
Chapter 9
Physical Integrity

Christian Riess

Physics-based methods anchor the forensic analysis in the physical laws of image
and video formation. The analysis is typically based on simplifying assumptions to
make the forensic analysis tractable. In scenes that satisfy such assumptions, different
types of forensic analysis can be performed. The two most widely used applications
are the detection of content repurposing and content splicing. Physics-basedmethods
expose such cases with assumptions about the interaction of light and objects, and
about the geometric mapping of light and objects onto the image sensor.

In this chapter, we review the major lines of research on physics-based methods.
The approaches are categorized as geometric and photometric, and combinations of
both. We also discuss the strengths and limitations of these methods, including an
interesting unique property: most physics-based methods are quite robust to low-
quality material, and can even be applied to analog photographs. The chapter closes
with an outlook and with links to related forensic techniques such as the analysis of
physiological signals.

9.1 Introduction

Consider a story that is on the internet. Let us also assume that an important part of
that story is a picture or video to document the story. If this story goes viral, it becomes
potentially relevant also to classical journalists. Relevance may either inherently be
given, because the story reports a controversial event of public interest, or relevance
may emerge from the sole fact that a significant number of people are discussing a
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particular topic. Additionally, quality journalism also requires confidence in the truth
value that is associated with a news story. Hence, classical journalistic work involves
the work of eye witnesses and other trusted sources of documentation. However,
stories that emerge from internet sources are oftentimes considerably more difficult
to verify for a number of reasons. One reason may be because the origin of the
story is difficult to determine. Another reason may be that reports are difficult to
verify because involved locations and people are inaccessible, as it is oftentimes
the case for reports from civil war zones. In these cases, a new specialization of
journalistic research formed in the past years, namely journalistic fact checking. The
techniques of fact checkers will be introduced in Sect. 9.1.1. We will note that the
class of physics-based methods in multimedia forensics is closely related to these
techniques. More precisely, physics-based approaches can be seen as computational
support tools that smoothly integrate into the journalistic fact checking toolbox, as
highlighted in Sect. 9.1.2. We close this section with an outline for the remaining
chapter in Sect. 9.1.3.

9.1.1 Journalistic Fact Checking

Classical journalistic research about a potential news story aims to answer the so-
called “Five W” questions who, what, why, when, and where about an event, i.e.,
who participated in the event, what happened, why, and at what time and place it
happened. The answers to these questions are typically derived and verified from
contextual information, witnesses, and supporting documents. Investigative journal-
ists foster a broad network of contacts and sources to verify such events. However,
for stories that emerge on the internet, this classical approach can be of limited effec-
tivity, particularly if the sources are anonymized or covered by social media filters.
Journalistic fact checkers still heavily rely on classical techniques, and, for exam-
ple, investigate the surroundings in social networks to learn about possible political
alignments and actors from where a message may have originated. For images or
videos, context is also helpful.

One common issue with such multimedia content is repurposing. This means that
the content itself is authentic, but it has been acquired at a different time or a different
place than what is claimed in the associated story. To find cases of repurposing, the
first step is a reverse image search as it is possible with specialized search engines
like tineye.com or images.google.com.

Furthermore, a number of open-source intelligence tools are available for a further
in-depth verification of the image content. Depending on the shown scene and the
context of the news story, photogrammetric methods allow to validate time and place
from the position of the sun and known or estimated shadow lengths of buildings,
vehicles, or other known objects. Any landmarks in the scene, written text, or signs
can be further used to constrain the possible location of acquisition, combined with,
e.g., regionally annotated satellite maps. Another type of open-source information
is monitoring tools for flights and shipping lines. Such investigations require a high
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manual work effort to collect and organize different pieces of evidence and to assess
their individual credibility. In journalistic practice, however, these approaches are
currently the gold standard to verify multimedia content from sources with very
limited contextual information. Unfortunately, this manual effort also implies that an
investigation may take several days or weeks. While it would oftentimes be desirable
to quell wrong viral stories early on, this is in many cases not possible with current
investigative tools and techniques.

9.1.2 Physics-Based Methods in Multimedia Forensics

In multimedia forensics, the group of physics-based methods follows the same spirit
as journalistic fact checking. Like the journalistic methods, they operate on the con-
tent of the scene. They also use properties of known objects, and some amount of
outside knowledge, such as the presence of a single dominant light source. However,
there are two main differences. First, physics-based methods in multimedia foren-
sics operate almost exclusively on the scene content. They use much less contextual
knowledge, since this contextual information is strongly dependent on the actual
case, which makes it difficult to address in general-purpose algorithms. Second,
journalistic methods focus on validating time, place, and actors, while physics-based
methods in multimedia forensics aim to verify that the image is authentic, i.e., that
the scene content is consistent with the laws of physics.

The second difference makes physics-based forensic algorithms complementary
to journalistic methods. They can add specific evidence whether an image is a com-
posite from multiple sources. For example, if an image shows two persons on a free
field who are only illuminated by the sun, then one can expect that both people are
illuminated from the same direction. More subtle cues can be derived from the laws
of perspective projection. This applies to all common acquisition devices, since it is
the foundation of imaging with a pinhole camera. The way how light is geometri-
cally mapped onto the sensor is tied to the camera and to the location of objects in
the scene. In several cases, the parameters for this mapping can be calculated from
specific objects. Two objects in an image with inconsistent parameters can indicate
an image composition. Similarly, it is possible to compare the color of incident light
on different objects, or the color of ambient light in shadow areas.

To achieve this type of analysis, physics-based algorithms use methods from
related research fields, most notably from computer vision and photometry. Typi-
cally, the analysis analytically solves an assumed physical model for a quantity of
interest. This has several important consequences, which distinguish physics-based
approaches from statistical approaches in multimedia forensics. First, physics-based
methods typically require an analyst to validate the model assumptions, and to per-
form a limited amount of annotations in the scene to access the known variables. In
contrast, statistical approaches can in most cases work fully automatically, and are
hencemuch better suitable for batch processing. Second, the applied physical models
and analysis methods can be explicitly checked for their approximation error. This
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makes physics-based methods inherently explainable, which is an excellent property
for defending a decision based on a physics-based analysis. The majority of physics-
based approaches do not use advanced machine learning methods, since this would
make the explainability of the results much more complicated. Third, physics-based
algorithms require specific scene constellations in order to be applicable. For exam-
ple, an analysis that assumes that the sun is the only light source in the scene is not
applicable to indoor photographs or night time pictures. Conversely, the focus on
scene content in conjunction with manual annotations by analysts makes physics-
based methods by design extremely robust to the quality or processing history of an
image. This is a clear benefit over statistical forensic algorithms, since their perfor-
mance quickly deteriorates on images of reduced quality or complex post-processing.
Some physics-based methods can even be applied to printouts, which is also not pos-
sible for statistical methods.

With these three properties, physics-based forensic algorithms can be seen as
complementary to statistical approaches. Their applicability is limited to specific
scenes and manual interactions, but they are inherently explainable and very robust
to the processing history of an image.

Closely related to physics-based methods are behavioral cues of persons and
physiological features as discussed in Chap. 11 of this book. These methods are not
physics-based in the strict sense, as they do not use physical models. However, these
methods share with physics-based methods the property that they operate on the
scene content, and offer as such in many cases also resilience to various processing
histories.

9.1.3 Outline of This Chapter

A defining property of physics-based methods is the underlying analytic models and
their assumptions. The most widely used models will be introduced in Sect. 9.2. The
models are divided into two parts: geometric and optical models are introduced in
Sect. 9.2.1, and photometric and reflectance models are introduced in Sect. 9.2.2.
Applications of these models in forensic algorithms are presented in Sect. 9.3. This
part is subdivided into geometric methods, photometric methods, and combinations
thereof. This chapter concludes with a discussion on the strength and weaknesses of
physics-based methods and an outlook on emerging challenges in Sect. 9.4.

9.2 Physics-Based Models for Forensic Analysis

Consider a photograph of a building, for example, the Hagia Sophia in Fig. 9.1. The
way how this physical object is converted to a digital image is called image formation.
Three aspects of the image formation are particularly relevant for physics-based
algorithms. These three aspects are illustrated below.

http://dx.doi.org/10.1007/978-981-16-7621-5_11
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Fig. 9.1 Example photograph “Turkey-3019—Hagia Sophia” (full picture credits at the end of
chapter)

First, landmark points like the tips of the towers are projected onto the camera.
For all conventional cameras that operate with a lens, the laws of perspective projec-
tion determine the locations to which these landmarks are projected onto the sensor.
Second, the dome of the building is bright where the sun is reflected into the cam-
era, and darker at other locations. Brightness and color variations across pixels are
represented with photometric models. Third, the vivid colors and, overall, the final
representation of the image are obtained from the several camera-internal processing
functions, which computationally perform linear and non-linear operations on the
image.

The first two components of the image formation are typically used for a physics-
based analysis. We introduce the foundation for the analysis of geometric properties
of the scene in Sect. 9.2.1, andwe introduce foundations for the analysis of reflectance
properties of the scene in Sect. 9.2.2.

9.2.1 Geometry and Optics

The use of geometric laws in image analysis is a classical topic from the field of
computer vision. Geometric algorithms typically examine the relation between the
location of 3-D points in the scene and their 2-D projection onto the image. In
computer vision, the goal is usually to infer a consistent 3-D structure from one or
more 2-D images. One example is the stereo vision to calculate depth maps for an
object or scene from two laterally shifted input images. In multimedia forensics, the
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Fig. 9.2 The mapping between world- and camera coordinates is performed with the extrinsic
camera parameters (left). The mapping from the 3-D scene onto the 2-D image plane is performed
with the intrinsic camera parameters (right)

underlying assumption of a geometric analysis is that the geometric consistency of
the scene is violated by an inserted object or by certain types of object editing.

For brevity of notation, let us denote a point in the image I at coordinate (y, x) as
x = I (y, x). This point corresponds to a 3-D point in the world at the time when the
image was taken. In the computer vision literature, this point is typically denoted as
X, but here it is denoted as x̃ to avoid notational confusion with matrices. Vectors that
are used in projective geometry are typically written in homogeneous coordinates.
This also allows to conveniently express points at infinity. Homogeneous vectors
have one extra dimension with an entry zh , such that the usual Cartesian coordinates
are obtained by dividing each other entry by zh . Assume that we convert Cartesian
coordinates to homogeneous coordinates, and choose zh = 1. Then, the remaining
vector elements xi are identical to their corresponding Cartesian coordinates, since
xi/1 = xi .

When taking a picture, the camera maps the 3-D point x̃ from the 3-D world onto
the 2-D image point x. Mathematically, this is a perspective projection, which can
be very generally expressed as

x = K[R|t]x̃ , (9.1)

where x and x̃ are written in homogeneous coordinates. This projection consists of
two matrices: the matrix [R|t] ∈ R

3×4 contains the so-called extrinsic parameters. It
transforms the point x̃ from an arbitrary world coordinate system to the 3-D coordi-
nates of the camera. Thematrix K ∈ R

3×3 contains the so-called intrinsic parameters.
It maps these 3-D coordinates onto the 2-D image plane of the camera.

Bothmapping steps are illustrated inFig. 9.2. Themapping of theworld coordinate
system to the camera coordinate system via the extrinsic camera parameters is shown
on the left. The mapping of the 3-D scene onto the 2-D image plane is shown on the
right.

Both matrices have a special form. The matrix of extrinsic parameters [R|t] is a
3 × 4 matrix. It consists of a 3 × 3 rotation matrix in the first three columns and a
3 × 1 translation vector in the fourth column. The matrix of intrinsic parameters K
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is an upper triangular 3 × 3 matrix

K =
⎛
⎝

fx s cx
0 fy cy
0 0 1

⎞
⎠ , (9.2)

where fx and fy are the focal length in pixels along x- and y-direction, (cx , cy) is
the camera principal point, and s denotes pixel skewness. The camera principal point
(oftentimes also called camera center) is particularly important for forensic applica-
tions, as it marks the center of projection. The focal length is also of importance, as it
changes the size of the projection cone fromworld coordinates to image coordinates.
This is illustrated in the right part of Fig. 9.2 with two example focal lengths: the
smaller focal length f1 maps the whole person onto the image plane, whereas the
larger focal length f2 only maps the torso around the center of projection (green)
onto the image plane.

Forensic algorithms that build on top of these equations typically do not use the
full projection model. If only a single image is available, and no further external
knowledge on the scene geometry, then the world coordinate system can be aligned
with the camera coordinate system. In this case, the x- and y-axes of the world
coordinate system correspond to the x- and y-axes of the camera coordinate system,
and the z-axis points with the camera direction into the scene. In this case, the matrix
[R|t] can be omitted. Additionally, it is a common assumption to assume that the
pixels are square, the lens is sufficiently homogeneous, and that the camera skew is
negligible. These assumptions simplify the projection model to only three unknown
intrinsic parameters, namely

x =
⎛
⎝

f 0 cx
0 f cy
0 0 1

⎞
⎠ x̃ . (9.3)

These parameters are the focal length f and the center of projection (cx , cy), which
are used in several forensic algorithms.

One interesting property of the perspective projection is the so-called vanishing
points: in the projected image, lines that are parallel in the 3-D world converge to
a vanishing point on the image. Vanishing points are not necessarily visible within
the shown scene but can also be outside of the scene. For example, a 3-D building
typically consists of parallel lines in three mutually orthogonal directions. In this
special case, the three vanishing points span an orthogonal coordinate system with
the camera principal point at the center.

One standard operation in projective geometry is homography. It maps points
from one plane onto another. One example application is shown in Fig. 9.3. On the
left, a perspectively distorted package of printer paper is shown. The paper is in A4
format, and has hence a known ratio between height and width. After annotation
of the corner points (red squares in the left picture), the package can be rectified to
obtain a virtual frontal view (right picture). In forensic applications, we usually use
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Fig. 9.3 Example homography. Left: rectification of an object with known aspect ratio (the A4
paper) using four annotated corners (red dots). Right: rectified object after calculation of the homog-
raphy from the distorted paper plane onto the world coordinate plane

a mapping from a plane in the 3-D scene onto the camera image plane or vice versa
as presented in Sect. 9.3.1. For this reason, we review the homography calculation
in the following paragraphs in greater detail.

All points on a plane lie on a 2-D manifold. Hence, the mapping of a 2-D plane
onto another 2-D plane is actually a transform of 2-D points onto 2-D points. We
denote by x̂ a point on a plane in homogeneous 2-D world coordinates, and a point
in homogeneous 2-D image coordinates as x. Then, the homography is performed
by multiplication with a 3 × 3 projection matrix H,

x = Hx̂ . (9.4)

Here, the equality sign holds only up to the scale of the projection matrix. This scale
ambiguity does not affect the equation, but it implies that the homography matrix
H has only 8 degrees of freedom instead of 9. Hence, to estimate the homography
matrix, a total of 8 constraints are required. These constraints are obtained from
point correspondences. A point correspondence is a pair of two matching points,
where one point lies on one plane and the second point on the other plane, and both
points mark the same location on the object. The x-coordinates and the y-coordinates
of a correspondence, each contribute one constraint, such that a total of four point
correspondences suffices to estimate the homography matrix.

The actual estimation is performed by solving Eq.9.4 for the elements h =
(h11, . . . , h33)T ofH. This estimation is known as Direct Linear Transformation, and
can be found in computer vision textbooks, e.g., by Hartley and Zisserman (2013,
Chap. 4.1). The solution has the form

Ah = 0 , (9.5)

where A is a 2 · N × 9 matrix. Each of the N available point correspondences con-
tributes two rows to A of the form
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Fig. 9.4 Distortions and aberrations from the camera optics. From left to right: image of a rectangu-
lar grid, and its image under barrel distortion and pincushion distortion, axial chromatic aberration
and lateral chromatic aberration

a2k = (−x̂1,−ŷ1,−1, 0, 0, 0, x2 x̂1, x2 x̂2, x2) (9.6)

and
a2k+1 = (0, 0, 0,−x̂1,−ŷ1,−1, y2 x̂1, y2 x̂2, y2) . (9.7)

Equation9.5 can be solved via singular value decomposition (SVD). After the fac-
torization into A = U�V T, the unit singular vector that corresponds to the smallest
singular value is the solution for h.

The homography matrix implicitly contains the intrinsic and extrinsic camera
parameters. More specifically, the RQ-decomposition factorizes a matrix into a prod-
uct of an upper triangular matrix and an orthogonal matrix (Hartley and Zisserman
2013, Appendix 4.1). Applied to the 3 × 3 matrix H, the 3 × 3 upper triangular
matrix corresponds then to the intrinsic camera parameter matrixK. The orthogonal
matrix corresponds to a 3 × 3 matrix [r1r2t], where the missing third rotation vector
of the extrinsic parameters is calculated as the cross-product r3 = r1 × r2.

The equations above implicitly assume a perfect mapping from points in the scene
to pixels in the image. However, in reality, the camera lens is not perfect, which can
slightly alter the pixel representation. We briefly state notable deviations from a per-
fect mapping without going further into detail. Figure9.4 illustrates these deviations.
The three grids on the left illustrate geometric lens distortions,which change themap-
ping of lines from the scene onto the image. Probably, the most well-known types are
barrel distortion and pincushion distortion. Both types of distortions either stretch or
shrink the projection radially around a center point. Straight lines appear then either
stretched away from the center (barrel distortion) or contracted toward the center
(pincushion distortion). While lens distortions affect the mapping of macroscopic
scene elements, another form of lens imperfection is chromatic aberration, which is
illustrated on the right of Fig. 9.4. Here, the mapping of a world point between the
lens and image plane is shown. However, different wavelengths (and hence colors)
are not mapped onto the same location on the sensor. The first illustration shows
axial chromatic aberration, where individual color channels focus at different dis-
tances. In the picture, only the green color channel converges at the image plane and
is in focus; the other two color channels are slightly defocused. The second illus-
tration shows lateral chromatic aberration, which displaces different wavelengths.
In extreme cases, this effect can also be seen when zooming into a high-resolution
photograph as a slight color seam at object boundaries that are far from the image
center.
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9.2.2 Photometry and Reflectance

The use of photometric and reflectance models in image analysis is also a classical
topic from the field of computer vision. These models operate on brightness or
color distributions of pixels. If a pixel records the reflectance from the surface of a
solid object, its brightness and color are a function of the object material, and the
relative orientation of the surface patch, the light sources, and the camera in the
scene. In computer vision, classical applications are, for example, intrinsic image
decomposition for factorizing an object into geometry and material color (called
albedo), photometric stereo and shape from shading for reconstructing the geometry
of an object from the brightness distribution of its pixels, and color constancy for
obtaining a canonical color representation that is independent of the color of the
illumination. In multimedia forensics, the underlying assumption is that the light
source and the camera induce global consistency constraints that are violated when
an object is inserted or otherwise edited.

The color and brightness of a single pixel I (y, x) are oftentimes modeled as
irradiance of light that is reflected from a surface patch onto the camera lens. To this
end, the surface patch itself must be illuminated by one or more light sources. Each
light source is assumed to emit photons with a particular energy distribution, which
is the spectrum of the light source. In human vision, the visible spectrum of a light
source is perceived as the color of the light. The surface patch may reflect this light
as diffuse or specular reflectance, or a combination of both.

Diffuse reflectance, also called Lambertian reflectance, is by far the most com-
monly assumed model. The light-object interaction is illustrated in the left part of
Fig. 9.5. Here, photons entering the object surface are scattered within the object,
and then emitted in a random direction. Photons are much more likely to enter an
object when they perpendicularly hit the surface than when they hit at a flatter angle.
This is mathematically expressed as a cosine between the angle of incidence and the
surface normal. The scattering within the object changes the spectrum toward the
albedo of the object, such that the spectrum after leaving the object corresponds to
the object color given the color of the light source. Since the photons are emitted in
random directions, the perceived brightness is identical from all viewing directions.

Specular reflectance occurs when photons do not enter the object, but instead are
reflected at the surface. The light-object interaction is illustrated in the right part

Fig. 9.5 Light-object interaction for diffuse (Lambertian) and specular reflectance
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of Fig. 9.5. Specular reflectance has two additional properties. First, the spectrum
of the light is barely affected by this minimal interaction with the surface. Second,
specular reflectance is not scattered in all directions, but only in a very narrow angle
of exitance that is opposite to the angle of incidence. This can be best observed on
mirrors, which exhibit almost perfect specular reflectance.

The photometric formation of a pixel can be described by a physical model. Let
i = I (y, x) be the usual RGB color representation at pixel I (y, x). We assume that
this pixel shows an opaque surface object. Then, the irradiance of that pixel into the
camera is quite generally described as

i(θ e, ν) = fcam

⎛
⎝

∫

θ i

∫

λ

r(θ i, θ e, ν, λ) · e(θ i, λ) · crgb(λ) d θ i d λ

⎞
⎠ . (9.8)

Here, θ i and θ e denote the 3-D angles under which a ray of light falls onto the surface
and exits the surface, λ denotes the wavelength of light, ν is the normal vector of
the surface point, e(θ i, λ) denotes the amount of light coming from angle θ i with
wavelength λ, r(θ i, θ e, ν, λ) is the reflectance function indicating the fraction of
light that is reflected in direction θ e after it arrived with wavelength λ from angle
θ i, and crgb(λ) models the camera’s color sensitivity in the three RGB channels to
wavelength λ. The inner expression integrates over all angles of incidence and all
wavelengths tomodel all light that potentially leaves this surface patch in the direction
of the camera. The function fcam captures all further processing in the camera. For
example, consumer cameras always apply a non-linear scaling called gamma factor
to each individual color channel to make the colors appear more vivid. Theoretically,
fcam could also include additional processing that involves multiple pixels, such as
demosaicking, white balancing, and lens distortion correction, although this is of
minor concern for the algorithms in this chapter.

The individual terms of Eq.9.8 are illustrated in Fig. 9.6. Rays of light are emitted
by the light source and arrive at a surface with term e(θ i, λ). Reflections from the
surface with function r(θ i, θ e, ν, λ) are filtered for their colors on the camera sensor
with crgb, and further processed in the camera with fcam.

For algorithm development, Eq. 9.8 is in most cases too detailed to be useful.
Hence, most components are typically neutralized by additional assumptions. For
example, algorithms that focus on geometric arguments, such as the analysis of
lighting environments, typically assume to operate on a grayscale image (or just a
single-color channel), and hence remove all influences from the wavelength λ and
the color sensitivity crgb from the model. Conversely, algorithms that focus on color
typically ignore the integral over θ i and all other influences of θ i and θ e, and also
assume a greatly simplified color sensitivity function crgb. Both types of algorithms
oftentimes assume that the camera response function fcam is linear. In this case, it
is particularly important to invert the gamma factor as a pre-processing step when
analyzing pictures from consumer cameras. The exact inversion formula depends on
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Fig. 9.6 Photometric image formation. Light sources emit light rays, which arrive as e(θ i, λ) with
wavelength λ at an angle of incidence θ i on a surface. The surface reflectance r(θ i, θe, ν, λ)models
the reflection. Several of these rays may mix and eventually reach the camera sensor with color
filters crgb. Further in-camera processing is denoted by fcam

the color space. For the widely used sRGB color space, the inversion formula for a
single RGB-color channel isRGB of a pixel is

ilinearRGB =
{

25isRGB
323 if isRGB < 0.04045( 200isRGB+11

211

) 12
5 otherwise

(9.9)

where we assume that the intensities are in a range from 0 to 1.
The reflectance r(θ i, θ e, λ) is oftentimes assumed to be purely diffuse, i.e.,without

any specular highlights. This reflectance model is called Lambertian reflectance. In
this simple model, the angle of exitance θ e is ignored. The amount of light that is
reflected from an object only depends on the angle of incidence θ i and the surface
normal ν. More specifically, the amount of reflected light is the cosine between the
angle of incidence and the surface normal ν of the object at that point. The full
reflectance function also encodes the color of the object, written here as sd(λ), which
yields a product of the cosine due to the ray geometry and the color,

rLambertian(θ i, ν, λ) = cos(θ i, ν)sd(λ) . (9.10)

In many use cases of this equation, it is common to pull sd(λ) out of the equation
(or to set it to unity, thereby ignoring the impact of color) and to only consider the
geometric term cos(θ i, ν).

The dichromatic reflectance model is a linear combination of purely diffuse and
specular reflectance, i.e.,

rdichromatic(θ i, θ e, ν, λ) = cos(θ i, ν)sd(λ) + ws(θ i, ν, θ e)ss(λ) . (9.11)

Here, the purely diffuse term is identical to the Lambertian reflectance Eq.9.10. The
specular term again decomposes into a geometric part ws and a color part ss . Both
are to my knowledge not explicitly used in forensics, and can hence be superficially
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treated. However, the geometric partws essentially contains the mirror equation, i.e.,
the angle of incidence θ i and the angle of exitance θ e have to be mirrored around
the surface normal. The object color ss is typically set to unity with an additional
assumption, which is called the neutral interface reflectance function. This has the
effect that the color of specular highlights is equal to the color of the light sourcewhen
inserting the dichromatic reflectance function rdichromatic into the full photometric
model in Eq.9.8.

9.3 Algorithms for Physics-Based Forensic Analysis

This section reviews several forensic approaches that exploit the introduced physical
models. We introduce in Sect. 9.3.1 geometric methods that directly operate on the
physical models from Sect. 9.2.1. We introduce in Sect. 9.3.2 photometric methods
that exploit the physicalmodels fromSect. 9.2.2. Then,wepresent inSect. 9.3.3meth-
ods that slightly relax assumptions from both geometric and photometric approaches.

9.3.1 Principal Points and Homographies

We start with a method that extracts relatively strong constraints from the scene.
Consider a picture that contains written text, for example, signs with political mes-
sages during a rally. If a picture of that sign is not taken exactly frontally, but at an
angle, then the letters are distorted according to the laws of perspective projection.
Conotter et al. proposed a direct application of homographies to validate a proper
perspective mapping of the text (Conotter et al. 2010): An attacker who aims to
manipulate the text on the sign must also distort the text. However, if the attacker fits
the text only in a way that is visually plausible, the laws of perspective projection
are still likely to be violated.

To calculate the homography, it is necessary to obtain a minimum of four point
correspondences between the image coordinates and a reference picture in world
coordinates. However, if only a single picture is available, there is no outside ref-
erence for the point correspondences. Alternatively, if the text is printed with a
commonly used font, the reference can be synthetically created by rendering the
text in that font. From this reference and the text in the image are SIFT keypoints
extracted to obtain point correspondences for homography calculation. The matrix
A from Eq.9.5 is composed with at least four corresponding keypoints points and
solved. To avoid degenerate solutions, the corresponding points must be selected
such that there are always at least two corresponding points that do not lie on a line
with other corresponding points. The homography matrix H can then be used to
perform the inverse homography, i.e., from image coordinates to world coordinates,
and to calculate the root mean square error (RMSE) between the reference and the
transformed image.



220 C. Riess

Fig. 9.7 Example scene for height measurements (“berlin square” by zoetnet; full picture credits
at the end of the chapter). Lines that converge to the three vanishing points are shown in red, green,
and blue. With an object or person with known height, the heights of other objects or persons can
be calculated

This method benefits from its relatively strong scene constraints. If it is plausible
to assume that the written text is indeed on a planar surface, and if a sufficiently
similar font is available (or even the original font), then it suffices to calculate the
reprojection error of a homography onto the reference. A similar idea can be used if
two images show the same scene, and one of the images has been edited (Zhang et al.
2009a). In this case, the second image serves as a reference for the mapping of the
first image. However, many scenes do not provide an exact reference like the exact
shape of the written text or a second picture. Nevertheless, if there is other knowledge
about the scene, slightly more complex variations of this idea can be used.

For example, Yao et al. show that the vanishing line of a ground plane perpen-
dicular to the optical axis can be used to calculate the height ratio of two persons
or objects at an identical distance to the camera (Yao et al. 2012). This height ratio
may be sufficient when additional prior knowledge is available like the actual body
height of the persons. Iuliani et al. generalize this approach to ground planes with
non-zero tilt angles (Iuliani et al. 2015). This is illustrated in Fig. 9.7. The left side
shows in red, green, and blue reference lines from the rectangular pattern on the
floor and vertical building structures to estimate the vanishing points. The right side
shows that the height of the persons on the reference plane can then be geometrically
related. Note two potential pitfalls in this scene: first, when the height of persons is
related, it may still be challenging to compensate for different body poses (Thakkar
and Farid 2021). Second, the roadblock on the left could in principle provide the
required reference height. However, it is not exactly on the same reference plane, as
the shown public square is not entirely even. Hence, measurements with that block
may be wrong.

Another example is to assume some prior information about the geometry of
objects in the scene. Then, a simplified form of camera calibration can be performed
on each object. In a second step, all objects can be checked for their agreement on
the calibration parameters. If two objects disagree, it is assumed that one of these
objects has been inserted from another picture with different calibration parameters.
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For example, Johnson and Farid proposed to use the eyes of persons for camera
calibration (Johnson and Farid 2007a). The underlying assumption is that a specific
part, namely the eyes’ limbi lie on a plane in 3-D space. The limbus is the boundary
between the iris and the white of the eye. The limbi are assumed to be perfect circles
when facing the camera directly. When viewed at an angle, the appearance of the
limbi is elliptical. Johnson and Farid estimate the homography from these circles
instead of isolated points. Since the homography also contains information about
the camera intrinsic parameters, the authors calculate the principal point under the
additional assumptions that the pixel skew is zero, and that the focal length is known
from metadata or contextual knowledge of the analyst. In authentic photographs, the
principal point can be assumed to be near the center of the image. If the principal point
largely deviates from the image center, it can be plausibly concluded that the image
is cropped (Xianzhe et al. 2013; Fanfani et al. 2020). Moreover, if there are multiple
persons in the scene with largely different principal points, it can be concluded that
the image is spliced from two sources. In this case, it is likely that the relative
position of one person was changed from the source image to the target image, e.g.,
by copying that person from the left side of the image to the right side. Another useful
type of additional knowledge can be structures with orthogonal lines like man-made
buildings. These orthogonal lines can be used to estimate their associated vanishing
points, which also provides the camera principal point (Iuliani et al. 2017).

An inventive variation of these ideas has been used by Conotter et al. (2012).
They investigate ballistic motions in videos, as it occurs, e.g., for a video of a thrown
basketball. Here, the required geometric constraint does not come from an object per
se, but instead from the motion pattern of an object. The assumption of a ballistic
motion pattern includes a linear parabolic motion without external forces except for
initial acceleration and gravity. This also excludes drift from wind. Additionally,
the object is assumed to be rigid and compact with a well-defined center of mass.
Under these assumptions, the authors show that the consistency of the motion can be
determined by inserting the analytic motion equation into the perspective projection
Eq.9.1. This model holds not only for a still camera, but also for a moving camera if
the camera motion can be derived from additional static objects in the surrounding.
The validation of true physical motion is additionally supported by the cue that the
projection of the object size becomes smaller when the object moves away from the
camera and vice versa.

Kee and Farid (2009) and Peng et al. (2017a) use the additional assumption that
3-D models are known for the heads of persons in a scene. This is a relatively strong
assumption, but such a 3-D model could, for example, be calculated for people of
public interest from which multiple photographs from different perspectives exist,
or a 3-D head model could be captured as part of a court case. With this assumption,
Kee and Farid show that approximately co-planar landmarks from such a head model
can also be used to estimate a homography when the focal length can be retrieved
from the metadata (Kee and Farid 2009). Peng et al. use the full 3-D set of facial
landmarks and additional face contours to jointly estimate the principal point and
the focal length (Peng et al. 2017a). Their main contribution is to show that spliced
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images of faces can be exposed when the original faces have been captured with
different focal length settings.

9.3.2 Photometric Methods

Pixel colors and brightness offer several cues to physics-based forensic analysis. In
contrast to the approaches of the previous section, the photometric methods do not
model perspective projections, but instead argue about local intensity distributions of
objects. We distinguish two main directions of investigation, namely the distribution
of the amount of light that illuminates an object from various directions and the color
of light.

9.3.2.1 Lighting Environments

Johnson and Farid proposed the first method to calculate the distribution of incident
light on an object or person (Johnson and Farid 2005, 2007b). We discuss this
method in greater detail due to its importance in the field of physics-based methods.
The method operates on a simplified form of the generalized irradiance model from
Eq.9.8. One simplifying assumption is that the camera function is linear, or that
a non-linear camera response has been inverted in a pre-processing step. Another
simplifying assumption is that the algorithm is only used on objects of a single color,
hence all dependencies of Eq.9.8 on wavelength λ can be ignored. Additionally,
Lambertian reflectance is assumed, which removes the dependency on θ e. These
assumptions lead to the irradiance model

i(ν) =
∫

θ i

cos(θ i, ν) · e(θ i) d θ i (9.12)

for a single image pixel showing object surface normal ν. Here, we directly inserted
Eq.9.10 for the Lambertian reflectance model without the wavelength λ, i.e., the
color term in sd(λ) in Eq.9.10 is set to unity.

Johnson andFarid present twocoupled ideas to estimate the distributionof incident
light: First, the integral over the angles of incident rays can be summarized by only
9 parameters in the orthonormal spherical harmonics basis. Second, these nine basis
coefficients can be easily regressed when aminimum of 9 surface points are available
where both the intensity i and their associated surface normal vectors ν are known.

Spherical harmonics are a frequency representation of intensities on a sphere. In
our case, they are used to model the half dome of directions from which light might
fall onto a surface point of an opaque object. We denote the spherical harmonics
basis functions as hi, j (x, y, z) where j ≤ 2i − 1 and the parameters x , y, and z
are points on a unit sphere, i.e., ‖(x, y, z)T‖22 = 1. Analogous to other frequency
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transforms like the Fourier transform or the DCT, the zeroth basis function h0,0
is the DC component that contains the overall offset of the values. Higher orders,
i.e., where i > 0, contain increasingly higher frequencies. However, it suffices to
consider only the basis functions up to second order (i.e., i ≤ 2), tomodel all possible
intensity distributions that can be observed under Lambertian reflectance. These
orders i = {0, 1, 2} consist of a total of 9 basis functions. For these 9 basis functions,
the coefficients are estimated in the proposed algorithm.

The solution for the lighting environment requires knowledge about the surface
normals from image locations where the brightness is measured. Obtaining such
surface normals from only a 2-D image can be difficult. Johnson and Farid propose
two options to address this challenge. First, if the 3-D structure of an object is known,
a 3-D model can be created and fitted to the 2-D image. Then, the normals from the
fitted 3-Dmodel can be used. This approach has been demonstrated by Kee and Farid
for faces, for which reliable 3-D model fitting methods are available (Kee and Farid
2010). Second, if no explicit knowledge about the 3-D structure of an object exists,
then it is possible to estimate surface normals from occluding contours of an object.
At an occluding contour, the surface normal is approximately coplanarwith the image
plane.Hence, the z-component is zero, and the x- and y-components can be estimated
as lines that are orthogonal to the curvature of the contour. However, without the
z-component, also the estimated lighting environment can only be estimated as a
projection onto the 2-D image plane. On the other hand, the spherical harmonics
model also becomes simpler. By setting all coefficients that contain z-components
to zero, only 5 unknown coefficients remain (Johnson and Farid 2005, 2007b).

The required intensities can be directly read from the pixel grid. Johnson and
Farid use the green color channel, since this color channel is usually most densely
sampled by the Bayer pattern, and it has a high sensitivity to brightness differences.
When 2-D normals from occluding contours are used, the intensities in the actual
pixel location at the edge of an object might be inaccurate due to sampling errors
and in-camera processing. Hence, in this case the intensity is extrapolated from the
nearest pixels within the object along the line of the normal vector.

The normals and intensities from several object locations are the known factors
in a linear system of equations

Al = i , (9.13)

where i ∈ R
N×1 are the observed intensities at N pixel locations on an object. For

these N locations, matching surface normals must be available and all constraints
must be satisfied. In particular, the N locationsmust be selected from the same surface
material, and they must be directly illuminated. A is the matrix of the spherical
harmonics basis functions. In the 3-D case, its shape is RN×9, and in the 2-D case
it is RN×5. Each of the N rows in this matrix evaluates the basis functions for the
surface normal of the associated pixel. The vectors l are the unknown coefficients of
the basis functions, with dimension R

9×1 in the 3-D case and R
5×1 in the 2-D case.

An additional Tikhonov regularizer dampens higher frequency spherical harmonics
coefficients, which yields the objective function
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E(l) = ‖Al − i‖22 + μ‖Rl‖22 , (9.14)

with the Tikhonov regularizer R = diag(1 2 2 2 3 3 3 3 3) for the 3-D case, and
R = diag(1 2 2 3 3) for the 2-D case. A minimum is found after differentiation
with respect to l and solving for l, i.e.,

l = (ATA + μRTR)−1ATi . (9.15)

The lighting environments of two objects can be directly compared via correlation.
A simple approach is to render two spheres from the coefficients of each object, and
to correlate the rendered intensities in the 3-D case, or just the intensities along the
boundary of the sphere in the 2-D case. Alternatively, the coefficients can also be
directly compared after a suitable transform (Johnson and Farid 2005, 2007b).

This first work on the analysis of lighting environments inspired many follow-up
works to relax the relatively restrictive assumptions of the method. Fan et al. (2012)
explored shape-from-shading as an intermediate step to estimate 3-D surface normals
when an explicit 3-D object model is not available. Riess et al. added a reflectance
term to the 2-D variant of the algorithm, such that also contours from different mate-
rials can be used (Riess et al. 2017). Carvalho et al. investigate human annotations
of 3-D surface normals on objects other than faces (Carvalho et al. 2015). Peng et
al. automate the 3-D variant by Kee and Farid (2010) via automated landmark detec-
tion (Peng et al. 2016). Seuffert et al. show that high-quality 3-D lighting estimation
requires a good-fitting geometric model (Seuffert et al. 2018). Peng et al. further
include a texture term for 3-D lighting estimation on faces (Peng et al. 2015, 2017b).

Some methods also provide alternatives to the presented models. The assumption
of an orthographic projection has also been relaxed, and will be separately discussed
in Sect. 9.3.3. Matern et al. integrate over the 2-D image gradients, which provides
a slightly less accurate, but very robust 2-D lighting estimation (Matern et al. 2020).
Huang et al. propose to calculate 3-D lighting environments from general objects
using surface normals from shape-from shading algorithms (Huang andSmith 2011).
However, this classic computer vision approach requires relatively simple objects
such as umbrellas to be robustly applicable. Zhou et al. train a neural network to
learn the lighting estimation from faces in a fully data-driven manner (Zhou et al.
2018).

An example 2-D lighting estimation is shown on top of Fig. 9.8. The person is
wearing a T-shirt, which makes it difficult to find surface normals that are of the
same material and at the same time point in a representative number of directions.
Contours for the T-shirt and the skin are annotated in green and red, together with
their calculated normals. The x-axes of the scatterplots contain the possible angles of
the surface normals between −π and +π . The y-axes contain the image intensities.
The left scatterplot naively combines the intensities of the black T-shirt (green) and
the light skin (red). Naively fitting the spherical harmonics to the distribution of both
materials leads to a failure case: the light skin dominates the estimation, such that
the dominant light source (maximum of the red line) appears to be located below the
person. On the other hand, using only the skin pixels or only the T-shirt pixels leads to
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Fig. 9.8 2-D lighting estimation on objects with multiple materials. Top: Example 2-D lighting
estimation according to Johnson and Farid (2005, 2007b). From left to right: contour annotations
and estimated normals for twomaterials (green and red lines) on a person. The scatterplots show the
angle of the normal along the x-axis with the associated pixel intensities along the y-axis. The left
scatterplot mixes both materials, which leads to a wrong solution. The right scatterplot performs
an additional reflectance normalization (Riess et al. 2017), such that both materials can be used
simultaneously. Bottom: 2-D lighting environments can also be estimated from image gradients,
which are overall less accurate, but considerably more robust to material transitions and wrong or
incomplete segmentations

a very narrow range of surface normals, which also makes the estimation unreliable.
The right plot shows the same distribution, but with the reflectance normalization
by Riess et al. (2017), which correctly estimates the location of the dominant light
source above the person. The three spheres on the bottom illustrate the estimation
of the light source from image gradients according to Matern et al. (2020). This
method only assumes that objects are mostly convex, and that the majority of local
neighborhoods for gradient computation consists of the same material. With these
modest assumptions, the method can oftentimes still operate on objects with large
albedo differences, and on object masks with major errors in the segmentation.

9.3.2.2 Color of Illumination

The spectral distribution of light determines the color formation in an image. For
example, the spectrum of sunlight is impacted by the light path through the atmo-
sphere, such that sunlight in the morning and in the evening is more reddish than at
noon.As another example, cameraflashlight oftentimes exhibits a strongblue compo-
nent. Digital cameras typically normalize the colors in an imagewith amanufacturer-
specific white-balancing function that oftentimes uses relatively simple heuristics.
Post-processing software such as Adobe Lightroom provides more sophisticated
functions for color adjustment.

These many influencing factors on the colors of an image make their forensic
analysis interesting. It is a reasonable assumption that spliced images exhibit differ-
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ences in the color distribution if the spliced image components had different lighting
conditions upon acquisition or if they had undergone different post-processing.

Forensics analysis methods assume that the camera white-balancing is a global
image transformation that does not introduce local color inconsistencies in an original
image. Hence, local inconsistencies in the color formation are attributed to potential
splicing manipulations.

There are several possibilities to locally analyze the consistency of the lighting
color. One key requirement is the need to estimate the illuminant color locally on
individual objects to expose inconsistencies. Particularly well-suited for local illumi-
nation color estimation is the dichromatic reflectance model from Eq.9.11 in com-
bination with the neutral interface reflectance function. This model includes diffuse
and specular reflectance, with the additional assumption that the specular portion
exhibits the color of the light source.

To our knowledge, the earliest method that analyzes reflectance has been pre-
sented by Gholap and Bora (2008). This work proposes to calculate the intersection
of so-called dichromatic lines of multiple objects to expose splicing, using a classical
result by Tominaga and Wandell (1989): on a monochromatic object, the distribu-
tion of diffuse and specular pixels forms a 2-D plane in the 3-D RGB space. This
plane becomes a line when projecting it onto the 2-D r -g chromaticity space, where
r = iR/(iR + iG + iB) and g = iG/(iR + iG + iB) denote the red and green color
channels, normalized via division by the sum of all color channels of a pixel. If the
scene is illuminated by a single, global illuminant, the dichromatic lines of differ-
ently colored objects all intersect at one point. Hence, Gholap and Bora propose to
check for three or more scene objects whether their dichromatic lines intersect in a
single point. This approach has the advantage that it is very simple. However, to our
knowledge it barely provides possibilities to validate the model assumptions, i.e.,
ways to check whether the assumption of dichromatic reflectance and a single global
illuminant holds for the objects under investigation.

Riess and Angelopoulou (2010) propose the inverse-intensity chromaticity (IIC)
spacebyTan et al. (2004) to directly estimate the color of the illuminant. The IIC space
is simple to calculate, but provides very convenient properties for forensic analysis.
It also operates on surfaces of dichromatic reflectance, and requires only a few pixels
of identical material that exhibit a mixture of specular and diffuse reflectance. For
each color channel, the IIC space is calculated as a 2-D chart for related pixels. Each
pixel is transformed to a tuple

iR,G,B →
(

1

iR,G,B
,

iR,G,B

iR + iG + iB

)
, (9.16)

where again iR , iG , and iB denote the red, green, and blue color channels. On pixels
with different portions of specular and diffuse reflectance, the distribution forms a
triangle or a line that indicates the chromaticity of the light source at the y-axis
intercept. This is illustrated in Fig. 9.9. For persons, the nose region is oftentimes
a well-suited location to observe partially specular pixels. Close-ups of the manual
annotations are shown together with the distributions in IIC space. In this original
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Fig. 9.9 Example application of illuminant color estimation via IIC color charts. For each person
in the scene, a few pixels are selected that are of the same material, and that exhibit a mixture of
specular and diffuse reflectance. The associated IIC diagrams are shown on the right. The pixel
distributions (blue) point toward the estimated color of the light source at the y-axis intercept (red
lines)

image, the pixel distributions for the red, green, and blue IIC diagrams point to almost
identical illuminant chromaticities. In real scenes, the illuminant colors are oftentimes
achromatic. However, the IIC diagrams are very sensitive to post-processing. Thus,
if an image is spliced from sources with different post-processing, major differences
in the IIC diagrams may be observed.

A convenient property of IIC diagrams is their interpretability. Pixel distributions
that do not match the assumptions do not form a straight line. For example, purely
diffuse pixels tend to cluster in circular shapes, and pixels of different materials form
several clusters, which indicates to an analyst the need to revise the segmentation.

One disadvantage of the proposed method is the need for manual annotations,
since the automated detection of specularities is a severely underconstrained prob-
lem, and hence not reliable. To mitigate this issue, Riess and Angelopoulou propose
to estimate the color of the illuminant on small, automatically segmented image
patches of approximately uniform chromaticity. They introduce the notion of “illu-
minant map” for a picture where each image patch is colored with the estimated
illuminant chromaticity. An analyst can then consider only those regions that match
the assumptions of the approach, i.e., that exhibit partially specular and partially dif-
fuse reflectance on dichromatic materials. These regions can be considered reliable,
and their estimated illuminant colors can be compared to expose spliced images.
However, for practical use, we consider illuminant maps oftentimes inferior to a
careful, fully manual analysis.
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Another analytic approach based on the dichromatic reflectance model has been
proposed by Francis et al. (2014). It is conceptually similar, but separates specular
and diffuse pixels directly in RGB space. Several works use machine learning to
automate the processing and to increase the robustness of illuminant descriptors. For
example, Carvalho et al. use illuminant maps that are calculated from the IIC space,
and also from the statistical gray edge illuminant estimator, to train a classifier for the
authenticity assessment of human faces (de Carvalho et al. 2013). By constraining
the application of the illuminant descriptors only to faces, the variety of possible
surface materials is greatly restricted, which can increase the robustness of the esti-
mator. However, this approach also performs further processing on the illuminant
maps, which slightly leaves the ground of purely physics-based methods and enters
the domain of statistical feature engineering. Hadwiger et al. investigate a machine
learning approach to learn the color formation of digital cameras (Hadwiger et al.
2019). They use images with Macbeth color charts to learn the relationship between
ground truth colors and their representations of different color camera pipelines. In
different lines of work on image colors, Guo et al. investigate fake colorized image
detection via hue and saturation statistics (Guo et al. 2018). Liu et al. investigate
methods to assess the ambient illumination in shadow regions for their consistency
by estimating the shadow matte (Liu et al. 2011).

9.3.3 Point Light Sources and Line Constraints in the
Projective Space

Outdoor scenes that are only illuminated by the sun provide a special set of con-
straints. The sun can be approximated as a point light source, i.e., a source where all
light is emitted from a single point in 3-D space. Also, indoor scenes may in special
cases contain light sources that can be approximated as a single point, like a single
candle that illuminates the scene (Stork and Johnson 2006).

Such a single-point light source makes the modeling of shadows particularly
simple: the line that connects the tip of an object with the tip of its cast shadow also
intersects the light source.Multiple such lines can be used to constrain the position of
the light source. Conversely, shadows that have been artificially inserted may violate
these laws of projection.

Several works make use of this relationship. Zhang et al. (2009b) and Wu et
al. (2012) show that cast shadows of an object can be measured and validated against
the length relationships of the persons or objects that cast the shadow.One assumption
of theseworks is that the shadow is cast on a groundplane, such that themeasurements
are well comparable. Conversely, Stork and Johnson use cast shadows to verify that
a scene is illuminated by a specific light source, by connecting occluding contours
that likely stem from that light source (Stork and Johnson 2006).
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However, these approaches require a clear correspondence between the location
on the object that casts the shadow and the location where the shadow is cast to. This
is not an issue for poles and other thin cylindrical objects, as the tip of the object can
be easily identified. However, it is oftentimes difficult to find such correspondences
on objects of more complex shapes.

O’Brien and Farid hence propose a geometric approach with much more relaxed
requirements tomark specific locations for object-shadow correspondences (O’Brien
and Farid 2012). The method is applicable not only to cast shadows, but also to a
mixture of cast shadows and attached shadows as they occur on smooth surfaces.
The idea is that if the 2-D image plane would be infinitely large, there would be a
location onto which the light source is projected, even if it is outside of the actual
image. Object-shadow correspondences can constrain the projected location of the
light source. The more accurate an object-shadow correspondence can be identified,
the stronger is the constraint. However, it is also possible to incorporate very weak
constraints like attached shadows. If the image has been edited, and, for example, an
object has been inserted with incorrect illumination, then the constraints from that
inserted object are likely to violate the remaining constraints in the image.

The constraints are formed from half-planes in the 2-D image plane. An attached
shadow separates the 3-D space into two parts, namely one side that is illuminated and
one side that is in shadows. The projection of the illuminated side onto the 2-D image
plane corresponds to one half-plane with a boundary normal that corresponds to the
attached shadow edge. An object-shadow correspondence with some uncertainty
about the exact location at the object and the shadow separates the 3-D space into a
3-Dwedge of possible light source locations.Mapping thiswedge onto the 2-D image
plane leads to a 2-D wedge. Such a wedge can be constructed from two opposing
half-planes.

An application of this approach is illustrated in Fig. 9.10. Here, the pen and the
spoon exhibit two different difficulties for analyzing the shadows, which is shown
in the close-ups on the top right: the shadow of the pen is very unsharp, such that it
is difficult to locate its tip. Conversely, the shadow of the spoon is very sharp, but
the round shape of the spoon makes it difficult to determine from which location
on the spoon surface the shadow tip originates. However, both uncertainties can be
modeled as half-plane constraints shown at the bottom. These constraints have a
common intersection in the image plane outside of the image, shown in pink. Hence,
the shadows of both objects are consistent. Further objects could now be included in
the analysis, and their half-plane constraints have to analogously intersect the pink
area.

In follow-up work, this approach has been extended by Kee et al. to also include
constraints from object shading (Kee et al. 2013). This approach is conceptually
highly similar to the estimation of lighting environments as discussed in Sect. 9.3.2.1.
However, instead of assuming an orthographic projection, the lighting environments
are formulated here within the framework of perspective projection to smoothly
integrate with the shadow constraints.
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Fig. 9.10 Example scene for forensics from cast shadows. The close-ups show the uncertain areas
of shadow formation. Left: the shadow of the tip of the pen is very unsharp. Right: the round shape
of the spoon makes it difficult to exactly localize the location that casts the tip of the shadow.
Perspective constraints according to O’Brien and Farid allow to nevertheless use these uncertainty
regions for forensic analysis (O’Brien and Farid 2012): the areas of the line constraints overlap
in the pink region of the image plane (although outside of the actual image), indicating that the
shadows of both objects are consistent

9.4 Discussion and Outlook

Physics-based methods for forensic analysis are based on simplified physical models
to validate the authenticity of a scene. Journalistic verification uses physics-based
methods mostly to answer questions about the time and place of an acquisition,
the academic literature mostly focuses on the detection of inconsistencies within an
image or video.

Conceptually, physics-based methods are quite different from statistical
approaches. Each physics-based approach requires certain scene elements to per-
form an analysis, while statistical methods can operate on almost arbitrary scenes.
Also, most physics-based methods require the manual interaction of an analyst to
provide “world knowledge”, for example, to annotate occluding contours, or to select
partially specular pixels. On the other hand, physics-based methods are mostly inde-
pendent of the image or video quality, which makes them particularly attractive for
analyzing low-quality content or even analog content. Also, physics-based methods
are inherently explainable by verification of their underlying models. This would in
principle also make it well possible to perform a rigorous analysis of the impact of
estimation errors from various error sources, which is muchmore difficult for statisti-
cal approaches. Surprisingly, such robustness investigations have until now only been
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performed to a limited extent, e.g., for the estimation of vanishing points (Iuliani et al.
2017), perspective distortions (Peng et al. 2017a), or height measurements (Thakkar
and Farid 2021).

The future of physics-basedmethods is challenged by the technical progress in two
directions: First, the advent of computational images in modern smartphones. Sec-
ond, physically plausible computer-generated scene elements from modern methods
in computer graphics and computer vision.

Computational images compensate for the limited camera optics in smartphones,
which are due to space constraints not competitive with high-quality cameras. Hence,
when a modern smartphone captures “an image”, it actually captures a short video,
and calculates a high-quality single image from that frame sequence. However, if the
image itself is not the result of a physical image formation process, the validity of
physics-based models for forensic analysis is inherently questioned. It is currently an
open question to which extent these computations affect the presented physics-based
algorithms.

Recent computer-generated scene elements are created with an increasing con-
tribution of learned physics-based models for realistically looking virtual reality or
augmented reality (VR/AR) applications. These approaches are a direct competition
to physics-based forensic algorithms, as they use very similar models to minimize
their representation error. This emphasizes the need for multiple complementary
forensic tools to expose manipulations from cues that are not relevant for the specific
tasks of suchVR/AR applications, and are hence not considered in their optimization.

9.5 Picture Credits

• Figure9.1 is published byDennis Jarvis (archer10, https://www.flickr.com/photos/
archer10/ with an Attribution-ShareAlike 2.0 Generic (CC BY-SA 2.0) License.
Full text to the license is available at https://creativecommons.org/licenses/by-
sa/2.0/; link to the original picture is https://www.flickr.com/photos/archer10/
2216460729/. The original image is downsampled for reproduction.

• Figure9.7 is published by zoetnet, https://flickr.com/photos/zoetnet/ with an
Attributed 2.0 Generic (CC BY 2.0) License. Full text to the license is available at
https://creativecommons.org/licenses/by/2.0/; link to the original picture is https://
flickr.com/photos/zoetnet/9527389096/. The original image is downsampled for
reproduction, and annotations of perspective lines are added.
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