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Abstract As second-order methods, Gauss–Newton-type methods can be more e�ec-

tive than �rst-order methods for the solution of nonsmooth optimization problems with

expensive-to-evaluate smooth components. Such methods, however, often do not converge.

Motivated by nonlinear inverse problems with nonsmooth regularization, we propose a

new Gauss–Newton-type method with inexact relaxed steps. We prove that the method

converges to a set of disjoint critical points given that the linearisation of the forward opera-

tor for the inverse problem is su�ciently precise. We extensively evaluate the performance

of the method on electrical impedance tomography (EIT).

1 introduction

The classical Gauss–Newton method can be used for the iterative solution of nonlinear least

squares problems minx
1

2
‖A(x)‖2. It works by successive linearisation of the nonlinear operator

A ∈ C1(V ;RM ) de�ned on V ⊂ Rn
. Often, not the least in inverse problems and data science,

one wishes to combine such a least squares �tting with a nonsmooth but convex regularization

term F : V → R incorporating prior information of a good approximate solution to the ill-posed

problem A(x) = 0. We thus wish to solve

(1.1) min

x
J (x) := 1

2

‖A(x)‖2 + F (x).

One readily extends the idea behind the Gauss–Newton method to this problem: linearise A,

solve the resulting convex nonsmooth problem to high accuracy, repeat. Unfortunately, such a

basic approach rarely converges, especially in inverse problems where A and its di�erentials

almost by de�nition are not injective. In this work, after several relaxations of the approach,

we prove the convergence of a variant of the Gauss–Newton method for (1.1), concentrating on

applications to electrical impedance tomography (EIT).
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nonsmooth nonconvex optimization methods

If F and A are su�ciently smooth, (1.1) can frequently be solved with Newton’s method. A small

degree of nonsmoothness can be dealt with semismooth Newton’s method [31, 36, 37]. If F is

nonsmooth, nonlinear primal-dual proximal splitting (NL-PDPS) [44, 12] is one possibility; see

[47] for an overview. Usually NL-PDPS as a �rst-order method requires thousands of iterations

to converge. If the iterations are computationally costly, the method becomes impractical. This

can be the case for A the solution operator of a partial di�erential equation (PDE). We are

thus led to Gauss–Newton-type methods that combine both worlds, however, they often fail to

converge [44].

Convergence analysis of the classical Gauss–Newton, for the nonlinear least squares problem

minx
1

2
‖T (x)‖2, withT Lipschitz-continuously di�erentiable, may be found, for example, in [33].

In [34] merely locally Lipschitz T is considered. Several works have also studied extensions

of the Gauss–Newton method to the general composite minimization problem minx h(T (x));
see, for example, [7, 15, 27]. These works generally assume that the set of minima C of h is

“weakly sharp”, and that the inclusionT (x) ∈ C has some “regular points”. In our setting, writing

h(x ,y) = G(x)+ F (y) forT (x) = (A(x),x), the existence of a “regular point” would reduce to the

injectivity of the di�erential A′(x̂) at a minimiser x̂ of J . Since, in inverse problems, the range of

A is generally much smaller than the domain, such a condition cannot be expected to hold. The

assumption of “weak sharp minima” amounts to strong metric subregularity of the objective at

the solution set. According to [1], this is a local form of strong convexity.

In [40] the Gauss–Newton method is studied for problems of the speci�c form (1.1). There also,

A′(x̂) has to be injective, and the sub-problem solutions exact. In this case, linear convergence

is proved. However, we want to avoid such injectivity assumptions, and also allow the sub-

problems to be solved inexactly. To be able to do this, and still obtain convergence, we will

introduce a relaxation term into our subproblems, and relaxation step between the Gauss–Newtons

steps. The former connects our approach to the classical Levenberg–Marquardt method which,

indeed, can be seen as a proximal Gauss–Newton method for nonlinear least squares [22, 19].

We also will not require the sub-problems to be solved exactly, merely to obtain su�cient decrease

following a condition akin to what has been employed in a di�erent context in [6, 3]. With this,

in Section 2, we will show the convergence of iterates of the proposed Relaxed Inexact Proximal

Gauss–Newton method (RIPGN) to disjoint components of critical points. In particular, if the

critical points are isolated, we will obtain convergence.

electrical impedance tomography

We will evaluate the proposed method on image (conductivity) reconstruction in Electrical

Impedance Tomography (EIT). This is a large-scale nonlinear PDE-constrained inverse problem.

EIT is an imaging technique in which electric conductivity in a target domain is reconstructed

from boundary measurements. The relationship between the boundary measurements and the

electrical potential and conductivity within the domain are governed by a nonlinear elliptic

partial di�erential equation. In general, the underlying inverse problem of EIT, which is also

known as Calderon’s problem [8], is ill-posed in the sense that it doesn’t depend continuously

on the boundary data. However, by assuming certain bounds on the conductivity, it is possible to
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show an optimal logarithmic modulus of continuity [39]. This, of course, means that even small

changes in the conductivity can cause large changes in the boundary values. Cases of nonsmooth

conductivities in two dimensions are considered in paper [2]. For cases of piecewise analytic

and smooth conductivities in three dimensions, we refer to [23, 24] and [42], respectively.

Theoretical work on the inverse problem of EIT has introduced several direct methods

for reconstructing the conductivity. In recent years, so-called D-bar method, which utilizes

complex geometrical optics solutions to the Schrödinger formulation of the inverse conductivity

problem, has undergone considerable progress [43, 32]. In the present, however, we formulate

the inverse conductivity problem as a least squares minimization problem between the boundary

values from the PDE and measurement data. Optimization and Tikhonov-regularization based

approach o�ers several bene�ts over the direct methods. It is easier to include physically

more accurate boundary conditions, domain shapes and regularization functions. Moreover,

in a Bayesian framework, the optimization-based solution can be considered as maximum a

posteriori estimates with certain prior distribution [21]. With further analysis, error estimates

may also be obtained [4]. The underlying optimization problem is, however, often tricky to

solve, as the boundary currents depend nonlinearly on the conductivity. This means that the

optimization problem is nonconvex. Moreover, total variation type regularization, which help to

reconstruct the boundaries of di�erent materials within the target domain, makes the problem

nonsmooth.

organization

The rest of this paper is organized as follows: �rst, in Section 2, we examine the convergence

of the relaxed inexact proximal Gauss–Newton method. For a certain relaxation parameter,

we show that the algorithm converges to a disjoint set of Clarke critical points, given that

the linearisation of the operator A su�ciently well approximates the original operator. In

Section 3, we provide a more detailed description of the algorithm and explain how to reliably

solve linearised nonsmooth subproblems in the Gauss–Newton scheme. In Sections 4 and 5,

by using EIT as an example, we study numerically and experimentally whether the relaxed

Gauss–Newton method improves the computational e�ciency of the image reconstructions

compared to alternative optimization methods. In these studies, we utilize sythetic data from a

water tank setup and experimental measurement data from so-called EIT based sensing skin

setup. This is a system for detecting surface changes, eg. cracks, on the given target[18]. In

Appendices b and c we provide further reconstructions for these setups and their variants.

2 convergence properties of the relaxed inexact proximal
gauss–newton method

We intend to solve problem (1.1) by successive linearisations of A: for some zk we take

Ak (x) := Ãzk (x) with Ãy (x) := A(y) + ∇A(y)∗(x − y)

3



Algorithm 2.1 Outline of relaxed inexact proximal Gauss–Newton method (RIPGN).

Require: Convex, proper, lower semicontinuous F : RN → R and A ∈ C1(dom F ;RM ).
Require: Relaxation parameter w > 0.

1: Choose an initial iterate z0 ∈ dom F .

2: for all k ≥ 0 do
3: Find an approximate solution x̃k to (2.2).

4: Update zk+1 := (1 −w)zk +wx̃k
5: end for

A standard Gauss–Newton-type approach would then solve on each iteration the linearised,

convex problem

(2.1) min

x
Jk (x) :=

1

2

‖Ak (x)‖2 + F (x)

and update zk+1 := x̃k to form the linearisation point of the next iteration. As we have remarked

in the introduction, such a method seldom converges. Our plan, to obtain a convergent method,

is to solve for some proximal parameter β > 0 the modi�ed problem

(2.2) min

x
J̃k (x) :=

1

2

‖Ak (x)‖2 + F (x) +
β

2

‖x − zk ‖2 = Jk (x) +
β

2

‖x − zk ‖2.

Then we take the linearisation point zk+1 as an interpolation between x̃k and zk , precisely

zk+1 := (1 −w)zk +wx̃k

for a su�ciently small relaxation parameter w ∈ (0, 1]. Furthermore, we allow x̃k to be solved

inexactly from (2.2). This yields our outline method of Algorithm 2.1, the relaxed inexact proximal

Gauss–Newton method (RIPGN).

We now prove the convergence of the method with β > 0. In Appendix a we show that

it is possible to take β = 0 under strong metric subregularity. We need assumptions that

guarantee that the solutions of the linearised subproblems stay in a bounded set, and we need

the linearisations Ãy to locally approximate A su�ciently well:

Assumption 2.1. F : RN → R is convex, proper, and lower semicontinuous, the operator

A ∈ C1(dom F ;RM ), and

J (x) := 1

2

‖A(x)‖2 + F (x).

Given an initial iterate z0 ∈ RN
, the sublevel set levJ (z0) J is bounded, inf F > −∞, and Amax :=

supz∈dom F ‖A(z)‖ < ∞. Moreover, for some d,C > 0 , the linearization error

‖A(x) − Ãy (x)‖ ≤ C‖x − y ‖2 (x ∈ clB (y ; d) , y ∈ levJ (z0) J ).

Here B(x , r ) is the open ball of radius r at x while clB(x , r ) is its closure. We write dom F :=

{x ∈ RN | F (x) < ∞} for the e�ective domain of F and levc J := {x ∈ RN | J (x) ≤ c} for the

c-sublevel set of J . We will also write ∂Jk (x) for the subdi�erential of the convex functions Jk
at x , and, moreover, denote by ∂C J (x) the Clarke subdi�erential of the non-convex function J
at x , as de�ned in [11]. We call a point x satisfying 0 ∈ ∂C J (x) Clarke-critical. Then we have:

4



Theorem 2.1. Suppose Assumption 2.1 holds and, for some β, ε > 0,

(2.3) 0 < w ≤ min

{
1,

d√
2β−1(J (z0) − inf F )

,
β − ε

2CAmax

}
.

On line 3 of Algorithm 2.1, �nd an approximate minimiser x̃k to (2.2) speci�cally satisfying

1. For some ek ∈ ∂ J̃ (x̃k ) we have ek → 0 as k →∞, and
2. either J̃k (zk ) ≥ J̃k (x̃k ) with x̃k , zk , or x̃k = zk ∈ [∂ J̃k ]−1(0).

Then the iterates satisfy:

(i) J (zk ) is monotonically decreasing; indeed, J (zk ) ↘ L for some L ∈ R.
(ii) Any accumulation point x̂ of {zk }k ∈N is Clarke-critical and satis�es J (x̂) = L;
(iii) Indeed, dist(zk ,U ) → 0 for a disjoint componentU ofVL := {x̂ ∈ V | 0 ∈ ∂C J (x̂), J (x̂) = L}.

Proof. Suppose �rst that x̃k = zk ∈ [∂ J̃k ]−1(0) for some k ∈ N. Since ∂ J̃k (zk ) = ∂Jk (zk ) =
∂C J (zk ), we obtain zk+1 = zk , so that there is nothing left to prove: the algorithm has converged

to a critical point in a �nite number of iterations.

So, by assumption, J̃k (zk ) ≥ J̃k (x̃k ) with x̃k , zk for all k ∈ N. Using (2.2) we now obtain

(2.4) J (zk ) − Jk (x̃k ) = J̃k (zk ) − J̃k (x̃k ) +
β

2

‖x̃k − zk ‖2 ≥ β

2

‖x̃k − zk ‖2 > 0.

Since w ≤ 1, from the convexity of Jk we have

(2.5) J (zk ) − Jk (zk+1) ≥ J (zk ) −
(
(1 −w)Jk (zk ) +wJk (x̃k )

)
= w

(
J (zk ) − Jk (x̃k )

)
.

Consequently, by (2.4),

J (zk ) − Jk (zk+1) ≥
wβ

2

‖x̃k − zk ‖2 > 0.

Now we show by induction that

(2.6) J (z0) ≥ J (zk ) (k ≥ 0).

As a by-product, we will verify (i), and obtain useful estimates for (ii) and (iii).

Induction base: Obviously J (z0) ≥ J (zk ) holds for k = 0.

Induction step: Suppose J (z0) ≥ J (zk ). We show J (z0) ≥ J (zk+1). From (2.4) we have

J (z0) − Jk (x̃k ) ≥ J (zk ) − Jk (x̃k ) ≥
β

2

‖x̃k − zk ‖2.

Since Jk (x̃k ) ≥ inf F , we have

‖x̃k − zk ‖ ≤
√
2β−1(J (z0) − inf F ) := r ,

and since w ≤ δ/r , it follows

(2.7) ‖zk+1 − zk ‖ = w ‖x̃k − zk ‖ ≤ wB ≤ d
r
r = d,

5



thus zk+1 ∈ clB(zk ; d). From Assumption 2.1 with h := zk+1 − zk ,

(2.8) ‖A(zk+1) −Ak (zk+1)‖ ≤ C‖zk+1 − zk ‖2 ≤ C‖h‖2.

Now using (2.8) and the de�nition of Amax for the inequality in the next estimate, we obtain

(2.9)

1

2

‖Ak (zk+1)‖2 −
1

2

‖A(zk+1)‖2 = 1

2

‖A(zk+1) −Ak (zk+1)‖2

+ 〈Ak (zk+1) −A(zk+1),A(zk+1)〉
≥ 〈Ak (zk+1) −A(zk+1),A(zk+1)〉 ≥ −CAmax‖h‖2.

Furthermore, using (2.9),

J (zk ) − J (zk+1) = J (zk ) − 1

2

‖A(zk+1)‖2 − F (zk+1)

≥ J (zk ) − 1

2

‖Ak (zk+1)‖2 − F (zk+1) −CAmax‖h‖2

= J (zk ) − Jk (zk+1) −CAmax‖h‖2.

Using (2.5), (2.7), and (2.4), we continue

J (zk ) − J (zk+1) ≥ w
(
J (zk ) − JK (x̃k )

)
−CAmax‖h‖2

= w
(
J (zk ) − JK (x̃k )

)
− 2w2CAmax‖x̃k − zk ‖2

2

≥ w

(
β ‖x̃k − zk ‖2 − 2wCAmax‖x̃k − zk ‖2

2

)
.

Since (2.3) implies β ≥ 2wCAmax + ε for some ε > 0, we deduce that

J (zk ) − J (zk+1) ≥ wε

2

‖zk − x̃k ‖2 > 0.

With this and J (z0) ≥ J (zk ), we get J (z0) > J (zk+1). This completes the proof of the induction

step and consequently (2.6).

In the process, we obtained

(2.10) J (zk ) − J (zk+1) ≥ wε

2

‖zk − x̃k ‖2 and J (zk ) > J (zk+1) (k ≥ 0).

Since levJ (z0) J is bounded and J is proper and lower semicontinuous, this veri�es (i).

To verify (ii), we observe that summing (2.10) over ` = 0, . . . ,k − 1 and telescoping gives

J (z0) ≥ J (zk ) + wε

2

k−1∑̀
=0

‖z` − x̃ ` ‖2 ≥ inf F +
wε

2

k−1∑̀
=0

‖z` − x̃ ` ‖2 (k ≥ 1).

This implies zk − x̃k → 0. We have assumed that ek ∈ ∂ J̃k (x̃k ) for some ek → 0. With ∂ J̃k
further expanded, using that

∇
(
1

2

‖Ak (x)‖2
)
= ∇Ak (x)Ak (x) = ∇A(zk )[A(zk ) + ∇A(zk )∗(x − zk )],
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this is to say

(2.11) ek ∈ ∇A(zk )[A(zk ) + ∇A(zk )∗(x̃k − zk )] + ∂F (x̃k ) + β(x̃k − zk ).

Since {zk }k ∈N ⊂ levJ (z0) J , which by assumption is bounded, we can thus �nd a converging

subsequence zki → x̂ for some x̂ . Necessarily x̂ ∈ dom F .

Recall that the subdi�erential mapping x 7→ ∂F (x) is outer semicontinuous [20], that is,

if qki ∈ ∂F (zki ) and also qki → q̂, then q̂ ∈ ∂F (x̂). As A ∈ C1(dom F ;RM ), passing to the

subsequential limit in (2.11), using the outer semicontinuity and ek → 0, we obtain

(2.12) 0 ∈ ∇A(x̂)A(x̂) + ∂F (x̂).

Of course, ∇A(x̂)∗A(x̂) = ∇
(
1

2
‖A(x̂)‖2

)
. By standard calculus rules for the Clarke subdi�erential

[11], (2.12) is therefore to say 0 ∈ ∂C J (x̂). This proves (ii).

Finally, to prove (iii), let x̂1 and x̂2 be two di�erent accumulation points of {zk }k ∈N. To reach

a contradiction, suppose they would lie in two disjoint subsets U1 and U2 of VL . Without loss of

generality, we may assume thatVL = U1∪U2. SinceVL is closed (by J being lower semicontinuous

and ∂C J outer semicontinuous), so areU1 andU2. We can therefore �nd ϵ > 0 such thatU 2ϵ
1

and

U 2ϵ
2

remain disjoint, where U ϵ
j := Uj + B(0, ϵ), (j = 1, 2). Let L′ := infx ∈V \(U ϵ

1
∪U ϵ

2
) J (x). Then

L′ > L. By de�nition of x̂1 and x̂2 as accumulation points, there exist subsequencesU ϵ
1
3 zk 1

i → x̂1
and U ϵ

2
3 zk

2

i → x̂2 that satisfy J (zk 1

i ) → J (x̂1) = L < L′ and J (zk2

i ) → J (x̂2) = L < L′. By

passing to a subsequence, we may assume without loss of generality that k1i < k2i < k1i+1. Since

U 2ϵ
1

and U 2ϵ
2

are disjoint, and ‖zk+1 − zk ‖ = w ‖zk − x̃k ‖ → 0 this implies for i large enough

the existence of k∗i ∈ N such that zk
∗
i ∈ V \ (U ϵ

1
∪U ϵ

2
) with k1i < k∗i < k2i . Then J (zk∗i ) ≥ L′ > L.

However, since {J (zk )}k ∈N is decreasing and J (zk 1

i ) → L, we also have lim supi→∞ J (zk
∗
i ) ≤ L.

This contradiction establishes that x̂1 and x̂2 must lie in the same disjoint component of VL . �

Remark 2.2 (More general data terms). Let д : Rn → R be subadditive and L-Lipschitz, for
example, д = ‖ · ‖p , p ∈ [1,∞]. How could we replace

1

2
‖A(x)‖2 by д(A(x)) in (1.1)? The inequality

(2.9) is the crucial part of the proof to work with such an alternative �tting function. Due to

subadditivity we have д(Ak (zk+1)) − д(A(zk+1)) ≥ −д(A(zk+1) −Ak (zk+1)). If for some C ′ > 0 we

assume

(2.13) д(A(zk+1) −Ak (zk+1)) ≤ C ′‖h‖2,

then instead of (2.9) we obtain д(Ak (zk+1)) − д(A(zk+1)) ≥ −C ′‖h‖2. The proof now goes through

if we replace the third bound on w in (2.1) by
β−ϵ
2C ′ . For д = ‖ · ‖1 and C ′ = C , (2.13) is simply

Assumption 2.1, so no additional assumptions are needed for that choice.

Remark 2.3 (Unique accumulation point under second-order growth conditions). If one of the
accumulation points x̂ of {zk }k ∈N is actually a unique local minimiser, for example, J satis�es a
second-order growth condition around x̂ , then S = {x̂} forms a disjoint component of VL . Conse-
quently, x̂ has to be the unique accumulation point of {zk }k ∈N. It follows that the whole sequence
convergences to x̂ .

7



Remark 2.4 (Convergence with a larger relaxation parameter). There are two obvious strategies
to replace the relaxed variable zk+1 by z̃k+1 := (1 −wk )zk +wk x̃

k
for some stepwise relaxation

parameterwk that violates the bounds (2.3):

a) Since CAmax in the third bound of (2.3) arises from (2.9), we can replace it by the exact

“fractional linearisation error”

max

{
0,
‖A(z̃k+1)‖2 − ‖Ak (z̃k+1)‖2

2‖z̃k+1 − zk ‖2

}
= max

{
0,
‖A(z̃k+1)‖2 − ‖Ak (z̃k+1)‖2

2wk ‖zk − x̃k ‖2

}
.

This depends on wk through z̃k+1. We therefore need to perform a line search to �nd (the

largest)wk satisfying this condition subject to the �rst two bounds of (2.9).

b) If the inequality (2.10) holds for z̃k+1 in place of zk+1. We can again use a line search to �nd

a parameterwk ≥ w satisfying this.

3 solution of the inner problem and other implementation details

In this section, we discuss how to solve the subproblems (2.1) generated by Algorithm 2.1.

Furthermore, we present a framework of how to apply RIPGN to (nonsmooth and nonconvex)

regularized nonlinear least squares problems.

3.1 balanced primal dual proximal splitting for the linearised subproblem

To solve the nonsmooth but convex problems (2.2), we utilize a variant of the primal-dual

proximal splitting (PDPS) due to Chambolle and Pock [9]). The basic version of the method

applies to minG + F1 ◦ K1 for some convex G and F1 and a linear operator K1. The function G
and the Fenchel conjugate F ∗

1
need to have easily calculable proximal maps

proxtG (z) := argmin

x
G(x) + 1

2t
‖x − z‖,

where t > 0 is a step length parameter. However, our problem (2.2) with Jk de�ned in (2.1) will

typically involve several operators; in case of total variation regularization of x ,

min

x

1

2

‖Ak (x)‖2 + α ‖∇hx ‖ +
β

2

‖x − zk ‖.

Proximal maps for functions composed with operators are generally not easily calculable.

Therefore, the linear part of Ak and the discretised gradient ∇h will both have to go into K1;

it will consist of two di�erent blocks with di�erent scales, which moreover vary between the

subproblems due to changing linearisations of Ak . We will therefore adapt the algorithm to the

scales of these blocks following [46, 35].
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3.2 spatially-adapted primal-dual proximal splitting

For convex, proper, lower semicontinuous G : X → R, F1 : Y1 → R, F2 : Y2 → R and linear

operators K1 ∈ L(X ;Y1), K2 ∈ L(X ;Y2), on (�nite-dimensional) Hilbert spaces X ,Y1, and Y2, we

consider

(3.1) min

x ∈X
G(x) + F1(K1x) + F2(K2x).

With Kx := (K1x ,K2x) and y = (y1,y2) ∈ Y := Y1 × Y2, we can write the problem using the

convex conjugates of F1 and F2 as

min

x ∈X
max

y ∈Y
G(x) + 〈Kx ,y〉 − F ∗

1
(y1) − F ∗2 (y2).

Due to potentially di�erent scales of the “blocks” y1 and y2 of y , we use two di�erent dual step

length parameters for numerical e�ciency. This has been called “diagonal preconditioning” in

[35] and “spatial adaptation” in [46]. The latter also introduces ways to perform acceleration

when strong convexity is present in only some blocks. In either case, without acceleration, such

a block-adapted method requires specifying step lengths t , s1, s2 > 0 satisfying

Id > tΣ1/2KK∗Σ1/2
for Σ := diag(s1 Id, s2 Id),

where we write Id : x 7→ x for the identity operator. Since KK∗ =
(
K1K ∗

1
K1K ∗

2

K2K ∗
1
K2K ∗

2

)
, by Young’s

inequality, this condition holds if for some λ > 0 and estimates L1 ≥ ‖K1‖ and L2 ≥ ‖K2‖,

(3.2) 1 > (1 + λ)ts1L21 and 1 > (1 + λ−1)ts2L22.

Algorithm 3.1 specializes the spatially adapted or diagonally preconditioned PDPS to the two-

dual-block case and these step length conditions; for more general descriptions, stochastic

sampling, and acceleration, we refer to [46]. A simple choice to satisfy (3.2) is to take for λ = 1,

some t > 0, and small δ ∈ (0, 1),

(3.3) s1 = (1 − δ )/[2tL21 ] and s2 = (1 − δ )/[2tL22].

Notice how larger ‖Kj ‖ will cause correspondingly smaller step length parameter sj . This way

the method can balance between di�ering scales of the di�erent blocks of the dual variable.

The method hasO(1/N ) convergence rate for an ergodic gap [46]. Since F ∗
2

is strongly convex,

it would also be possible to update the parameters t , s1, s2 > 0 on each iteration to accelerate

the method to a mixed O(1/N 2) +O(1/N ) convergence rate for y2 [46].

3.3 relaxed inexact proximal gauss–newton

We now explain how we will use Algorithm 3.1 to solve the sub-problems (2.2) for the RIPGN.

We now assume that F has the structure F (x) = F2(K2x) = F (x) + δV (x), F2 is convex, proper

and lower semicontinuous, K2 is linear, and δV is the {1,∞}-valued indicator function of a

set V ⊂ RN
. We will typically use V to model positivity constraints. We now formulate (2.2),

namely

min

x

1

2

‖Ak (x)‖2 + F (x) +
β

2

‖x − zk ‖2

9



Algorithm 3.1 Primal-dual proximal splitting with distinct step lengths for two dual blocks

Require: Convex, proper, lower semicontinuous G : X → R, F1 : Y1 → R, F2 : Y2 → R and

linear operators K1 ∈ L(X ;Y1), K2 ∈ L(X ;Y2).
1: Choose step length parameters t , s1, s2 > 0 satisfying (3.2) for some upper bounds L1 ≥ ‖K1‖

and L2 ≥ ‖K2‖ and λ > 0.

2: Choose initial iterates x0 ∈ X , y0

1
∈ Y1, y0

2
∈ Y2.

3: for all i ≥ 0 until a stopping criterion is satis�ed do
4: x i+1 := proxtG

(
x i − tK∗

1
y i
1
− tK∗

2
y i
2

)
5: sx i+1 := 2x i+1 − x i
6: y i+1

1
:= proxs1F ∗

1

(
y i
1
+ s1K1sx

i+1)
7: y i+1

2
:= proxs2F ∗

2

(
y i
2
+ s2K2sx i+1

)
8: end for

Algorithm 3.2 Relaxed inexact proximal Gauss–Newton for problem (1.1).

Require: Convex, proper, lower semicontinuous F2 : R
n → R, linear and bounded K2 : R

N →
Rn

, convex V ⊂ RN
, and A ∈ C1(V ;RM ).

Require: w > 0, δ ∈ (0, 1), t > 0, and β > 0.

1: Choose initial iterate z0.

2: s2 := (1 − δ )/[2t ‖K2‖2]
3: for all k ≥ 0 until a stopping criterion is satis�ed do
4: Kk

1
:= ∇A(zk )∗

5: bk = ∇A(zk )∗zk −A(zk )
6: s1 := (1 − δ )/[2t ‖Kk

1
‖2]

7: Using Algorithm 3.1 with parameters t , s1, s2 and initial iterates x0 := zk , y0

1
:= 0, and

y0

2
:= 0, �nd an approximate solution x̃k = x i (for large i) to (3.4)

8: zk+1 := zk +w(x̃k − zk )
9: end for

in the form (3.1) by taking Fk
1
(y) = 1

2
‖y − bk ‖2, Kk

1
= ∇A(zk )∗, and bk = ∇A(zk )∗zk − A(zk ) .

Furthermore, we place the proximal and the indicator term intoGk (x) = δV (x)+ β
2
‖x −zk ‖2.We

added superscript k to F1, K1, and G to highlight that these terms depend on the outer iteration.

Now the linearised problem (2.2) can be written

(3.4) argmin

x
Gk (x) + Fk

1
(Kk

1
x) + F2(K2x).

This has the form (3.1) and can be solved with Algorithm 3.1 using step parameters (3.3).

Note that in Theorem 2.1 we may consider δV as a part of F . However, from computational

stand-point, it is usually more e�cient to include it into G.

The whole process of solving (1.1), the relaxed inexact proximal Gauss–Newton method, is

described in Algorithm 3.2. Here we would like to stress that A(z) and F (z) depend on the

application. In the next section, we discuss speci�c choices of these functions in the case of

electrical impedance tomography.
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4 application to electrical impedance tomography

We give a brief review of the EIT forward model and its �nite element (FE) approximation

in a case where measurements consist of electric currents corresponding to a set of potential

excitations. We treat the inverse conductivity problem of EIT as a regularized nonlinear least

squares problem for which we describe three di�erent regularization schemes. In this section,

as a deviation of the previous section, the unknown of interest is written σ instead of z or x to

be consistent with typical notation for electrical conductivity.

4.1 forward model of eit

Due to our measurement equipment, we derive the forward model of EIT in such way that

it solves the current through each electrode, given the conductivity within the domain and

potential at each electrode. More speci�cally, in each excitation, one of the electrodes on object’s

surface is set to a known electric potential, and the rest of the electrodes are connected to

ground. Corresponding to each excitation, electric currents through all grounded electrodes are

measured.

As the result of the FE approximation, we obtain a nonlinear operator I (σ ), which together

measurement vector Im and an additional weight matrix LA, forms the data �delity term A(σ )
(see below). For details of the FE approximation, we refer to [49].

Given the electrical conductivity σ within domain Ω and a potential U
p
k at each electrode ek

during excitation p, the forward problem of EIT is to solve the current I
p
k through each electrode.

This requires solving also the spatially distributed electric potential up inside the domain. The

most accurate physically realizable way to model this is the Complete Electrode Model (CEM)

[10]. For existence and uniqueness of CEM see [41]. With χ = (χ1, χ2, χ3) the spatial coordinates

within the domain Ω ⊂ R3
, CEM is described by a set of equations

∇ · (σ (χ )∇up (χ )) = 0(χ ∈ Ω), up (χ ) + ζkσ
∂up (χ )
∂n̂

= U
p
k (χ ∈ ∂Ωek ),(4.1a) ∫

∂Ωek

σ
∂up (χ )
∂n̂

dS = −Ipk , and σ
∂up (χ )
∂n̂

= 0,

(
χ ∈ ∂Ω \

L⋃
k=1

∂Ωek

)
.(4.1b)

where ∂Ωek is the part of the ∂Ω covered by k’th electrode, ζk is contact impedance, n̂ is the

outward unit normal of Ω, and L is the number of electrodes. In addition, the currents I
p
k are

required to satisfy Kirchho�’s law

∑L
k=1 I

p
k = 0. From here on, we assume the contact impedances

to be known, ζk = 10
−7 Ω, as the actual contact impedances in the measurement setups used in

this study are negligible.

In order to approximate the solution of the boundary value problem (4.1) numerically, we

utilize Galerkin �nite element method (FEM). Following the scheme described in thesis [49], we

write a variational form of the system (4.1). Moreover, we use a �nite dimensional approximation

of the electric potential u as up (χ ) = ∑Nu
j=1u

p
j ϕ j (χ ) and write the vector of electrode currents

for excitation p as Ip =
∑L−1

j=1 Ĩ
p
j nj to ensure that the Kirchho�’s current law is ful�lled. Here

ϕ j is a basis function for presenting the electric potential, and nj , j = 1, . . . ,L − 1, are vectors

that form a basis for the electrode currents. As in a typical Galerkin scheme, ϕ j and nj are also
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used as test functions in the variational form. The FE approximation, i.e., the coe�cient vector

θp = (up
1
, . . . ,u

p
N , Ĩ

p
1
, . . . , Ĩ

p
L−1), is obtained as a solution of the linear system

(4.2) Dθp = Ũ p , where D =

(
D1 0

D2 D3

)
∈ R(N+L−1)×(N+L−1),

and the elements of the blocks D1, D2 and D3 are

[D1]i j =
∫
Ω
σ (χ )∇ϕ j (χ ) · ∇ϕi (χ ) dV +

L∑
k=1

1

ζk

∫
ek
ϕ j (χ )ϕi (χ ) dS,

[D2]k j = −
L∑
k=1

1

ζk

∫
ek
ϕ j (χ )(nk )k dS = −

(
1

ζ1

∫
e1
ϕ j (χ ) dS −

1

ζk+1

∫
ek+1

ϕ j (χ ) dS
)

[D3]kl =
L∑
k=1

(nl )k (nk )k =
{
1, k , l
2, k = l

where i, j = 1, . . . ,N ; j = 1, . . . ,N ; and k, l = 1, . . . ,L − 1. The vector Ũ p
is computed from the

known electrode potentials as

(4.3) [Ũ p ]i =

∑L

k=1
U p
k
ζk

∫
ek
ϕi (χ ) dS, i = 1, . . . ,N

U p
i+1
ζi+1
|ei+1 | −

U p
1

ζ1
|e1 |, i = N + 1, . . . ,N + L − 1.

Note that the electrode currents Ip are obtained from (4.2) by �rst solving the coe�cient vector

θp = D(σ )−1Ũ p
then multiplying Ip = Kθp where K ∈ RL×(N+L−1)

, K = [0, . . . , 0,n1, . . .nL−1].
Now the operator A can be written as

A(σ ) = LA (I (σ ) − Im) ,

where LA arises from the factorization of the inverse noise covariance matrix (precision matrix)

W = LA
∗LA [14], I (σ ) = (I (σ )1, . . . , I (σ )L) ∈ RL2

is a vector containing currents from all excita-

tions, and Im is the measurement vector corresponding to I . For the linearisation, speci�cally the

components used in (3.4), we have Kk
1
= LA∇I (σk )∗ and bk = LA

(
Im + ∇σ I (σk )∗σk − I (σk )

)
.

Finally, we also discretise the conductivity, setting σ =
∑N

i=1 σiφi , where φi are linear basis

functions. Note that Ũ p
is constant with respect to the factors σi , thus the partial derivatives

∂Ip
∂σi

can be solved from

0 =
∂Ũ p

∂σi
=
∂Dθp

∂σi
=
∂D

∂σi
θp + D

∂θp

∂σi
⇐⇒ ∂Ip

∂σi
=
∂Kθp
∂σi

= −KD−1 ∂D
∂σi

θp .

For further details on the computation of the Jacobian see Appendix e.

4.2 regularization and constraints

Next we introduce three di�erent regularization schemes for EIT. We utilize these schemes

in Section 5. The �rst scheme comprises of smoothness-promoting L2-regularization and a
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barrier function to approximate the positivity constraint. We use this scheme to compare the

RIPGN against Newton’s method. The other two schemes comprise of total variation (TV)

with a positivity constraint, and smoothed TV with the barrier function. The latter is used to

compare RIPGN against Newton’s method in TV-regularized setting, and the smooth models

against nonsmooth models. For a detailed description on how to compute the required proximal

mappings for Algorithm 3.1 see h�p://proximity-operator.net and [5]. Additional mappings are

listed in Appendix d.

4.2.1 smoothness-promoting regularization with a barrier

We take the �rst regulariser

FΓ(®σ ) := ‖RΓ(®σ − ®σm)‖2,

where ®σm is the expected value of ®σ , and ®σ = (σ1, . . . ,σN ) is the vector of FE factors of σ . The

matrix RΓ is de�ned by inverse factorization

(
R∗ΓRΓ

)−1
= Γ of a Gaussian kernel Γi, j = ae−

‖χi−χj ‖2
2b

[29]. Furthermore, we introduce a piecewise polynomial barrier function

Bmin(σ ) := 1

2
‖Lmin(σ )(®σ − σmin)‖2, with [Lmin]i j (σ ) :=

{
lmin, where i=j and σi < σmin

0, otherwise,

where lmin is a coe�cient that determines the strength of the barrier function. Now the convex

component in (1.1) is F (σ ) = FΓ(RΓσ ) + Bmin(σ ). As Bmin is diagonal, in the subproblems, it

is computationally more e�cient to include it into Gk
. Thus, for formulating the two-block

PDPS for the subproblems as in Section 3.3, we take F2(y) = FΓ(y), K2σ = RΓ ®σ , and Gk (σ ) =
Bmin(σ ) + δV (σ ) + β

2
‖σ − σk ‖2.

4.2.2 tv regularization and nonsmooth constraints

In the second scheme we apply nonsmooth total variation regularization with positivity con-

straints. Since σ is continuous by its �nite element construction, its isotropic total variation

(TV) [38] can be written as

TV(σ ) =
∫
Ω
|∇σ (χ )| dV ,

where |x | =
√
x2
1
+ x2

2
+ x2

3
is the Euclidean spatial norm. In linear basis, the spatial gradient

of σ is constant within an element, meaning
∂σ (χ )
∂χ1
= ( ∂σ∂χ1 )i if χ belongs to element i , and the

integration yields

TV(σ ) =
NE∑
i=1

Vi

√(
∂σ

∂χ1

)
2

i
+

(
∂σ

∂χ2

)
2

i
+

(
∂σ

∂χ3

)
2

i
,

where Vi is the volume of the i’th element and NE is the number of elements in FE basis. This

can be expressed

TV(σ ) =
NE∑
i=1

√(
R1®σ

)
2

i +
(
R2®σ

)
2

i +
(
R3®σ

)
2

i =: ‖R∇σ ‖2,1,

13
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where R∇σ := [ (R1 ®σ )T (R2 ®σ )T (R3 ®σ )T ]T and the components (i, j) of Rl ∈ RNE×N
for l = 1, 2, 3 are

computed from the basis functions φ j as

[Rl ]i j =
{
Vi

∂φ j
∂χl
, φ j when is non-zero in element i,

0, otherwise.

For formulating the two-block PDPS for the subproblems as in Section 3.3, we now take F2(y) =
α ‖y ‖2,1, K2 = R∇, and Gk (σ ) = δV (σ ) + β

2
‖σ − σk ‖2.

In some examples of Section 5, we use TV regularization on two-dimensional domains. In

those cases, the volume Vi of the element i is replaced by the element surface area and the

spatial di�erence operators, R1 and R2, are computed from the two-dimensional basis functions.

Operator R3 is dropped.

4.2.3 smoothed tv regularization and barrier function

As the last regularization scheme, we introduce a smoothed version of TV and semismooth

barrier functions. The smoothed TV can be written as

˜TV (σ ) = ‖ f (σ )‖1 with [f (σ )]i =
√
(R1®σ )2i + (R2®σ )2i + (R3®σ )2i + γ .

Here, γ is a smoothing parameter that we set to γ = 10
−7

. We also introduce a maximum barrier

Bmax(σ ), by an obvious modi�cation of the minimum barrier Bmin(σ ) described above. Now the

component F in (1.1) is F (σ ) = α ˜TV (σ ) + Bmin(σ ) + Bmax(σ ), and for the subproblems we have

F2(y) = α ‖y ‖1, K2(σ ) = f (σ ), and Gk (σ ) = Bmin(σ ) + Bmax(σ ) + δV (σ ) + β
2
‖σ − σk ‖2. Note that

with these notations, the operator K in the subproblem (2.2) is nonlinear. Hence we solve it

using a variant Algorithm 3.1 for nonlinear K from [44, 30].

5 numerical and experimental studies

We evaluate the proposed relaxed inexact proximal Gauss–Newton (RIPGN) method numerically

in EIT image reconstruction. In the �rst set of numerical studies, Cases 1–3 (Section 5.2), we

compare RIPGN against Newton’s method and NL-PDPS in a circular 2D geometry and in Case

6 (Section 5.4), we demonstrate viability of RIPGN to three-dimensional EIT reconstruction. In

Cases 4–5, Section 5.3, we evaluate the performance of RIPGN with experimental data obtained

through EIT-based sensing skin technique. The sensing skin is a surface sensor developed for

structural health monitoring: In this technique, the structure is coated with conductive paint

and the conductivity of the paint-layer is reconstructed using EIT. If the structure’s surface

breaks, for example, by cracking, it damages also the paint-layer, and this damage is detected by

EIT [18]. We include further experiments in Appendices b and c.

5.1 computational aspects

In the numerical studies, we evaluate the convergence of RIPGN (Algorithm 3.2) with multiple

relaxation parameters w and use static values for the parameters δ , t , and β . We set δ to an
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Table 1: Parameters used in each test case. σ ref
is the value of the homogeneous estimate com-

puted from reference measurements.

Case(s) Setup Data Regularisation LA(i, i) α lmin lmax σmin σmax Vmin Vmax

1 2D Water tank Synthetic Smooth 5 · 104 - 10
2

√
2J (σ 1) – 10

−4
– 10

−8
10

12

2 2D Water tank Synthetic Smoothed TV 5 · 104 10 10
2

√
2J (σ 1) 10

2

√
2J (σ 1) 10

−4
10

10
10
−8

10
12

3 2D Water tank Synthetic TV 5 · 104 10 – – - – 10
−4

10
12

4 Sensing skin Measured Smoothed TV 100 1/4 5

√
2J (σ 1) 10

−1√
2J (σ 1) 10

−4 σ ref
10
−8

10
12

5 Sensing skin Measured TV 100 1/4 – – - – 10
−4 σ ref

6 3D Water tank Synthetic TV 5 · 104 10 – – - – 10
−4

10
12

arbitrary small value δ = 0.01 to satisfy (3.2), choose t = 10
−6

by evaluating the convergence

of the �rst subproblem of Case 3 with multiple step parameters (see Section 5.2.5), and set β
to a small value β = 10

−10
; in our experience, β has similar impact on the convergence of the

Algorithm 3.2 as the relaxation parameter w . Every linearised subproblem is solved to 6000

iterations.

We start the RIPGN, Newton, and NL-PDPS iterations from a homogeneous estimate σ 1
.

Furthermore, we introduce minimum and maximum constraints, Vmin and Vmax, by de�ning the

domain V as a hypercube V =
{
σ ∈ RN

: Vmin ≤ σi ≤ Vmax, i = 1, 2, . . . ,N }. Table 1 shows

the parameters that vary between the cases. Note that in this section, we denote the �rst index

as k = 1 instead of k = 0.

In synthetic tests, Cases 1–3 and 6, we compute the relative error of the estimated conductivity

σ̂ with respect to the true conductivity σtrue as RE= ‖σ̂ − σtrue‖/‖σtrue‖ · 100%. Note, however,

that due to the simulated measurement noise and the modeling errors caused by the di�ering

mesh sparsities, the true conductivity is often quite far from the actual minimum of the objective

function. To highlight this, we compute the objective function at the true conductivity by

evaluating the true conductivity at the nodes of the mesh we use in the forward solution. We

also compute the relative error of this interpolation, to assess how well the original conductivity

could be presented in the forward solution mesh.

We perform all computations in MATLAB 2017b with dual Intel Xeon E5649 @ 2.53/2.93 GHz

CPUs and with 99 GB RAM (1333 Mhz ECC DDR3). We implement crucial components of the

construction of the matrix D and the Jacobian ∇A in C++. We compute the forward solution

(4.2), the equation
˜KD−1 for the Jacobian and the linear system for Newton’s method through

LU decomposition using UMFPACK [13]. In Case 6, we compute the forward solution using

BiCGSTAB.

To catch the stagnation of the RIPGN and Newton’s method, we initially stop the iteration if an

iterate zk decreases the value of the objective function less than 0.5, i.e., if J (σk ) − J (σk−1) < 0.5.

However, in order to ensure that the iteration does not end prematurely, we compute additional

two iterates to check if one of those decreases the objective function by at least 0.5. If they do,

we continue the iteration normally, and if not, we discard these two iterates and take the initial

stopping iterate as the estimated solution. We employ this stagnation check after eighth iteration

to ensure that at least 10 iterations are computed. For NL-PDPS, we extend these conditions

to 700 and 300, respectively. We note that, as in many previous EIT studies [48], line search

is used in Newton’s method, as the method did not converge within reasonable time with a

constant step parameter.
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5.2 numerical 2d eit studies

In Cases 1–3, the geometry of the domain Ω resembles shallow water tank. The diameter of the

tank is 24 cm and the height is 7 cm. Furthermore, the tank has sixteen evenly placed electrodes

on the surface; the width and height of the electrodes are 2.5 cm and 7 cm, respectively.

The conductivity inside the tank is constant along the vertical axis, and hence, although the

EIT forward model is three-dimensional, the conductivity is two-dimensionally distributed. In

the forward model, we map the 2D conductivity to 3D by linear interpolation.

When simulating the measurement data, we present the electrical conductivity in a piecewise

linear basis using a tetrahedral mesh consisting 84052 nodes and we approximate the electric

potential in a second order polynomial basis consisting 629513 nodes. In the reconstruction, we

approximate the 2D conductivity in a piecewise linear basis with triangular 2D mesh of 1117

nodes; for the forward solver, we map this 2D distribution to piecewise linear 3D distribution

(tetrahedral mesh consisting 8189 nodes). Furthermore, we approximate the electric potential

with second order polynomial basis functions in a mesh with 56986 nodes.

To simulate actual measurements more realistically, we add Gaussian distributed noise, with

std of 0.005 |Ii |, to each simulated measurement Ii .

5.2.1 case 1: smoothness-promoting regularization & newton’s method

We �rst evaluate the RIPGN against Newton’s method on a smooth optimization problem. We

use the smoothness promoting regularization (Scheme 1; Section 4.2.1). Furthermore, to match

the regularization, the true conductivity is also smooth (Figure 2, left): We generate the true

conductivity by drawing a sample from a multivariate Gaussian distribution expressing spatial

smoothness. This distribution is of the form described in Section 4.2.1, and its expectation as

well as the parameters of the covariance matrix are chosen to be same as in the model used in

regularization. We note, however, that since the FE mesh used in inversion is sparser than that

in the data simulation, the true conductivity is a not a realization from a model that corresponds

to the regularizing function.

Figure 1 shows the value of the objective function as a function of iteration number k and

computational time t for RIPGN method corresponding to �ve relaxation parameters w and for

the Newton’s method. Table 2 lists the number of iterations required for convergence, value of

the objective function at the last iterate, computational time and relative error corresponding to

each of these estimates. Figure 2 illustrates the reconstructed images.

Figure 1 and Table 2 show that in Case 1, Newton’s method and RIPGN with w ≤ 3/4
converge. The reconstructions have small relative errors, as shown by Table 2. Smaller relaxation

parameters result in increased number of iterations, which in turn increases the computational

times, as expected. RIPGN withw = 3/4 converges in around 7 minutes, while Newton’s method

converges in about same amount of iterations, but the computation of each iterate is considerably

longer, taking around 37 minutes to converge. Hence, although subproblems are solved exactly

in Newton’s method, we need the same amount of iterations for convergence as with RIPGN,

which solves subproblems inexactly. Longer computational times with Newton’s method are

mostly due to the line search method.

Figure 2 shows that the reconstruction from converging iterations are visually very close to
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Figure 1: Case 1. Value of the objective function J as function of iteration number k (left), and

computational time t (right) for the RIPGN and Newton’s method.

(a) True. (b) RIPGN w = 1

4
. (c) RIPGN w = 3

4
. (d) RIPGN w = 1. (e) Newton.
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Figure 2: Case 1. True conductivity (a), RIPGN-based reconstructions with relaxation parameters

w = 1/4 (b), w = 3/4 (c), w = 1 (d), and the Newton-based reconstruction (e).

Table 2: Case 1. The number of iterations required for convergence, value of the objective function

at the last iterate, computational time, and relative error of the estimate for the RIPGN

and Newton’s method.

Algorithm Iterations (K) J (σ̂ ) Time (s) RE(%)

RIPGN w = 1/4 34 84.069 1197.4 2.1864

RIPGN w = 1/2 19 84.059 642.58 2.1895

RIPGN w = 3/4 12 84.512 398.23 2.1975

RIPGN w = 9/10 8 1.1179 · 108 254.1 73.431

RIPGN w = 1 8 4.5842 · 108 255.97 103.68

Newton 14 86.7 2236.2 2.1969

the true conductivity. With step parameters w = 9/10 and w = 1, the RIPGN reconstructions

diverge. Convergence, indeed, cannot be expected for relaxation parameters w ≈ 1 due to the

bound (2.3) in Theorem 2.1.

As mentioned in Section 5.1, we also evaluate the objective function at the true conductivity.

This gives J (σtrue) = 1.2057 · 105 and a 0.9294% relative error, meaning that although the

true conductivity can be presented quite accurately in the forward solution mesh, the best

presentation is very likely far o� from the actual minimum of the objective function.
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Figure 3: Case 2. Value of the objective function J as function of iteration number k (left), and

computational time t (right) for the RIPGN and Newton’s method.
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Figure 4: Case 2. True conductivity (a), RIPGN-based reconstructions with relaxation parameters

w = 1/4 (b), w = 3/4 (c), w = 1 (d), and the Newton-based reconstruction (e).

5.2.2 case 2: smoothed tv regularization & comparison with newton’s method

Because standard Newton’s method cannot be used on non-smooth problems (such as those

induced by regularization Scheme 2, Section 4.2.2), in Case 2, we compare RIPGN to Newton’s

method in Scheme 3 (Section 4.2.3); a smoothed version of Scheme 2. In Case 2, the true target

contains a circular inclusion of low conductivity (10
−3

S/m) on a constant background with

conductivity of 0.028 S/m.

Figure 3 and Table 3 show that in Case 2, Newton’s method takes around 44 minutes to

converge while RIPGN with relaxation parameter w = 3/4 and w = 9/10 takes around 5–6

minutes. RIPGN diverges again with relaxation parameter w = 1. The relative errors in Case

2 are larger than in Case 1. This is expected, as the conductivity in Case 1 was a draw from a

distribution with statistical properties that corresponded to the regularization that was used.

These errors are further increased as the smooth shapes in Case 1 tend to be more accurately

representable with linear interpolation than sharp-edged inclusion in Case 2. The reconstructed

images (Figure 4) are, however, fairly accurate. Evaluating the objective function at the true

conductivity gives J (σtrue) = 8.6491 · 104 with 4.6023% relative error.
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Table 3: Case 2. The number of iterations required for convergence, value of the objective

function at the last iterate, computational time, and relative error of the estimate for

the RIPGN and Newton’s method.

Algorithm Iterations (K) J (σ̂ ) Time (s) RE(%)

RIPGN w = 1/4 31 135.35 1033.7 6.5056

RIPGN w = 1/2 15 135.61 487.21 6.5088

RIPGN w = 3/4 10 135.51 315.76 6.5164

RIPGN w = 9/10 10 135.63 319.6 6.5162

RIPGN w = 1 8 5.386 · 108 275.66 151.06

Newton 13 135.77 2622.4 7.1371
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Figure 5: Case 3. Value of the objective function J as function of iteration number k (left), and

computational time t (right) for the RIPGN and NL-PDPS.

5.2.3 case 3: tv regularization & comparison with nl-pdps

In Case 3, we compare RIPGN with NL-PDPS [44]. We use the nonsmooth regularization (Scheme

2; Section 4.2.2). The target conductivity in Case 3 is the same as in Case 2.

Figure 6 shows no visual di�erences between the reconstruction computed with RIPGN

(w < 1) and the reconstruction computed with NL-PDPS. However, Figure 5 and Table 4 show

that NL-PDPS takes over a week and a half to solve the problem with the desired accuracy, while

RIPGN (with w = 3/4 or w = 9/10) takes less than 6 minutes. It should be noted though that

the total amount of iterations, including the 6000 in each RIPGN linearisation, is considerably

fewer with NL-PDPS. This is consistent with earlier studies [44, 12].

Finally, Figure 6 and Table 4 show that the unsmoothed total variation slightly improves the

reconstruction quality and the relative error from Case 2 (cf. Figure 4 and Table 3).
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Figure 6: Case 3. True conductivity (a), RIPGN-based reconstructions with relaxation parameters

w = 1/4 (b), w = 3/4 (c), w = 1 (d), and the NL-PDPS-based reconstruction (e).

Table 4: Case 3. The number of iterations required for convergence, value of the objective

function at the last iterate, computational time, and relative error of the estimate for

the RIPGN and the NL-PDPS.

Algorithm Iterations (K) J (σ̂ ) Time (s) RE(%)

RIPGN w = 1/4 31 129.48 935.31 5.8401

RIPGN w = 1/2 16 129.97 473.62 5.8436

RIPGN w = 3/4 11 129.9 313.4 5.8466

RIPGN w = 9/10 11 130.24 314.73 5.8533

RIPGN w = 1 8 7.1417 · 108 225.87 334.68

NL-PDPS 24221 130.56 9.9253 · 105 5.9157

5.2.4 effects of the smoothed tv

Next we compare the solutions of the smoothed TV scheme to those of the (nonsmooth) TV

scheme. Although the di�erences between the reconstructions in Figure 4 and Figure 6 appear

small, closer inspection reveals these to be fundamental. Figure 7 shows the true conductivity

and three pro�les of the true conductivity that are taken along the dashed line. The Figure 7 also

shows pro�les from the solutions computed using Newton’s method, RIPGN with smoothed TV

and RIPGN with TV.

The pro�les in Figure 7 illustrate that the solution corresponding to smoothed TV is spatially

smoother than that corresponding to non-smoothed TV—the former fails to track the sharp

edges in the conductivity. We remind that all solutions are actually piecewise linear due to the

choice of basis functions.

5.2.5 subproblem parameter selection and balancing

In Cases 1–3, we used step parameter t = 10
−6

in the linear solver. We chose this step parameter

by evaluating the rate of convergence of the �rst subproblem in Case 3 with multiple step

parameters t , and then selecting the one that converges fastest. Figure 8 (left) shows the value of

the objective function at the approximative solution J1(x̃ 1) after 6000 iterations. Furthermore, to

illustrate the di�erences between the balanced and the non-balanced method, the �gure shows

the value of J1(x̃ 1) when the problem is solved without balancing, i.e., with s1 = s2 = (tL2)−1.
On the right in Figure 8, solid lines indicate the value of Jk (x̃k ) when the problem is solved
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Figure 7: The di�erences between the smoothed and unsmoothed total variation are distin-

guishable on closer inspection. Conductivity pro�le is highlighted with a dashed blue

line. Same pro�le is also taken from smooth Newton and RIPGN reconstructions and

nonsmooth RIPGN reconstruction.

Figure 8: Left: Value of the objective function in the �rst linearised problem at the minimum

point estimate x̂ as a function of step parameter t . The step parameters t = 10
−6

and

t = 10
−7

are highlighted in red. Right: Value of the objective function of linearised

problem k at the x̂k with t = 10
−6

for the balanced algorithm and t = 10
−7

non-balanced.

Area around the curves highlight the minimum value with any t . The dashed line

represents the operator norm of ∇A.

using both the balanced and the non-balanced methods with step parameters t = 10
−6

and

t = 10
−7

respectively. Areas below the curves show the minimum with any of the tested

parameters. For this experiment, the outer iteration is advanced with relaxation parameter

w = 3/4 using solutions from the balanced method with t = 10
−6

. For the curiosity, the operator

norm of ∇A is also shown in the �gure.

Figure 8 shows that although both methods converge almost equally in the �rst subproblem,

the balanced method outperforms normal PDPS in the subsequent problems. Furthermore,
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Figure 8 shows that unlike with the non-balanced PDPS, in the balanced PDPS, the optimal step

parameter remains almost unchanged at every linearisation.

5.3 experimental studies

The measurement device we use in the experimental studies is manufactured by Rocsole Ltd.

(www.rocsole.com). This device utilizes a typical ECT measurement principle in which each

electrode is sequentially set to a known sinusoidal potential, while the others remain grounded.

The currents induced by the potential di�erences are then sampled, in this case with 1 MHz

sampling frequency, and the amplitude of the induced current is computed from the samples using

discrete Fourier transform. Here the excitation frequency is set to 39 kHz and measurements

used in the reconstruction are time averages of the computed amplitudes over one minute time

period.

5.3.1 cases 4-5: sensing skin & crack detection

In Case 4, we test RIPGN in a crack detection problem arising from EIT-based sensing skins (see

[18]). Computationally this crack detection problem di�ers from the inclusion detection in a

typical water tank geometry, because cracks cause sharp but spatially narrow inclusions of low

conductivity on the background conductivity of the paint layer. Furthermore, the conductive

paint is far from being homogeneous in thickness and consequently, the background conductivity

is inhomogeneous. To take into account this inhomogeneity we follow an approximative data

correction approach proposed in [18]. In addition, we exploit the fact that the cracks never

increase the conductivity, allowing us to constrain the conductivity from above.

The sensing skin used in the study is painted with Kontakt Chemie EMI 35 conductive graphite

paint onto a rectangular plexiglass. The side lengths of the plexiglass are 44 cm and 42 cm and

each side has seven 2.5 cm × 1.25 cm electrodes. Furthermore, four 2.5 cm × 2.5 cm electrodes

are placed in the middle of the sensing skin.

From the sensing skin measurements, we compute a smoothed TV solution with Newton’s

method and RIPGN (Case 4), and a nonsmooth TV solutions with RIPGN (Case 5). The triangular

mesh used in the computations has 3147 nodes for the conductivity represented in a piecewise

linear basis and 12281 nodes for the electric potential in second order basis. Parameters used in

these cases are shown in Table 1.

Figure 10 (left) shows a photograph of the sensing skin in Case 4. The crack in the photograph

is highlighted in red as the crack is very narrow.

Figure 9 shows that for every relaxation parameter RIPGN converges considerably better than

with w = 1 in Cases 1–3. However, the value of the objective function oscillates slightly over the

last few iterations when w > 1/2. The better convergence with relaxation parameter w ≤ 1/2 is

also con�rmed by Table 5. The objective function with Newton’s method converges to similar

values as RIPGN with the larger step parameters. Note that in this case, the iteration time with

Newton’s method is considerably shorter than in Cases 1–3 due to the two-dimensional forward

model. Furthermore, Figure 10 shows that the reconstructed images capture the shape and

length of the crack rather well. In this example, the e�ect of relaxation parameter to the quality

of RIPGN-based reconstruction is very small, and even the di�erence between the RIPGN-
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Figure 9: Case 4. Value of the objective function J as function of iteration number k (left), and

computational time t (right) for the RIPGN and Newton’s method.
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Figure 10: Case 4. Photo of the sensing skin (crack highlighted) (a), RIPGN-based reconstructions

with relaxation parameters w = 1/4 (b),w = 3/4 (c),w = 1 (d), and the Newton-based

reconstruction (e).

Table 5: Case 4. The number of iterations required for convergence, value of the objective

function at the last iterate, and computational time for the RIPGN and the Newton’s

method.

Algorithm Iterations (K) J (σ̂ ) Time (s)

RIPGN w = 1/4 43 29478 1791.2

RIPGN w = 1/2 37 29504 1538.9

RIPGN w = 3/4 23 29681 950.08

RIPGN w = 9/10 23 29858 954.99

RIPGN w = 1 17 29679 676.2

Newton 112 29949 1642.3
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Figure 11: Case 5. Value of the objective function J as function of iteration number k (left), and

computational time t (right) for the RIPGN.
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Figure 12: Case 5. Photo of the sensing skin (crack highlighted) (a), RIPGN-based reconstructions

with relaxation parameters w = 1/4 (b), w = 3/4 (c), w = 1 (d).

Table 6: Case 5. The number of iterations required for convergence, value of the objective

function at the last iterate, and computational time for the RIPGN and the Newton’s

method.

Algorithm Iterations (K) J (σ̂ ) Time (s)

RIPGN w = 1/4 44 37601 1256.8

RIPGN w = 1/2 26 37629 750.21

RIPGN w = 3/4 19 37801 540.46

RIPGN w = 9/10 19 37812 531.91

RIPGN w = 1 11 38015 299.03

and Newton- based reconstructions is somewhat negligible. We note, again, that the choices

of the optimization method and relaxation parameter do have an e�ect on the converge and

computation speed, as shown by Table 5.

In Case 5, the sensing skin dataset used in Cases 4 is used to reconstruct TV regularized

solution (Scheme 2) with RIPGN. The results are shown in Figures 11–12 and Table 6. Com-

paring these results with results in Case 4 shows that the contrast between the crack and the

background conductivities is higher when the non-smooth model is used (Scheme 2). Again,

the computational times are shorter than in the smoothed case (see Section 5.2.3). Apart from

these di�erences, the results are fairly similar to smoothed TV.

24



10
0

10
1

10
2

k

10
2

10
3

10
4

10
5

10
6

10
7

J
(

k
)

RIPGN w=1/4

RIPGN w=1/2

RIPGN w=3/4

RIPGN w=9/10

RIPGN w=1

10
2

10
3

10
4

10
5

t(s)

10
2

10
3

10
4

10
5

10
6

10
7

J
(

k
)

RIPGN w=1/4

RIPGN w=1/2

RIPGN w=3/4

RIPGN w=9/10

RIPGN w=1

Figure 13: Case 6. Value of the objective function J as function of iteration number k (left), and

computational time t (right) for the RIPGN.

5.4 numerical 3d eit study

In Case 6, we evaluate the feasibility of RIPGN to three-dimensional EIT. The geometry resembles

a cylinder that has a radius of 14 cm and a height of 26 cm. Furthermore, the cylinder has four

horizontal layers of electrodes on the surface. Each layer contains 10 evenly placed square

electrodes with side length of 3 cm. The gap between each electrode layer is 4 cm. The cylinder

contains a resistive inclusion with conductivity of 10
−3

S/m on a background conductivity of

0.028 S/m.

In the data simulation we present the electrical conductivity in a piecewise linear basis with

210860 nodes, and the electric potential in a second order polynomial basis with 1632276 nodes.

Furthermore, the inversion mesh has 18835 nodes for the conductivity and 135504 nodes for the

potential. The reconstructions are computed with Scheme 3 (Section 4.2.2).

Figure 14 shows that in Case 6 the relaxation parameter has negligible impact on the recon-

struction quality and the reconstructions look very similar to the true conductivity distribution.

Figure 13 and Table 7 show that, even in terms of the �nal value of the objective function,

RIPGN converges similarly with every step parameter. Clearly, in this case we get no bene�ts

for lowering the step parameter as lowering it only increases the amount of iterations required

to satisfy the convergence criteria; with step parameter w = 1/4 it takes 47 iterations, while

with w = 1 it takes only 9. This is also re�ected in the computational times. Furthermore, these

computational times are considerably longer compared to the previous cases as number of nodes,

elements, and electrodes in the model are greater. As in the previous synthetic cases, the true

conductivity is known and evaluating the objective function at σtrue yields J (σtrue) = 7.0220 · 104.

Furthermore, the relative error is RE = 1.250%.
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Figure 14: Case 6. True conductivity (a), RIPGN-based reconstructions with relaxation parame-

ters w = 1/4 (b), w = 3/4 (c), and w = 1 (d). A tomographic slice of the distribution

along plane p(x) = −x1 − x2 + x3 = 14 is shown in the �gures.

Table 7: Case 6. The number of iterations required for convergence, value of the objective

function at the last iterate, computational time, and relative error of the estimate for

the RIPGN and the NL-PDPS.

Algorithm Iterations (K) J (σ̂ ) Time (s) RE(%)

RIPGN w = 1/4 47 300.5643 1.6681 · 104 2.8742

RIPGN w = 1/2 24 300.6393 8.4881 · 103 2.8737

RIPGN w = 3/4 13 300.8226 4.6491 · 103 2.8768

RIPGN w = 9/10 12 301.1563 4.3054 · 103 2.8752

RIPGN w = 1 9 300.6904 3.2748 · 103 2.8747

6 conclusions

We proposed a novel relaxed inexact proximal Gauss–Newton (RIPGN) method, and studied

it both theoretically and numerically. We applied the method to image reconstruction from

electrical impedance tomography (EIT) measurements which is a large-scale non-linear inverse

problem governed by a PDE model.

We showed that the RIPGN converges to a disjoint set of Clarke critical points under condi-

tions that hold for typical inverse problems. Furthermore, we presented a framework for the

application of RIPGN to such problems. We con�rmed the e�cacy of the RIPGN on synthetic

and experimental EIT data. These studies showed that by adjusting the relaxation parameter w ,

the iterates generated by the RIPGN converge to solutions that meaningful for EIT applications.

Furthermore, when w was appropriately selected, the RIPGN estimates were signi�cantly faster

to compute than more conventional estimates produced by Newton’s method in the smooth

case and the NL-PDPS in the nonsmooth case.

Overall, RIPGN combined with (NL-)PDPS o�ers a �exible framework to solve various non-

convex and nonsmooth problems. In EIT, the greatest advantage of the method was achieved

with nonsmooth TV regularization. Following the implementation of this work, RIPGN method

can be straightforwardly adopted also to a variety of other optimization problems—those asso-

ciated with other non-smooth regularization schemes as well as other imaging/reconstruction

applications yielding non-convex optimization problems. In the future, this may enable handling

such large-scale problems without need for smoothing and/or reducing the model complexity,

which both can lead to loss of contrast and appearance of imaging artefacts. Moreover, the
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RIPGN might even enable—via computational speed-up—realizations of high-contrast real-time

imaging in some applications.
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appendix a geometric justification for zero proximal parameter

We now improve Theorem 2.1 by showing that we can take the proximal parameter β = 0

provided ek is small enough and a critical point satis�es certain geometric conditions. We will

then also obtain local convergence to this speci�c critical point. The rough plan of work is to

show that (2.4) holds under these conditions for some β > 0 despite the algorithm employing

β = 0. Throughout, we take J as in (1.1) and for brevity write

G(x) := 1

2

‖A(x)‖2 and Gk (x) :=
1

2

‖Ak (x)‖2 =
1

2

‖A(zk ) + ∇A(zk )(x − zk )‖2.

We will for some ρ > 0 on line 3 of Algorithm 2.1,

(a.1) solve (2.1) for x̃k to such accuracy that ‖ek ‖ ≤ ρ‖x̃k − zk ‖ for some ek ∈ ∂Jk (x̃k ).

Lemma a.1. Suppose Assumption 2.1 holds. In Algorithm 2.1 use (a.1). If qk := ek − ∇Gk (x̃k ) ∈
∂F (x̃k )satis�es

F (zk ) − F (x̃k ) ≥ 〈qk , zk − x̃k 〉 + 1

2

‖z − x̃k ‖2Γk

for some operator Γk such that ∇A(zk )∇A(zk )∗ + Γk ≥ (2ρ + β)I for some β > 0, then (2.4) holds.

If (2.3) holds for this β , then the conclusions of Theorem 2.1 hold.

Proof. We have qk = ek − ∇Ak (x̃k )Ak (x̃k ) = ek − ∇A(zk )[A(zk ) + ∇A(zk )∗(x̃k − zk )]. Since we

take β = 0 in the algorithm, ek ∈ ∂Jk (x̃k ). Therefore

J (zk ) − Jk (x̃k ) =
1

2

‖A(zk )‖2 − 1

2

‖Ak (x̃k )‖2 + F (zk ) − F (x̃k )

≥ 1

2

‖A(zk )‖2 − 1

2

‖Ak (x̃k )‖2 + 〈qk , zk − x̃k 〉 +
1

2

‖zk − x̃k ‖2Γk

=
1

2

‖A(zk )‖2 − 1

2

‖Ak (x̃k )‖2 − 〈Ak (x̃k ),∇Ak (x̃k )∗(zk − x̃k )〉

+ 〈ek , zk − x̃k 〉 + 1

2

‖zk − x̃k ‖2Γk .
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We expand and simplify

1

2

‖A(zk )‖2 − 1

2

‖Ak (x̃k )‖2 − 〈Ak (x̃k ),∇Ak (x̃k )∗(zk − x̃k )〉

=
1

2

‖A(zk )‖2 − 1

2

‖A(zk ) + ∇A(zk )∗(x̃k − zk )‖2

− 〈A(zk ) + ∇A(zk )∗(x̃k − zk ),∇A(zk )∗(zk − x̃k )〉

=
1

2

‖∇A(zk )∗(x̃k − zk )‖2.

Using the assumption ‖ek ‖ ≤ ρ‖x̃k − zk ‖ thus

J (zk ) − Jk (x̃k ) ≥
1

2

‖zk − x̃k ‖2∇A(zk )∇A(zk )∗+Γk − ρ‖z
k − x̃k ‖2.

This and the assumption ∇A(zk )∇A(zk )∗ + Γk ≥ (2ρ + β) Id prove (2.4). �

We now merely assume the conditions of the lemma in the limit:

Theorem a.2. Suppose q̂ := −∇G(x̂) ∈ ∂F (x̂) satis�es F (z) − F (x̂) ≥ 〈q̂, z − x̂〉 + 1

2
‖z − x̂ ‖2Γ for

all z and some operator Γ such that ∇A(x̂)∇A(x̂)∗ + Γ ≥ (2ρ + θ ) Id for some θ , ρ > 0. Take any

β ∈ (0,θ ) satisfying (2.3) and initialize z0 close enough to x̂ . In Algorithm 2.1 use (a.1). Then the

conclusions of Theorem 2.1 hold.

Proof. Let qk := ek −∇Gk (x̃k ) ∈ ∂F (x̃k ). By the outer semicontinuity of the convex subdi�eren-

tial ∂F [20], and the continuity of ∇A and A, it is clear that for all ϵ > 0 that there exists r ′ > 0

such that ‖x̃k − x̂ ‖, ‖zk − x̂ ‖ ≤ r ′ ensures ‖qk − q̂‖ ≤ ϵ , ∇A(zk )∇A(zk )∗ + Γ ≥ (2ρ + β) Id, and

F (zk )−F (x̃k ) ≥ 〈qk , zk −x̃k 〉+ 1

2
‖zk −x̃k ‖2Γ . Therefore, if we can ensure that {zk }k ∈N, {x̃k }k ∈N ⊂

B(x̂ , r ′) for some small enough r ′ > 0, the claim follows from Lemma a.1.

Since x̃k = w−1(zk+1 − zk ) + zk , it su�ces to show for some small r > 0, for all k ∈ N, that

zk ∈ B(x̂ , r ), and that ‖zk − zk−1‖ ≤ r . We moreover claim that J (zk ) ≤ J (x̂) + δr 2ε/(2w) for

some δ ∈ (0, 1]. We prove all of this by induction. The induction basis follows from initializing

z0 = z−1 close enough to x̂ , that is, with r > 0 small enough. For the induction step, assume the

claim holds for k . We will prove that it holds for k + 1. Indeed, by Lemma a.1, (2.4) holds for

k . Thus, by the proof Theorem 2.1, (2.10) holds for k : J (zk ) − J (zk+1) > wε
2
‖zk − x̃k ‖2. By the

inductive assumption and J (zk+1) ≥ J (x̂), thus

ε

2w
‖zk+1 − zk ‖2 ≤ J (zk ) − J (zk+1) ≤ J (zk ) − J (x̂) ≤ δr 2ε

2w
.

This shows ‖zk+1 − zk ‖ ≤ r . Since J (zk+1) ≤ J (zk ), also J (zk+1) ≤ J (x̂) + δr 2ε/(2w).
It remains to prove zk+1 ∈ B(x̂ , r ). We have q̂ = −∇A(x̂)A(x̂) and for z ∈ B(x̂ , r ′′)with r ′′ small

enough, A(x̂) = A(̂z) + ∇A(x̂)(x̂ − z) +O(‖z − x̂ ‖2). Therefore, arguing similarly to Lemma a.1,

J (z) − J (x̂) ≥ 1

2

‖z − x̂ ‖2∇A(x̂ )∇A(x̂ )∗+Γ −O(‖z − x̂ ‖
2) ≥ c‖z − x̂ ‖2
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for any 0 < c < θ+2ρ and z ∈ B(x̂ , r ′′). Since zk ∈ B(x̂ , r ) and, as we have shown, ‖zk+1−zk ‖ ≤ r ,

we have zk+1 ∈ B(x̂ , 2r ). Therefore, taking r < r ′′/2, we have zk+1 ∈ B(x̂ , r ′′). Taking z = zk+1,
it now follows

δr 2ε

2w
≥ J (zk ) − J (x̂) ≥ J (zk+1) − J (x̂) ≥ c ‖zk+1 − x̂ ‖2.

Therefore, if δ > 0 is small enough, zk+1 ∈ B(x̂ , r ). This �nishes the induction and the proof. �

We now need to obtain some local strong convexity of F . We concentrate on total variation;

in the EIT problems that we consider in Section 4, more local strong convexity could be obtained

from the box constraints. Related geometric approaches in [45, 25, 26, 28, 16] show the local

linear convergence of convex optimization methods, and even globally to submanifolds. The

next lemma establishes the fundamental idea of the approach. The condition in it has been

related to the strong (metric) subregularity of the subdi�erentials ∂F [1].

Lemma a.3. Let F : Rn → R be convex and q ∈ int ∂F (x) for some x ∈ Rn
. Then for any γ > 0,

for some ρ > 0, F (z) − F (x) ≥ 〈q, z − x〉 + γ
2
‖z − x ‖2 for all z ∈ B(x , ρ).

Proof. By the de�nition of the convex subdi�erential,

F (z) − F (x) ≥ sup

q′∈∂F (x )
〈q′, z − x〉 = 〈q, z − x〉 + sup

q′∈∂F (x )
〈q′ − q, z − x〉

Because q ∈ int ∂F (x), there exists ϵ > 0 such that B(q, ϵ) ⊂ ∂F (x). We can therefore take

q′ = q + γ
2
(z − x) provided

γ
2
‖z − x ‖ ≤ ϵ , that is, if z ∈ B(x , ρ) for ρ = 2ϵ/γ . This immediately

yields the claim. �

For the next lemma, we recall we that ‖д‖p,1 :=
∑n

i=1 ‖дi · ‖p , where д ∈ Rn×m
and we write

дi · = (д11, . . . ,д1m).

Lemma a.4. Let F (x) := ‖Wx ‖p,1 for someW ∈ R(n×m)×n . Assume for all i = 1, . . . ,n the existence

of ki ∈ {1, . . . ,n} such that [Wx]ki · = 0 andWki · ,i , 0. Then int ∂F (x) , ∅.

Proof. We have ∂F (x) = W ∗∂‖ · ‖p,1(Wx), where ∂‖ · ‖p,1(д) =
∏n

i=1 ∂‖ · ‖p (дi · ). From

our assumptions, for all i = 1, . . . ,n we have ∂‖ · ‖p ([Wx]ki · ) = Bp∗ for the dual unit ball

Bp∗ := {q ∈ Rm | ‖q‖p∗ ≤ 1} with 1/p + 1/p∗ = 1. Hence, for all i = 1, . . . ,n, the projection of

∂F (x) to the i:th coordinate,

[∂F (x)]i = [W ∗∂‖ · ‖p,1(Wx)]i =
n∑
k=1

〈Wk · ,i , [∂‖ · ‖p,1(Wx)]k · 〉

=
∑
k,ki

〈Wk · ,i , [∂‖ · ‖p,1(Wx)]k · 〉 + 〈Wki · ,i ,Bp∗〉.

The last term has non-empty interior. Hence int[∂F (x)]i , ∅ for all i = 1, . . . ,n. Since int ∂F (x) ⊃∏n
k=1 int[∂F (x)]i , the claim follows. �

The next theorem shows that forward-di�erences discretised total variation is locally strongly

convex around a “strictly piecewise constant” x̂ .

29



Theorem a.5. Let F (x) = ‖∇hx ‖p,1 for∇h ∈ R(n1×n2×2)×(n1×n2) the forward di�erences operator with
(discrete) Neumann boundary conditions and cell width h > 0. Assume that x̂ ∈ n1 × n2 is strictly

piecewise constant in the sense that for each pixel coordinate (i, j) ∈ {1, . . . ,n1} × {1, . . . ,n2}
there exists a neighboring pixel coordinate

(ki j ,ki j ) ∈ Ni, j := {1, . . . ,n1} × {1, . . . ,n2} ∩ {(i, j), (i + 1, j), (i, j + 1), (i − 1, j), (i, j − 1)}

with [∇hx̂]ki jki j · = 0. Then int ∂F (x̂) , ∅. In particular, for any γ > 0 and q̂ ∈ int ∂F (x̂) and
ρ > 0 such that F (z) − F (x̂) ≥ 〈q̂, z − x̂〉 + γ

2
‖z − x̂ ‖2 for all z ∈ B(x̂ , ρ).

Proof. The strict piecewise constancy assumption veri�es withW = ∇h for all i = 1, . . . ,n1 and

j = 1, . . . ,n2 the existence of (k,k) = (ki j ,ki j ) ∈ {1, . . . ,n1} × {1, . . . ,n2} such that [Wx̂]kk · =
0 and Wkk · ,i j , 0. The non-empty interior of the subdi�erential is now a consequence of

Lemma a.4. The strong convexity at x̂ then follows from Lemma a.3. �

If the solution is not strictly piecewise constant at some pixel, then the �tting term G has to

provide the corresponding second-order growth. This is reasonable to expect, as total variation

whenever allowed by the �tting term, would produce piecewise constant solutions.

Corollary a.6. Let F (x) = ‖∇hx ‖p,1 for ∇h ∈ R(n1×n2×2)×(n1×n2) the forward di�erences operator
with (discrete) Neumann boundary conditions. Let x̂ ∈ [∂C J ]−1(0) be a Clarke-critical point of J .
For all pixels (i, j) ∈ {1, . . . ,n1} × {1, . . . ,n2} such that −[∇G(x̂)]i j < int[∂F (x̂)]i j (in particular, if
(i, j) fails the strict piecewise constancy assumption of Theorem a.5 in the sense that there exists no

(ki j ,ki j ) ∈ Ni, j with [∇hx̂]ki jki j · = 0), assume that [∇A(x̂)∇A(x̂)∗]i j,i j ≥ 2ρ + θ for some θ > 0.

Take any β ∈ (0,θ ) satisfying (2.3) and initialize z0 close enough to x̂ . In Algorithm 2.1 use (a.1).

Then the conclusions of Theorem 2.1 hold.

Proof. With q̂ := −∇G(x̂) let S be the set of pixel coordinates (i, j) satisfy q̂i j ∈ int[∂F (x̂)]i j .
Then, if (i, j) < S, we have −[∇G(x̂)]i j ∈ bd[∂F (x̂)]i j . We take γ = 2ρ + θ and Γ such that

[Γ]i j,i j = γ for pixels (i, j) ∈ S and zero in all other entries. Then, proceeding as in Lemma a.3,

we deduce the existence of ρ > 0 such that

F (z) − F (x̂) ≥ 〈q̂, z − x̂〉 + 1

2

‖z − x̂ ‖2Γ (z ∈ B(x̂ , ρ)).

By our assumptions we also have [∇A(x̂)∇A(x̂)∗]i j,i j ≥ Γ = γ Id = (2ρ + θ ) Id. The rest follows

from Theorem a.2. �

appendix b additional cases (7–12)

Case 7 is complementary to Case 2; it uses the same geometry and same regularization scheme

(Scheme 3) but true conductivity is di�erent. In this case, the target contains a square-shaped

inclusion with conductivity of 10
−3

S/m and a conductive circular inclusion with conductivity

0.28 S/m. The conductivity of the constant background is 0.028 S/m. The results of Case 3 are

shown in Figures 15–16, and Table 8.

Figure 15 shows that RIPGN with relaxation parametersw = 1 andw = 9/10 does not converge.

Furthermore, the relative error is considerably higher as the total variation regularization tends
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Figure 15: Case 7. Value of the objective function J as function of iteration number k (left), and

computational time t (right) for the RIPGN and Newton’s method.
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Figure 16: Case 7. True conductivity (a), RIPGN-based reconstructions corresponding to �ve

relaxation parameters w (b)–(f), and the Newton-based reconstruction (g).

to round the shape of the resistive inclusion [17]. In addition, the range of the conductivity is

�attened. It is also notable that the �t in this case is better in terms of the objective function than

in Case 2. Interpolating the true conductivity into the inversion mesh gives J (σtrue) = 1.0918 · 105
and RE = 3.8874 %.

Similarly to Case 7, Case 8 is complementary to Case 3. In this case, the comparison to NL-

PDPS is omitted due to excessively long computational times of NL-PDPS. The results of Case 8

are shown in Figure 17–18, and Table 9. Again, the computational times and the relative errors

are improved when compared to the smoothed TV solutions in Case 3 (cf. Table 8), similarly to

what happened between Cases 2 and 4. Also, the di�erences in computational times and relative

errors between Case 4 and 5 are analogous to di�erences between Case 2 and 3.
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Table 8: Case 7. The number of iterations required for convergence, value of the objective

function at the last iterate, computational time, and relative error of the estimate for

the RIPGN and Newton’s method.

Algorithm Iterations (K) J (σ̂ ) Time (s) RE(%)

RIPGN w = 1/4 34 73.942 1145.2 10.012

RIPGN w = 1/2 16 74.238 526.82 10.035

RIPGN w = 3/4 11 74.02 342.07 10.069

RIPGN w = 9/10 8 4.5458 · 108 235.21 166.67

RIPGN w = 1 8 6.3257 · 108 243.83 295.45

Newton 12 80.658 2387.1 11.161

10
0

10
1

10
2

k

10
0

10
2

10
4

10
6

10
8

10
10

J
(

k
)

RIPGN w=1/4

RIPGN w=1/2

RIPGN w=3/4

RIPGN w=9/10

RIPGN w=1

10
2

10
3

10
4

t(s)

10
0

10
2

10
4

10
6

10
8

10
10

J
(

k
)

RIPGN w=1/4

RIPGN w=1/2

RIPGN w=3/4

RIPGN w=9/10

RIPGN w=1

Figure 17: Case 8. Value of the objective function J as function of iteration number k (left), and

computational time t (right) for the RIPGN.
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Figure 18: Case 8. True conductivity (a), RIPGN-based reconstructions corresponding to �ve

relaxation parameters w (b)–(f).
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Table 9: Case 5. The number of iterations required for convergence, value of the objective

function at the last iterate, computational time, and relative error of the estimate for

the RIPGN.

Algorithm Iterations (K) J (σ̂ ) Time (s) RE(%)

RIPGN w = 1/4 34 69.493 1025.7 8.6152

RIPGN w = 1/2 16 70.155 498.23 8.6516

RIPGN w = 3/4 12 69.57 367.28 8.6591

RIPGN w = 9/10 8 5.2339·108 234.4 157.91

RIPGN w = 1 8 6.6964·108 239.45 346.57

appendix b.0.1 cases 9 & 10: water tank experiments

In Cases 9–10, we evaluate RIPGN with experimental data, using a water tank, the geometry of

which corresponds to Cases 1–3 (and 7–8). The same objective function (Scheme 3; Section 4.2.3)

and parameters chosen in Cases 3 and 8 are used in these reconstructions. All reconstructions

are computed with relaxation parameter w = 3/4.

Reconstructions in Cases 9–10 are shown in Figure 19. In both cases, the plastic inclusions

appear as areas of low conductivity, and in Case 10, the metal inclusion causes an area of

increased conductivity. These areas are able to capture the locations of the inclusions well and

are easily distinguished from the background as the conductivities of the background and these

areas are �at and sharp-edged. The background conductivity in both cases is between 0.02 S/m

and 0.03 S/m, which is in the range of typical drinking water in room temperatures, and as

expected, the conductivity near the plastic inclusion is very low compared to the background.

However, there is some contrast loss in the conductivity around the metal inclusion in Case 10;

the conductivity in this region is only about twice as much as the background (see Section 5.2.4).

Furthermore, in both cases, the shapes of the inclusions are slightly distorted. This kind of

distortion can be caused by a small discrepancy between the geometry of the mesh and the actual

measurement setup and other modeling errors. The roundness of the objects could reinforced by,

for example, increasing the value of the regularization parameter α , but the parameter selection

for the regularization is beyond the scope of this paper.

The results of the water tank experiments (Cases 9-10) con�rm that the RIPGN method

proposed in this paper is applicable to EIT imaging also with real measurement data.
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Figure 19: Case 9 (top row) and Case 10 (bottom row). Photos of the measurement setup (left

column) and the TV-based RIPGN-reconstructions with w = 3/4.
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Figure 20: Case 11. Value of the objective function J as function of iteration number k (left), and

computational time t (right) for the RIPGN and Newton’s method.

appendix b.0.2 cases 11 & 12: sensing skin experiments

Case 11 is complementary to Case 4; the measurements are done using the same sensing skin

setup and computations use the same scheme (Scheme 3). An additional crack was made on the

sensing for this measurement. Figure 21 (top left) shows a photograph of the sensing skin in Case

11. The results from this dataset are shown in Figures 20–21 and in Table 10. In this case, RIPGN

with relaxation parameter w = 1/4 converges better than with the other relaxation parameters,

includingw = 1/2. Although the convergence is better withw = 1/4, Figure 21 shows that impact

of the relaxation parameter on the reconstruction quality is still fairly negligible. Contrarily,

Figure 20 and Table 10 show that, again, the relaxation parameter heavily a�ects the computation

times.

Case 12 is complementary to Case 5; it uses Scheme 3 and the same measurements as in Case
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Figure 21: Case 11. Photo of the sensing skin (crack highlighted) (a), RIPGN-based reconstruc-

tions corresponding to �ve relaxation parameters w (b)–(f), and the Newton-based

reconstruction (g).

Table 10: Case 11. The number of iterations required for convergence, value of the objective

function at the last iterate, and computational time for the RIPGN and the Newton’s

method.

Algorithm Iterations (K) J (σ̂ ) Time (s)

RIPGN w = 1/4 65 23011 2747.8

RIPGN w = 1/2 19 23262 775.53

RIPGN w = 3/4 11 23365 436.94

RIPGN w = 9/10 29 23533 1206.2

RIPGN w = 1 8 24544 311.8

Newton 69 23072 1188.2
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Figure 22: Case 12. Value of the objective function J as function of iteration number k (left), and

computational time t (right) for the RIPGN.
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Figure 23: Case 12. Photo of the sensing skin (crack highlighted) (a), RIPGN-based reconstructions

corresponding to �ve relaxation parameters w (b)–(f).

Table 11: Case 12. The number of iterations required for convergence, value of the objective

function at the last iterate, and computational time for the RIPGN and the Newton’s

method.

Algorithm Iterations (K) J (σ̂ ) Time (s)

RIPGN w = 1/4 43 28761 1235.8

RIPGN w = 1/2 33 28984 950.35

RIPGN w = 3/4 16 29042 460.37

RIPGN w = 9/10 14 29280 412.17

RIPGN w = 1 14 30021 394.34

11. Results in Case 11, in are shown in Figure 22–23 and Table 11. Di�erences between Case 11

and Case 12 are fairly similar to di�erences between Case 4 and 5.
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Figure 24: Case 1. True conductivity (a), RIPGN-based reconstructions corresponding to �ve

relaxation parameters w (b)–(f), and the Newton-based reconstruction (g).
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Figure 25: Case 2. True conductivity (a), RIPGN-based reconstructions corresponding to �ve

relaxation parameters w (b)–(f), and the Newton-based reconstruction (g).

appendix c additional reconstructions in cases 1–6

Figures 24–29 show all reconstruction images computed in Cases 1–6, respectively.
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Figure 26: Case 4. True conductivity (a), RIPGN-based reconstructions corresponding to �ve

relaxation parameters w (b)–(f), and the NL-PDPS-based reconstruction (g).
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Figure 27: Case 4. Photo of the sensing skin (crack highlighted) (a), RIPGN-based reconstruc-

tions corresponding to �ve relaxation parameters w (b)–(f), and the Newton-based

reconstruction (g).
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Figure 28: Case 5. Photo of the sensing skin (crack highlighted) (a), RIPGN-based reconstructions

corresponding to �ve relaxation parameters w (b)–(f).
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Figure 29: Case 6. True conductivity (a), RIPGN-based reconstructions corresponding to �ve

relaxation parameters w (b)–(f). A tomographic slice of the distribution along plane

p(x) = −x1 − x2 + x3 = 14 is shown in the �gures.
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appendix d complementary proximal mappings

Table 12 collects the proximal mappings required in the algorithm implementations.

Table 12: Proximal mappings of G utilized in the algorithm implementations. For the hypercube

V , proj[Vmin,Vmax](xi ) = max (min (xi ,Vmax) ,Vmin).
G(x) i’th component of proxtG (x)
0 xi
δV (x) projV (xi )

δV (x) + β
2
‖x − zk ‖2 projV

(
1

t xi+βz
k
i

1

t +β

)

δV (x) + β
2
‖x − zk ‖2

+Bmin(x) + Bmax(x)



projV

(
l 2
min

zmin+
1

t xi+βz
k
i

l 2
min
+
1

t +β

)
, xi < zmin

projV

(
1

t xi+βz
k

1

t +β

)
, zmin ≤ xi ≤ zmax

projV

(
l 2
max

zmax+
1

t xi+βz
k
i

l 2
max
+
1

t +β

)
, xi > zmax

appendix e details on the computation of the jacobian

The Jacobian ∇I (σk )∗ can be constructed from the partial derivatives we described brie�y in

Section 4.1,

(e.1)

∂Ip (σk )
∂σi

= −KD(σk )−1 ∂D(σ
k )

∂σi
θp (σk ),

where we highlighted that Ip = Ip (σ1, . . . ,σN ), D = D(σ1, . . . ,σN ), and θp = θp (σ1, . . . ,σN )
depend on the iteration throughσk . Note that θp can be obtained by solving the forward problem

(4.2). Furthermore, x∗ := KD(σk )−1, can be solved from the linear system D(σk )∗x = K∗,
similarly to the forward problem. Also note that D, as de�ned in (4.2), is linear in σ , so the

term
∂D(σ k )
∂σi

is independent of the iteration and can be preconstructed. Note that the matrix

∂D(σ k )
∂σi

∈ R(N+L−1)×(N+L−1), is very sparse: if the degree of the node i in the FEM grid is n, then

this matrix has maximum of (n + 1)2 non-zero elements. Instead of storing it as a compressed

sparse column (CSC) matrix, we store it as a dense (n+ 1)× (n+ 1)matrix together with indexing

arrays to extract the relevant components of KD(σk )−1 and θp (σk ) to compute the product

in (e.1). This product can be computed very cheaply and fully in parallel over the nodes i .
Due to the substantial reduction in indexing, this approach in practise signi�cantly improves

the computational time of the Jacobian compared to CSC matrices. Finally, the i:th column of

Jacobian matrix is
∂I
∂σi
= ( ∂I 1∂σi

, . . . , ∂I
L

∂σi
).
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