion condensation theory
[176], the predicted ratio of packaged nucleotides to capsid charges would be1.6 : 1. However, it is worth noting that condensed
counterions are released by RNA-peptide association and thus factor into the encapsidation free energy. Our simulations with
explicit ions and polymers with different linear charge densities (unpublished) suggest that the bare charge density should be
used. Calculations that placed the capsid charge entirely at the surface predicted charge ratios of. 1 : 1 [228] and2 : 1 [260].
Siber et al. showed that the optimal charge ratio was less dependent on ionic strength when the capsid charge moved off of
the inner surface, but still found an optimal charge ratio of< 1 : 1. The dependence of the encapsidation free energy on the
length of a linear polyelectrolyte has also been investigated in the limit of no added salt using Monte Carlo simulationson a
model which assumes neither the continuum limit nor spherical symmetry [6]. These calculations also predicted that theoptimal
genome length would correspond to a charge ratio of1 : 1.
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Ting et al. [247] used a self consistent field theory to show that the optimal ratio of packaged charge to capsid charge depends
sensitively on excluded volume and thus varies with many factors including capsid size and charge density on peptide arms.
Their model predicted an optimal charge ratio of less than1 : 1 for all relevant parameters. They noted however that the
cytoplasm contains a significant concentration of negativecharge in the form of large macromolecules which are excluded from
the interior of an assembled capsid. They found that the Donnan potential due to this excluded charge is essential to obtain a
thermodynamic optimum charge ratio which is larger than 1:1, and thus suggested that this effect plays an important rolein
capsid assemblyin vivo. However, recentin vitro competition assays in which different RNAs compete for packaging under
conditions of limiting capsid protein showed that longer RNAs (up to viral genome lengths) were preferentially packaged over
shorter RNAs by CCMV capsid proteins [59]. This result suggests that the genome length is nearly optimal for packaging even in
the absence of a Donnan potential. An interesting and somewhat surprising prediction of the self consistent field theory[247] is
that the encapsidation free energy was essentially the samefor a linear polyelectrolyte and for a polyelectrolyte witha branched
structure reflecting the secondary and tertiary structure of an RNA molecule.

Although the quantitative results of these theoretical calculations vary depending on their assumptions, they agree with exper-
iments that the optimal genome length is an increasing function of the capsid charge. They cannot explain the observation that
polymers with apparent charge ratios as large as 9:1 were encapsidated in Ref. [121]; however, the predictions above arefor
the optimal length and it was not possible to measure the packaging efficiencies in those experiments. Models based on linear
polyelectrolytes also do not capture the sequence dependence of the charge ratios observed in recentin vivo experiments for
mutant BMV capsid proteins [193] (discussed next). This discrepancy suggests that sequence-specific RNA-protein interactions
which have not been accounted for in these calculations playa role in RNA packaging during assembly.

Several sets of experiments indicate sequence-specific roles for the RNA and proteins. Recently, Ni and coworkers [193]
performed an extensive investigation of virions assembledin N. benthamianaplants from BMV proteins with positively-charged
residues added, deleted, or substituted. They found a correlation between the amount of positive charge on the capsid and the
amount of packaged RNA. However, relationships between mutations and the amounts and sequences of packaged RNA were
sensitive to factors other than charge, indicating that that the charge on the capsid is not the sole factor in determining the
amount or types of RNA which are packagedin vivo. In vitro experiments have also shown that the BMV capsid preferentially
encapsidates RNAs containing a tRNA-like structure [57]. In cells, interactions between the capsid protein and this tRNA-like
structure may play a role in packaging specificity by coordinating RNA replication and encapsidation [9–11]. Packagingsignals,
or regions of RNA that have sequence-specific interactions with the capsid protein, are known for some viruses (e.g. HIV
[71, 167, 195]) or MS2 and satellite tobacco necrosis virus (STNV) [35, 41]). As discussed in section III F 2 the MS2 RNA
regulates conformational switching in a sequence-dependent manner [23].

Genome organization. A number of studies have simulated bead-spring models of polyelectrolytes confined within simpli-
fied representations of viral capsids. In some cases the capsid was modeled by a spherical container with different arrangements
of embedded charges [6, 8], while others were based on particular capsid structures. For example, Zhang et al. [282] incorpo-
rated the electrostatic potential derived from the CCMV while the model of Forrey and Muthukumar [86] captured the charge
distribution of the inner surface of the Pariacoto virus crystal structure. These studies showed that a dodecahedral arrangement
of surface charges [8] or basic charges on peptide tails [86]leads the encapsulated polymer to adopt a dodecahedral cagestruc-
ture. A model of capsid assembly dynamics [76] also found that the polymer adopted the symmetry of the overlying capsid
charge. ElSawy et al. [78] showed that a bead-spring polyelectrolyte placed inside an atomic model of MS2 could reproduce
the observed multiple peaks of the radial RNA density distribution [249] and the icosahedral order of the outer layer. Their
simulations suggested that RNA-RNA repulsion and the arrangements of crevices on the inner capsid surface were the dominant
forces directing organization of the outer layer of genome.Several models have used the detailed knowledge of RNA density
[72] and its icosahedral order [39, 72, 221, 239] to suggest RNA-directed assembly pathways.

Modeling assembly around nanoparticles. Hagan [104] and Zandi et al. [231] used self consistent field theories to calculate
the interaction between positive charges on capsid proteintails and carboxyl groups functionalized on the surface of nanoparticles
[51, 53, 63, 97, 122, 241, 251], enabling prediction of time-dependent [104] or equilibrium packaging efficiencies [104, 231].
Siber et al. [231] also considered assembly into different icosahedral morphologies. In Ref. [104] the kinetics of assembly
around corners were also considered by estimating the free energyGcore

n for cores partially covered with intermediates and
extending the rate equation approach described in section III B to describe the kinetics of core-controlled assembly. Both the
kinetic and equilibrium approaches predicted a threshold density of functionalized charge below which no significant assembly
on cores would take place. This result was qualitatively confirmed by subsequent experiments [63]. Siber [231] et al also
predicted that high charge functionalization densities and excess capsid protein would favor pseudo-T=2 capsids, which was
seen experimentally by Daniel et al. [63].

D. Dynamics of assembly around cores

Nanoparticles. As noted in the previous section Hagan [104] used polyelectrolyte theory to calculate the electrostatic driving
force for capsid proteins to adsorb onto nanoparticle surfaces as a function of the nanoparticle surface charge density. This
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FIG. 18. The capsid model from Ref.[76].(A) The model subunit, as viewed from inside the capsid. The grayoverlapping spheres interact via
repulsive potentials [266], complementary capsomer-capsomer attractors (green spheres at the subunit edges) experience attractive interactions
and the capsomer-polymer attractors (blue spheres on the subunit inner surface) experience short-range attractions to polymer segments. Sphere
sizes indicate the interaction length scale.(B) Image of a well-formed capsid assembled around a polymer (shown in red).(C) Visualization
of the polymer density inside the capsid. The polymer density is averaged over a large number of successful assembly trajectories after
completion, for a polymer with lengthNp = 150 segments. Densities are averaged over the threefold symmetry of the capsomer, but not over
the 20-fold symmetry group of the completed capsid. Images reprinted with permission from Phys. Biol.,7, 045003 (2010), Elrad and Hagan,
Encapsulation of a polymer by an icosahedral virus, Copyright (2010) IOP Publishing.

FIG. 19. The capsid model from Ref. [172].(A) The model subunit. All beads experience repulsive excluded-volume interactions. In addition,
pairs of white beads experience short-range attractive interactions and the pink beads have a charge of+e. Electrostatics interactions are
represented by Debye Huckel interactions.(B). The low-energy capsid structure. Images reprinted with permission from J. Chem. Phys.,136,
135101 (2012),Langevin dynamics simulation of polymer-assisted virus-like assembly, Mahalik and Muthukumar, Copyright(2012) American
Institute of Physics.

dependence was used to extend the rate equation approach (section III B) to predict assembly kinetics around attractivecores. The
calculations found a threshold density of functionalized charge, above which capsids efficiently assemble around nanoparticles,
and that light scattering increases rapidly at early times,without the lag phase characteristic of empty capsid assembly. These
results were consistent with experimental measurements.

Polymers. Elrad and Hagan [75] developed a coarse-grained computational model that describes the assembly dynamics of
icosahedral capsids from subunits that interconvert between different conformations (section III F 2). The simulations identified
mechanisms by which subunits form empty capsids with only one morphology, but adaptively assemble into different icosahedral
morphologies around nanoparticle cargoes with varying sizes, as seen in experiments [241]. Adaptive cargo encapsidation
required moderate cargo-subunit interaction strengths; stronger interactions frustrated assembly by stabilizing intermediates
with incommensurate curvature.

Kivenson and Hagan [141] explored capsid assembly around a flexible polymer with a model defined on a cubic lattice using
dynamic Monte Carlo, which allowed simulation of large capsid-like cuboidal shells over long time scales. By simulating
assembly with a wide range of capsid sizes and polymer lengths, the simulations showed that there is an optimal polymer length
which maximizes encapsulation yields at finite observationtimes. The optimal length scaled with the number of attractive sites
on the capsid in the absence of attractive interactions between polymer segments. However, introducing attractive interactions
between polymer segments, which physically could arise from base pairing or multivalent counterions, increased the predicted
optimal length dramatically. A limitation of these simulations was that the Monte Carlo move set did not enable simultaneous
motions of polymer segments and capsid subunits, and thus could not accurately describe the dynamics for parameter setsfor
which cooperative polymer-subunit motions play an important role in assembly.

Elrad and Hagan [76] performed Brownian dynamics simulations of encapsidation of a flexible polymer by a model capsid
with icosahedral symmetry (Fig. 18). The model considered atruncated-pyramidal extended subunit model of the form used
to the assembly of emptyT=1 capsids from trimeric subunits [106, 209–211] (section III C). The polymer was represented by
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FIG. 20. Kinetic phase diagram showing the dominant assembly product as a function of polymer lengthNp and capsomer-polymer interaction
strengthεcp for capsomer-polymer interaction strengthεcc = 4.0kBT and subunit concentrationlog ρT = −7.38. The legend on the right shows
snapshots from simulations that typify each dominant configuration. Figure reprinted with permission from Phys. Biol., 7, 045003 (2010),
Elrad and Hagan,Encapsulation of a polymer by an icosahedral virus, Copyright (2010) IOP Publishing

FIG. 21. Doublet virus-like particles assembled from CCMV capsid proteins around tobacco mosaic virus (TMV) RNA, with 6400 nucleotides
or approximately twice the number of nucleotides packaged in a native CCMV virion [43]. Negative-stain transmission electron microscopy
images are shown and the scale bar is 50 nm. Image provided by C. Knobler and W. Gelbart.

a flexible bead-spring model, with repulsive interactions between segments corresponding to screened electrostatic repulsions,
and short-range attractions to ‘charge sites’ located on one surface of the model subunits, corresponding to screened attractive
electrostatic interactions between opposite charges on the polymer and capsid subunits. Use of the short-range interactions
(which increased computational efficiency) was justified bythe fact that capsid assemblyin vivo or in vitro always occurs at
moderate salt concentrations for which the Debye screeninglength is on the order of 1 nm.

Subsequently Mahalik and Muthukumar [172] simulated the assembly of extended triangular subunits (Fig. 19) around a
linear polyelectrolyte with screened electrostatics modeled by Debye Huckel interactions. The simulations led to predictions
which were qualitatively similar to those of Ref. [76], but the Debye Huckel interactions do allow for a more straightforward
connection to experimental salt concentrations.

Assembly outcomes. Simulations were performed over wide ranges of polymer lengths, subunit concentrations, subunit-
polymer interaction strengths, and subunit-subunit interactions strengths. Refs. [76, 141, 172] found that productive assembly
around the polymer can occur for protein-protein interaction strengths and protein concentrations for which empty capsid assem-
bly does not occur, as observed for many ssRNA viruses. The polymer-protein interactions stabilize protein-protein interactions,
lowering the nucleation barrier and enhancing the thermodynamic favorability of the assembled capsid. Ref. [76] presented the
assembly yields and assembly morphologies at long (but finite) times in a phase diagram. These observables can be experimen-
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FIG. 22. Two mechanisms for assembly around a polymer [76].(A) Strong subunit-subunit interactions and relatively weak subunit-polymer
interactions led to a nucleation and growth mechanism, where first a small partial capsid formed on the polymer followed by sequential addition
of subunits.(B) Weaker subunit-subunit interactions and stronger subunit-polymer interactions led to a disordered assembly mechanism, where
more than 20 subunits (the size of a complete capsid) bound tothe polymer in a disordered arrangement, followed by annealing of multiple
intermediates and finally completion. Figure reprinted with permission from Phys. Biol.,7, 045003 (2010), Elrad and Hagan,Encapsulation
of a polymer by an icosahedral virus, Copyright (2010) IOP Publishing.

FIG. 23. Snapshots from a simulation in Ref. [172], in which assembly proceeded by the disordered assembly mechanism. Images reprinted
with permission from J. Chem. Phys.,136, 135101 (2012),Langevin dynamics simulation of polymer-assisted virus-like assembly, Mahalik
and Muthukumar, Copyright(2012) American Institute of Physics.

tally characterized using EM. As shown in Fig. 20, there is a region of parameter space in which assembly is ‘successful’ meaning
that the predominate assembly product is a well-formed capsid which completely encapsulates the polymer. For strongerthan
optimal subunit-subunit or subunit-polymer interaction strengths the system becomes trapped in metastable disordered states.
Longer than optimal polymer lengths can give rise to closed but defective capsids or partially complete capsids. Polymer lengths
that were significantly larger than optimal gave rise to structures in which multiple nearly complete capsids were connected by
an RNA molecule. Polymers on the order of twice the optimal length gave rise to doublet capsids (Fig. 20 right), while longer
polymers gave rise to higher order multiplet capsids.

Interestingly, structures with similar morphologies wereobserved inin vitro experiments in which CCMV capsid proteins
assembled around RNA molecules with lengths in excess of theviral genome length [43] or conjugated polyelectrolytes [37].
For example, Fig. 21 shows virus-like particles assembled around TMV RNA with 6400 nucleotides (nt), or approximately
twice the number of nucleotides of the native CCMV RNA typically encapsulated within a single virion. These images can
be compared to the right-most image labeled ‘uncontained’ in Fig. 20. The fact that the capsids were connected by RNA was
confirmed by showing that the multiplets separated upon introduction of RNAase. RNA lengths of 9000 or 12000 nt respectively
led to triplet and quadruplet capsids [43].

Assembly mechanisms. The simulations in Ref. [76] also demonstrated that there are two classes of assembly mechanisms
that can occur around a central core (i.e. RNA or a polymer), each of which leads to a different assembly kinetics (Fig. 22). One
closely resembles the nucleation and growth mechanism by which empty capsids assemble, except that the polymer plays an
active role by stabilizing protein-protein interactions and by enhancing the flux of proteins to the assembling capsid (Fig. 22A).
A small partial capsid first nucleates on the polymer, followed by a growth phase in which one or a few subunits sequentially
and reversibly add to the partial capsid. Polymer encapsulation proceeds in concert with capsid assembly. In the alternative
mechanism, first proposed by McPherson [181], subunits adsorb onto the polymer en masse in a disordered fashion and then
cooperatively rearrange to form an ordered capsid (Fig. 22B). In many cases excess subunits adsorb onto the polymer, so that
subunit dissociation is required for assembly to complete.A similar mechanism was observed by Mahalik and Muthukamar
[172] (Fig. 23).

The simulation results predict that the assembly mechanismcan be tuned experimentally by changing charge densities, solu-
tion conditions, or assembly protocols. The nucleation andgrowth mechanism is favored when protein-polymer association is
weak or slow (e.g. at high salt concentration) and protein-protein interactions are strong. The disordered assembly mechanism
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arises when protein-polymer association is strong and rapid, so that complete coverage of the polymer occurs before signifi-
cant rearrangements of already adsorbed proteins can lead to assembly. In support of this idea, thein vitro kinetics for CCMV
described in Ref. [127] appear consistent with the nucleation and growth mechanism, whereas the assembly protocol usedby
Cadena-Nava and coworkers [43] favored the disordered assembly mechanism.

Assembly kinetics. The two mechanisms described above give rise to very different dependencies of assembly kinetics on
control parameters such as protein concentration or interaction strengths. In the case of the nucleation and growth mechanism, the
assembly time can be described in terms of the timescale for each phase,τnuc andτelongrespectively (Eq. 15) as for empty capsids.
The assembly kinetics depend on the stoichiometric ratio oftotal polymer concentrationρpT to capsid protein concentrationρT,
r = NρpT/ρT, with different relationships in the limits of excess protein, excess polymer, or stoichiometric amounts of protein
in polymer.

For brevity we analyze only one case here, the case of excess capsid protein,r ≫ 1. The other stoichiometric limits can be
understood via similar arguments. In this case the capsid protein concentration remains nearly constant during the course of
assembly. Recall (section III A 1, (17)) that concentrations of partial capsids which are smaller than the critical nucleus sizennuc

can be treated as in quasi-equilibrium, and the nucleation rate is given by the rate at which subunits associate with the largest
pre-nucleus, which hasnnuc − 1 subunits. In the limitr ≫ 1 the concentration of pre-nuclei adsorbed on polymers can be
expressed as

ρnnuc−1
∼= ρpNp(ρ1v0)

nnuc−1 exp(−βGnnuc−1) (27)

with Gnnuc−1 the interaction energy for thennuc− 1-sized complex, including protein-polymer interactions.The latter were
found to be crucial in both Ref. [76] and Ref. [172], as they effectively enhance the protein concentration in the vicinity of the
polymer and thus lower the nucleation barrier. The factorρpNp, with ρp the concentration of polymers which are not covered
by capsids andNp the polymer length accounts for the fact that the concentration of pre-nuclei adsorbed on polymers must
be proportional to the number of available adsorption sitesand hence is proportional to the total concentration of segments on
uncovered polymers. The nucleation rate is then given by therate of one additional subunit adding to the pre-nucleus complex,
fρ1 wheref is a rate constant, to yield

−
dρp

dt
= ρpτnuc

τnuc
∼= fNp(v0ρ1)

nnuc exp(−βGnnuc−1). (28)

This equation is first order in polymer concentration, and the timescale for depleting polymers is given byτnuc. The inverse
dependence ofτnuc on polymer length was observed in Ref. [141].

As in the case of empty capsids, there is a second timescaleτelong describing the time required for a nucleated partial capsid
to grow to completion. Hu and Shklovskii [120] proposed thatthe polymer could substantially decrease the elongation time
in comparison to the case of empty capsid assembly because the polymer acts as an ‘antenna’ which increases the collisional
cross-section. In analogy to transcription factors searching for their binding sites on DNA [30, 118] adsorbed subunits can
undergo one-dimensional diffusion, or sliding, on the polymer. It was predicted that the elongation time would thus decrease
with increasing polymer length (for fixed capsid size) [120]as

τelong ∼ N−1/2
p ρ−1

1 . (29)

Here we have assumed that subunits add independently duringelongation and thusτelong is inversely proportional to the subunit
concentration according to the arguments in section III A 1.The simulations in Refs. [76] found that the polymer did significantly
increase assembly rates (Fig. 24A), through a combination of subunit sliding and cooperative subunit-polymer motions, where
the polymer drags associated subunits to the partial capsidlike the action of a fly-fishing line with a hooked fish (or the Cookie
Monster bringing cookies to his mouth). Enhanced elongation rates were also observed by Mahalik and Muthukumar [172].
However, neither study was able to consider a wide enough range of polymer lengths to investigate the scaling predicted by
Eq. 29.

Combining Eqs. 28 and 29 gives the total assembly timeτ = τnuc+ τelong as

τ ∼ N−1
p ρ−nnuc

1 exp(βGnnuc−1) +N−1/2
p ρ−1

1 . (30)

Notice that the nucleation and elongation times have very different dependencies on the free subunit concentrationρ1. Therefore,
the concentration dependence of the overall assembly timeτ depends on which of these processes is rate limiting. As shown in
Fig. 24A, median assembly times measured by simulation showa crossover from nucleation limited behavior at low concentra-
tions to elongation limited behavior at large concentrations. As anticipated, the elongation time scales asτelong ∼ ρ−1

1 whereas
the nucleation time scales with a larger, concentration dependent power (see section III A). Notice that the elongation-limited
regime observed at high subunit concentrations would not occur for empty capsid assembly, where elongation limiting behavior
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FIG. 24. Assembly times depend on subunit concentration andpolymer length in simulations of assembly around a polymer.(A) The median
overall assembly timeτ (N symbol), nucleation timeτnuc (2 symbol), and elongation timeτelong (+ symbol) are shown as a function of subunit
density for the model in Fig. 18. Simulations at the lowest concentration used forward flux sampling [4, 5] to overcome thelarge nucleation
barrier.(B) The median elongation time is shown as a function of polymer length for several values of the polymer-subunit interaction strength,
εcp. The plot in (B) is reprinted with permission from Phys. Biol., 7, 045003 (2010), Elrad and Hagan,Encapsulation of a polymer by an
icosahedral virus, Copyright (2010) IOP Publishing.

would lead to the free subunit starvation kinetic trap (section III A 1, Eq. (19)). That trap is avoided when capsid protein is in
excess over polymers. However, the trap can occur for stoichiometric amounts of polymer and protein or excess polymer.

The simulations in Ref. [172] find trends which are qualitatively similar to those found in Ref. [75] although the kinetics are
analyzed in Ref. [172] according to the framework of polymercrystallization kinetics theory. In Ref. [172] parallel tempering
was used to calculate the free energy profile as a function of partial capsid size, which showed that the presence of the polymer
dramatically reduced the nucleation barrier. The polymer also reduced elongation times.

V. OUTLOOK

In this review we have tried to present a summary of the theoretical and computational methodologies that have been used to
model capsid assembly. We have presented examples in which modeling led to important insights which either explained existing
experiments or suggested new ones. We have also tried to identify limitations in computational power, model construction, or
available experimental technology which hinder the connection between theory and experiment. Clearly, as the powers of
computers and the computational techniques performed on them increase, it will become possible to model the assembly process
with increasing resolution and to account for features of capsid proteins and other virion components not accounted forby
current models.

Advances in experimental technologies may provide the mostimportant opportunities for progress in modeling. Recent
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experiments that visualize or otherwise monitor the formation of individual viruses (e.g. [24, 108, 132, 285]) can provide
information about distributions of capsid growth times andthe rates at which individual subunits associate to or dissociate from
partial capsids of different sizes. This information wouldprovide additional constraints with which to refine or extend current
models. At the same time, the structures of most intermediates on assembly pathways remain challenging to characterize, and
thus models which can predict pathways provide an importantcomplement to these new methods.

The modeling efforts covered in this review have primarily focused onin vitro experimental systems for the obvious reasons
of reduced complexity and increased control over system parameters offered by the test tube. Looking ahead, it will be important
for models to include effects relevant to the environment ofhost organisms, such as molecular crowding, compartmentalization,
and coupling between translation and assembly. However, quantitative data fromin vivo experiments is essential for building
such models, estimating their parameters, and for testing model predictions. Ultimately, by combining complementaryin vivo
experiments, controlledin vitro experiments in which key parameters can be tuned, and modeling that can elucidate individual
assembly pathways and the effect of individual parameters,we can identify the factors that confer robustness or sensitivity to the
process of virus assembly.
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