
Theory of Computing Systems
https://doi.org/10.1007/s00224-024-10198-4

Languages Generated by Conjunctive Query Fragments
of FC[REG]

Sam M. Thompson1 · Dominik D. Freydenberger1

Accepted: 19 September 2024
© The Author(s) 2024

Abstract
FC is a finite model variant on the theory of concatenation, FC[REG] extends FC with
regular constraints. This paper considers the languages generated by their conjunc-
tive query fragments, FC-CQ and FC[REG]-CQ. We compare the expressive power of
FC[REG]-CQ to that of various related language generators, such as regular expres-
sions, patterns, and typed patterns. We then consider decision problems for FC-CQ
and FC[REG]-CQ, and show that certain static analysis problems (such as equivalence
and regularity) are undecidable. While this paper defines FC-CQ based on the logic
FC, it can equally be understood as synchronized intersections of pattern languages,
or as systems of restricted word equations.

Keywords Word equations · Conjunctive queries · Expressive power · Decision
problems · Descriptional complexity

1 Introduction

This paper studies the languages that are generated by fragments of FC, a variant of
the theory of concatenation, that has applications in information extraction.

Word Equations and the Theory of Concatenation We begin with word equations,
which have the form αL =̇ αR , where both αL and αR are words over an alphabet �

of terminal symbols and an alphabet � of variables. Each variable represents some
word from �∗. These equations can be used to define languages or relations (see
Karhumäki et al. [1]), by choosing one or more variables. For example, consider the
equation (xy =̇ ab), where x and y are variables. Then, the variable x defines the
language {ε,a,ab}, and the pair (x, y) defines the relation {(ε,ab), (a,b), (ab, ε)}.

B Sam M. Thompson
s.thompson4@lboro.ac.uk

Dominik D. Freydenberger
D.D.Freydenberger@lboro.ac.uk

1 Loughborough University, Loughborough, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-024-10198-4&domain=pdf

Theory of Computing Systems

The theory of concatenation uses word equations as atomic formulas, and combines
themwith the usual logical connectives andfirst-order quantifiers that range overwords
in�∗. For example, the variable x in the formula¬∃y : (x =̇ yy) defines the language
of all words that are not a square.

Usually, only its existential-positive fragment is studied, as satisfiability is decidable
(see e.g. [2]); and even venturing only a little beyond that quickly leads to undecid-
ability (see e.g. Durnev [3]). Also relevant for the current paper is an extension that
allows the use of regular constraints, that is, atoms of the form (x ∈̇ α) for any regular
expression α, which express that x ∈ L(α).

The Logic FC Freydenberger and Peterfreund [4] introduced the logic FC as a finite
model version of the theory of concatenation. FC fixes one word w as the input word
(the word for which membership in the language is tested, or the word from which
information is extracted), and considers factors ofw for the variables. This is in contrast
to the “standard” theory of concatenation, where variables range over the infinite set
�∗.

In FC formulas, the input wordw is represented byw. For example, the FC-formula
∃x : (w =̇ xx) accepts those words w that are squares, and

∀x : (¬(x =̇ ε) → ¬∃y : (x =̇ yy)
)

accepts those words that do not contain a non-empty square.1

The logic FC[REG] extends FC by allowing regular constraints. For example,

∃x, y : (
(w =̇ xyxy) ∧ (x ∈̇ a+) ∧ (y ∈̇ b+)

)

defines the language {ambnambn | m, n ≥ 1}.
FC[REG] is motivated by information extraction. Fagin et al. [5] introduced core

spanners to formalize the core of the query language AQL that is used in IBM’s
SystemT. Core spanners use relational algebra on top of regular expressions with
variables; this allows one to query text like one queries a relational database. But
for various reasons, restrictions from database theory and algorithmic finite model
theory that make relational queries tractable do not translate to spanners (for example,
see [6]). In contrast to this, the canonical tractability restrictions from relational first-
order logic can be adapted to FC[REG]. Moreover, its definition could be considered
much simpler than that of core spanners (see [4]), and existential-positive FC[REG] has
the same expressive power as core spanners (with polynomial-time transformations in
both directions); see Theorem 5.9 of [4].

Conjunctive Queries One of the aforementioned tractability restrictions is based on
conjunctive queries (CQs), amodel that has been studied extensively in database theory
(see Abiteboul et al. [7] as a starting point). From the logic point of view, a CQ is a
series of existential quantifiers applied to a conjunction of atoms.2 While evaluating

1 Whilew does not appear in this formula, all variables in an FC-formula range over the factors of the input
word.
2 In terms of SQL, it is SELECT applied to a JOIN of (potentially many) tables.

123

Theory of Computing Systems

these is stillNP-hard in general, there is a tractable subclass, the so-called acyclicCQs.
Moreover, determining whether a CQ is acyclic can be decided in polynomial time.

Freydenberger and Thompson [8] adapted this to FC and FC[REG] by introducing
FC-CQs and FC[REG]-CQs. These are defined analogously to CQs, and they have the
same desirable algorithmic properties. Furthermore, they allow for additional opti-
mization, as certain queries can be split into acyclic FC-CQs. As a step towards
answering the question what can (and cannot) be expressed with acyclic FC-CQs and
FC[REG]-CQs, the present paper looks into the properties of FC-CQ and FC[REG]-CQ
in general.

Two reasons led the authors to believe that approaching this based on languages is a
natural choice. First, even though database theory usually sees inexpressibilitymore as
the question which relations cannot be expressed, all relation inexpressibility results
for fragments of FC[REG] and equivalent models (like spanners) rely on language
inexpressibility (see [4, 5, 9–11]). Second, as we shall see, FC-CQs (and FC[REG]-CQs)
are conceptually very close to (typed) pattern languages and system of word equations
(with regular constraints). Hence, they define rich and natural classes of languages,
which makes them interesting beyond their background and application in logic.

Contributions In Section3, we first consider the closure properties of FC-CQ and
FC[REG]-CQ, and show that FC-CQ and FC[REG]-CQ are both closed under intersection,
but are not closed under complement. Regarding the closure under union, we show
that FC-CQ is not closed under union, but whether FC[REG]-CQ is closed under union is
left open. We then compare the expressive power of FC-CQ and FC[REG]-CQ to that of
related language generators, such as patterns and regularly typed patterns. The results
regarding expressive power are summarized in Fig. 1. To conclude this section, we
show that a large and natural class of xregex can be represented by FC[REG]-CQ.

Fig. 1 A directed edge from A to B denotes that L(A) ⊂ L(B). A dashed, undirected edge between A and
B denotes that L(A) and L(B) are incomparable

123

Theory of Computing Systems

Section 4 considers the complexity bounds and decidability of various deci-
sion problems. The main result of this section is that the universality problem for
FC[REG]-CQ is undecidable, and the regularity problem for FC-CQ is undecidable. In
Section5, we use Hartmanis’ meta theorem to show non-recursive trade-offs from
FC-CQs to regular expressions.

2 Preliminaries

For n ≥ 1, let [n] := {1, 2, . . . , n}. Let ∅ denote the empty set. We use |S| for the
cardinality of S. If S is a subset of T then we write S ⊆ T and if S �= T also holds,
then S ⊂ T . The difference of two sets S and T is denoted as S \ T . We use N to
denote the set {0, 1, . . . } and N+ := N \ {0}.

Let A be an alphabet. We use |w| to denote the length of some word w ∈ A∗, and
the word of length zero (the empty word) is denoted ε. The number of occurrences
of some a ∈ A within w is |w|a. We write u · v or just uv for the concatenation of
words u, v ∈ A∗. If we have words w1, w2, . . . , wn ∈ A∗, then we use �n

i=1wi as
shorthand for w1 · w2 · · · wn . If u = p · v · s for p, s ∈ A∗, then v is a factor of u,
denoted v
 u. If u �= v also holds, then v � u. Let� be a fixed and finite alphabet of
terminal symbols and let � be a countably infinite alphabet of variables. We assume
that � ∩ � = ∅ and |�| ≥ 2. A language L ⊆ �∗ is a set of words. If A and B are
alphabets, then a function σ : A∗ → B∗ is a morphism if σ(w · u) = σ(w) · σ(u)

holds for all w, u ∈ A∗.

2.1 Patterns

Apattern is awordα ∈ (�∪�)∗.Apattern substitution (or just substitution) is a partial
morphism σ : (� ∪ �)∗ → �∗ where σ(a) = amust hold for all a ∈ �. Let vars(α)

be the set of variables in α. We always assume that the domain of σ is a superset of
vars(α). The language α generates is defined as:L(α) := {σ(α) | σ is a substitution}.
Note that some literature, such as Angluin [12], defines the language of a pattern based
on non-erasing substitutions, whereas we always assume variables can be mapped to
the empty word.

Example 1 Let � := {a,b}. Consider the pattern α := abxbaxyx and the pattern
substitution σ : (� ∪ �)∗ → �∗, where σ(x) = aa and σ(y) = ε, then it follows
that abaabaaaaa ∈ L(α). By definition σ(a) = a and σ(b) = b.

Let PAT := {α | α ∈ (� ∪ �)∗} be the set of all patterns and let L(PAT) be the
class of languages definable by a pattern. Note that we always assume some fixed �

before discussing patterns and the languages they generate.

Typed Patterns
Typed patterns extend patterns with a typing function. For this paper, we consider
regularly typed patterns where the typing function T maps each variable x to a regular
language T (x). Then, each variable x must be mapped to a member of T (x). More
formally:

123

Theory of Computing Systems

Definition 1 A regularly typed pattern is a pair αT := (α, T) consisting of a pattern
α ∈ (� ∪ �)∗, and a typing function T that maps each x ∈ vars(α) to a regular
language T (x) ⊆ �∗.

We denote the language αT generates as L(αT) and this language is defined as
{σ(α) | σ is a substitution where σ(x) ∈ T (x) for all x ∈ vars(α)}.

The set of regular typed patterns is denoted by PAT[REG], and the class of languages
definable by a regularly typed pattern is denoted by L(PAT[REG]).
Example 2 Consider (xbx, T), where T (x) = a+. Then, for any alphabet � where
a,b ∈ �, we have that L(xbx, T) = {anban | n ∈ N+}, which is neither a regular
language nor a pattern language.

Typed pattern languages have been considered in the context of learning theory,
for example, see Geilke and Zilles [13] or Koshiba [14]. Schmid [15] compared the
expressive power of regularly typed patterns to REGEX and pattern expressions.

2.2 FC Conjunctive Queries

Awordequation is an equation (αL =̇αR),whereαL , αR ∈ (�∪�)∗. For a substitution
σ : (� ∪ �)∗ → �∗, we write σ |� (αL =̇ αR), if σ(αL) = σ(αR). Let w ∈ � be
a distinguished variable known as the universe variable. For a substitution σ : (� ∪
�)∗ → �∗, we say that σ is w-safe if σ(x)
 σ(w) for all x ∈ �. Now, we define
the syntax and languages of FC-CQ.

Definition 2 An FC-CQ is denoted as ϕ := ∧n
i=1(xi =̇ αi) where xi ∈ �, and where

αi ∈ (� ∪ �)∗ for each i ∈ [n]. For a w-safe substitution σ , we write σ |� ϕ if
σ |� (xi =̇ αi) for all i ∈ [n]. Then, L(ϕ) := {σ(w) | σ |� ϕ}.

We use L(FC-CQ), to define the class of languages definable in FC-CQ.

Example 3 In Example 2, we defined a regular typed pattern language that defines the
language {anban | n ∈ N+}. Now consider:

ϕ := (w =̇ x · b · x) ∧ (x =̇ a · y) ∧ (x =̇ y · a).

If vu = uv for u, v ∈ �∗, then there is some z ∈ �∗ and k1, k2 ∈ N such that u = zk1

and v = zk2 (for example, see Proposition 1.3.2 in Lothaire [16]). Thus, if σ |� ϕ,
then σ(w) = an · b · an . Consequently, L(ϕ) = {anban | n ∈ N+}.

In [4], FCwas extended to FC[REG] by adding regular constraints.We extend FC-CQ
to FC[REG]-CQ in the same way.

Definition 3 Let FC[REG]-CQ be the set of FC-CQ-formulas extended with regular
constraints. That is, formulas of the form ϕ := ψ ∧ ∧m

j=1(yi ∈̇ γi) where ψ is an
FC-CQ-formula, y j ∈ � is a variable for all j ∈ [m], and γ j is a regular expression
for all j ∈ [m].

For a w-safe substitution σ , we write σ |� ϕ if σ |� ψ , and σ(y j) ∈ L(γ j) for all
j ∈ [m]. Let L(ϕ) := {σ(w) | σ |� ϕ}.

123

Theory of Computing Systems

Also, we extend FC[REG]-CQ to FC[REG]-UCQ (unions of FC[REG]-CQ formulas)
canonically. More formally, if ϕi ∈ FC[REG]-CQ for all i ∈ [m], then ϕ := ∨m

i=1 ϕi
is an FC[REG]-UCQ. We define L(ϕ) := ⋃m

i=1 L(ϕi). The class FC-UCQ is defined
analogously.

Example 4 The language L< := {anbam | n,m ∈ N and n < m} can be expressed in
FC[REG]-CQ using the following formula:

ϕ< := (w =̇ x · b · x · y) ∧ (x ∈̇ a∗) ∧ (y ∈̇ a+).

We can represent the language L �= := {anbam | n,m ∈ N and n �= m} in
FC[REG]-UCQ using a union of two queries analogous to ϕ<. However, as we observe
with the following formula, L �= can also be expressed in FC[REG]-CQ:

ψ �= := (w =̇ x · yb,1 · z · yb,2 · x) ∧ (w ∈̇ a∗ba∗)∧
(z ∈̇ a+) ∧ (x ∈̇ a∗) ∧ (yb =̇ b) ∧ (yb =̇ yb,1 · yb,2).

The use of yb ensures that yb,1 = b and yb,2 = ε, or vice versa. Thus, the
word σ(z) ∈ a+, for any substitution σ where σ |� ψ�=, appears one side of the b
symbol. This ensures that σ(w) = amban and m �= n.

From time to time,we shallmake reference to the existential positive fragment of FC
and FC[REG], denoted EP-FC and EP-FC[REG] respectively. This is simply an existential
positive first-order logic,where each atom is of the form x =̇α, for some x ∈ � andα ∈
(�∪�)∗. For details, see [4].While we do not give the formal definitions of EP-FC and
EP-FC[REG] in this paper, we note thatL(EP-FC) = L(FC-UCQ) andL(EP-FC[REG]) =
L(FC[REG]-UCQ). This follows from the fact that FC-UCQ (or FC[REG]-UCQ) is simply
a disjunctive normal form of EP-FC (or EP-FC[REG]).

Immediately from the definitions, we know that L(FC-CQ) ⊆ L(EP-FC),
and L(FC[REG]-CQ) ⊆ L(EP-FC[REG]). In Section3, we shall look at the expressive
power of FC-CQ and FC[REG]-CQ in more detail.

The Theory of Concatenation Before moving on, let us briefly discuss the theory of
concatenation; in particular, the existential positive fragment of the theory of concate-
nation, which we shall denote as EP-C. Informally, EP-C can be seen as a logic that
extends word equations with conjunction, disjunction, and existential quantification.
While the syntax is similar to EP-FC, the semantics of EP-C allow variables to range
over �∗. Thus, unlike with EP-FC, there is no separation between the membership
problem (does a formula hold for a given word), and the satisfiability problem (does
a formula hold for any word).

Regarding the class of languages L(EP-C) generated by EP-C, it is known that this
is exactly the class of languages generated by word equations. For more information,
see Section 5.3 in Chapter 6 of [17]. We use EP-C[REG] to denote the existential theory
of concatenation extended with regular constraints. The authors refer the reader to [4]
for more information on the theory of concatenation, and its connection to FC.

123

Theory of Computing Systems

3 Expressive Power and Closure Properties

This section considers the expressive power and closure properties of FC-CQ and
FC[REG]-CQ. The main result is Theorem 2, which presents an inclusion diagram of
the relative expressive power of FC[REG]-CQ and related models.

Lemma 1 For ϕ ∈ FC-CQ, we have that L(ϕ) = �∗ if and only if ε,a ∈ L(ϕ) for
some a ∈ �.

Proof The only-if direction follows immediately, and therefore we focus on the if
direction. First, we show that ϕ := ∧n

i=1(w =̇ αi) where αi ∈ (
� ∪ (� \ {w}))∗ for

all i ∈ [n] is a normal form for FC-CQ. This construction is performed in two steps:

Step One While there exists some atom of ϕ of the form x =̇ β1 · w · β2, we replace
this atom with (w =̇ x) ∧ (z =̇ β1) ∧ (z =̇ β2) ∧ (z =̇ ε), where z ∈ � is a new
variable. We can show that the resulting formula is equivalent to ϕ using a length
argument. It is clear that for any substitution σ such that σ |� ϕ, the equality |σ(x)| =
|σ(β1)| + |σ(w)| + |σ(β2)| holds. Since |σ(x)| ≤ |σ(w)|, we know that |σ(x)| =
|σ(w)|, and |σ(β1)| = |σ(β2)| = 0. This immediately implies that σ(x) = σ(w) and
σ(β1 · β2) = ε.

Step Two While there exists some atom of ϕ of the form (x =̇ α) where x �= w, we
replace this atom with (w =̇ px · x · sx) ∧ (w =̇ px · α · sx), where px , sx ∈ � are new
variables that are unique to x . It is clear that this re-writing step maintains equivalence
between the given and resulting formulas using an analogous length argument to step
one.

Actual Proof For the rest of the proof, we assume that ϕ := ∧n
i=1(w =̇ αi) where

αi ∈ (
� ∪ (� \ {w}))∗ for all i ∈ [n]. Since ε ∈ L(ψ), it follows that for all i ∈ [n],

the pattern αi is terminal-free (that is, αi ∈ �∗).
We know that a ∈ L(ϕ), therefore a ∈ L(αi) for each i ∈ [n]. It follows that for

any σ where σ |� ϕ and σ(w) = a, each αi has exactly one variable xi ∈ vars(αi)

such that σ(xi) = a and for all y ∈ vars(αi)\ {xi }, we have that σ(y) = ε. Therefore,
for any w ∈ �∗ we can define new substitution τ |� ϕ, where τ(w) = τ(xi) = w for
all i ∈ [n], and τ(y) = ε for all y ∈ vars(ϕ) \ {xi | i ∈ [n]}. Thus, w ∈ L(ϕ) for any
w ∈ �∗. ��

We shall also use Lemma 1 in Section4 as a tool to help prove the complexity
bounds for the universality problem.

Proposition 1 L(FC-CQ) and L(FC[REG]-CQ) are closed under intersection and are
not closed complement. L(FC-CQ) is not closed under union.

Proof We first show thatL(FC[REG]-CQ) andL(FC-CQ) are closed under intersection.
Let ϕ1 ∈ C and ϕ2 ∈ C, for some C ∈ {FC-CQ, FC[REG]-CQ}. Assume that vars(ϕ1) ∩
vars(ϕ2) = ∅. We canmake this assumption as if this does not hold, we simply rename
variables for ϕ2 uniformly. Then, we can define ψ := ϕ1 ∧ ϕ2. It follows from the
definitions that L(ψ) = L(ϕ1) ∩ L(ϕ2).

123

Theory of Computing Systems

Next, we show that L(FC[REG]-CQ) is not closed under complement. To do so, we
observe that L(FC[REG]-CQ) is a subclass of the language of core spanners (see [4, 5,
8]). It is not necessary for us to define core spanners, as we just use a language that
cannot be expressed by core spanners.

Consider the uniform-0-chunk language which cannot be expressed by core span-
ners – see Theorem 6.1 from [5]. This language is defined as all words w ∈ {0,1}∗
such that w = s0 · ∏n

i=1(t · si) for any n ≥ 1, where t ∈ {0}+ and si ∈ {1}+ for all
i ∈ [n].

Let � = {0,1} and, working towards a contradiction, assume L(FC[REG]-CQ)

is closed under complement. It follows immediately from De Morgan’s law that
L(FC[REG]-CQ) is also closed under union. We now construct ϕ ∈ FC[REG]-CQ
such that L(ϕ) is the uniform-0-chunk language. First, let ϕ1 := (w ∈̇ γ1) where
L(γ1) = 1+ · (0+ · 1+)+. Let

ϕ2 := (w =̇ z1 · 0 · y · z2 · y · z3) ∧
∧

x∈{z1,z2,z3,y}
(x ∈̇ γx),

where

• L(γz1) = �∗,
• L(γy) = 0+,
• L(γz2) = (1+ · �∗ · 1+) ∪ 1+, and
• L(γz3) = 1+ · �∗.

For intuition, we have that

L(ϕ2) = �∗ · 0m · (
(1+ · �∗ · 1+) ∪ 1+) · 0m−1 · 1+ · �∗.

Likewise, let

ϕ3 := (w =̇ z̄1 · ȳ · z̄3 · ȳ · 0 · z̄3) ∧
∧

x∈{z̄1,z̄2,z̄3,ȳ}
(x ∈̇ γx),

where

• L(γz̄1) = �∗ · 1+,
• L(γȳ) = 0+,
• L(γz̄2) = (1+ · �∗ · 1+) ∪ 1+, and
• L(γz̄3) = �∗.

Analogously to L(ϕ2), we have that

L(ϕ3) = �∗ · 1+ · 0m−1 · (
(1+ · �∗ · 1+) ∪ 1+) · 0m · �∗.

Thus, if follows that L(ϕ1) ∩ (
�∗ \ (L(ϕ2) ∪ L(ϕ3)

)
is the uniform-0-chunk lan-

guage which cannot be expressed by a FC[REG]-CQ. Consequently, our assumption
that L(FC[REG]-CQ) is closed under complement is incorrect.

123

Theory of Computing Systems

Next, we show that L(FC-CQ) is not closed under union. Let ϕ1 := (w =̇ ε) and
ϕ2 := (w =̇ a). It follows thatL(ϕ1)∪L(ϕ2) = {ε,a}which we know from Lemma 1
is a language that is not in L(FC-CQ). Since L(FC-CQ) is closed under intersection,
and is not closed under union, it follows from De Morgan’s law that L(FC-CQ) is not
closed under complement. ��

3.1 Expressive Power

Our next focus is to look at the relative expressive power of FC[REG]-CQ and related
models. We summarize our findings in Theorem 2, and the related Fig. 1. The proof
of Theorem 2 is given as a series of lemmas.

For the language classes L1 and L2, we write L1 # L2 to denote that L1 and L2
are incomparable. That is, there is some L ∈ L1 \L2 and there is some L ′ ∈ L2 \L1.

Since the pattern xx generates the non-regular language {ww | w ∈ �∗}, and the
regular expression ∅ is not expressible by a pattern, L(PAT) # L(REG). This further
implies that L(REG) ⊂ L(PAT[REG]) and L(PAT) ⊂ L(PAT[REG]).
Lemma 2 L(FC-CQ) and L(REG) are incomparable.

Proof It is clear that {ww | w ∈ �∗} is in L(FC-CQ) and is not regular. Furthermore,
we know from [4] that the more general EP-FC cannot represent all regular languages.
Thus, L(FC-CQ) and regular languages are incomparable. ��
Lemma 3 L(PAT) ⊂ L(FC-CQ).

Proof The inclusion L(PAT) ⊆ L(FC-CQ) follows trivially from the definitions. We
now show that L(PAT) �= L(FC-CQ).

Let ϕ := (x =̇ a) ∧ (y =̇ b). Thus, we have that

L(ϕ) = {w | w ∈ �∗ and |w|a ≥ 1 and |w|b ≥ 1}.

Working towards a contradiction, assume that there exists α ∈ (� ∪ �)∗ such that
L(α) = L(ϕ). We first prove that |α|a = 1 and |α|b = 1. To show this, assume
that |α|a = 0. Then, consider the pattern substitution σ where σ(x) = b for all x ∈
vars(α). Hence, there exists w ∈ L(α) such that |w|a = 0, which is a contradiction.
The same reasoning shows that |α|b ≥ 1. Now, if |α|a > 1 or |α|b > 1, then
ab /∈ L(α) which is a contradiction.

Wenowhave twopossibilities forα. If the symbola is left ofb inα, thenba /∈ L(α).
If the symbol b is left of a in α, then ab /∈ L(α). Since ab,ba ∈ L(ϕ), we have a
contradiction and therefore L(ϕ) is not a pattern language. ��
Lemma 4 L(FC-CQ) ⊂ L(FC[REG]-CQ), and L(FC-UCQ) ⊂ L(FC[REG]-UCQ).

Proof From the definitions, we immediately can determine that L(FC-CQ) ⊆
L(FC[REG]-CQ) and L(FC-UCQ) ⊆ L(FC[REG]-UCQ). The fact that L(FC-CQ) �=
L(FC[REG]-CQ) andL(FC-UCQ) �= L(FC[REG]-UCQ) follows from the fact that EP-FC
cannot represent all regular languages (see [4]). ��

123

Theory of Computing Systems

Lemma 5 L(PAT[REG]) # L(FC-CQ) and L(PAT[REG]) ⊂ L(FC[REG]-CQ).

Proof Notice that for every αT ∈ PAT[REG], there is an equivalent FC[REG]-CQ. More
formally, let αT := (α, T) and let

ϕαT := (w =̇ α) ∧
∧

x∈vars(α)

(
x ∈̇ T (x)

)
.

It is clear from the definitions that L(αT) = L(ϕαT). It therefore follows that
L(PAT[REG]) ⊆ L(FC[REG]-CQ). Therefore, if L(PAT[REG]) # L(FC-CQ), then the
inclusionL(PAT[REG]) ⊂ L(FC[REG]-CQ) immediately follows. The rest of this proof
focuses on showing L(PAT[REG]) # L(FC-CQ).

We know that there are regular languages that cannot be expressed in FC-CQ. Conse-
quently, L(PAT[REG]) \L(FC-CQ) �= ∅: For example, consider Lemma 1 and (a∨ ε).
Next, we show that L(FC-CQ) \ L(PAT[REG]) �= ∅. Consider

ϕ := (x1 =̇ a) ∧ (x2 =̇ b · y · b · y · b).

We can represent L(ϕ) as

L(ϕ) := (�∗ · a · �∗) ∩ (�∗ · {b · u · b · u · b | u ∈ �∗} · �∗).

First, we show thatL(ϕ) is not regular. To the contrary, assume thatL(ϕ) is regular.
Since regular languages are closed under intersection we have that

L1 := L(ϕ) ∩ (b · a∗ · b · a∗ · b)

is regular. Where, from the definition of L(ϕ), we have

L1 = {b · an · b · an · b | n ∈ N}.

Proving L1 is non-regular is straightforward exercise in the pumping lemma for
regular languages (for example, see [18]). Therefore, we can continue with the proof
with the knowledge that L(ϕ) is not regular.

Assume there exists a regularly typed pattern language αT := (α, T) such that
L(αT) = L(ϕ). Further assume that α := α1 · α2 · · · αn where αi ∈ � for all i ∈ [n].
We can make the assumption that α is terminal free because every terminal symbol a
can be represented as a new variable xa with the regular type T (xa) := {a}.

Since for all w ∈ L(ϕ), we have that |w|a ≥ 1, it follows that there is some
i ∈ [n] such that for all u ∈ T (αi), we have that |u|a ≥ 1. Otherwise, there is a word
w ∈ L(αT) such that |w|a = 0. This can be seen by picking a substitution τ such that
τ(α) ∈ L(αT) and |τ(x)|a = 0 for all x ∈ vars(α). Note that |α|αi = 1 and there
cannot exist i ′ ∈ [n] \ {i} where for all u ∈ T (αi ′) we have that |u|a ≥ 1. Otherwise,
abbb ∈ L(ϕ) would not be expressible. We call αi the a-keeper.

Likewise, there must be some x ∈ vars(α), where for all v ∈ T (x) we have that
|v|b ≥ 1. But, x may not be unique, and |α|x = 1 does not necessarily hold. We call

123

Theory of Computing Systems

such a variable x ∈ vars(α) a b-keeper. Let j ∈ [n] be the smallest (or left-most)
position such that α j is a b-keeper, and let k ∈ [n] be the largest (or right-most)
position such that αk is a b-keeper.

For any i ′ ∈ [n] where αi ′ is not the a-keeper, nor a b-keeper, we have that
ε ∈ T (αi ′). This is because we have shown there is exactly one a-keeper, and there
exists w ∈ L(ϕ) such that |w|c = 0 for all c ∈ � \ {a,b}.

We now look at some cases for the relative positions of i , j , and k, and prove a
contradiction for each:

Case 1. i < j : For this case, we consider thosew ∈ L(αT)where |w|a = 1, |w|b = 3
and |w|c = 0 for all c ∈ � \ {a,b}. Due to the fact that i < j , we have
that the a-keeper appears to the left of the left-most b-keeper. Therefore, for
any word in L(αT), the a-symbol must appear to the left of some b-symbol.
Thus, bbba ∈ L(ϕ) \ L(αT).

Case 2. i > k: For this case, we again consider those w ∈ L(αT) where |w|a = 1,
|w|b = 3 and |w|c = 0 for all c ∈ � \ {a,b}. Analogously to Case 1, the
a-symbol must come to the right of some b-symbol. It therefore follows that
abbb ∈ L(ϕ) \ L(αT).

Case 3. j < i < k: Again, we consider those w ∈ L(αT) where |w|a = 1, |w|b = 3,
and |w|c = 0 for all c ∈ � \ {a,b}. For any w ∈ L(αT) where |w|a = 1,
we have that the a-symbol must come between two b-symbols (analogously
to Case 1 and Case 2). It therefore follows that bbba ∈ L(ϕ) \ L(αT).

Case 4. i = j = k: Let x = αi . We know that for all y ∈ vars(α) where y �= x ,
we have that ε ∈ T (y) since it is neither an a-keeper, nor a b-keeper. We
hence claim that T (x) ⊆ L(ϕ). To prove this claim, let w ∈ T (x) \ L(ϕ).
We can then define a substitution σ such that σ(x) = w and σ(y) = ε for
all y ∈ vars(α) where y �= x . Consequently, for all w ∈ T (x), we have
that |w|a ≥ 1 and |w|b ≥ 3. Since otherwise, L(ϕ) �= L(αT). We now claim
that T (x)∩ (b ·a∗ ·b ·a∗ ·b) = b ·an ·b ·an ·b. To prove this claim, assume
the contrary. Then, there is some w ∈ T (x) where w = b · ap · b · aq · b
where p, q ∈ N and q �= p. This is a contradiction, since T (x) ⊆ L(ϕ) does
not hold. Consequently, T (x) is not regular which is a contradiction.

Hence, L(αT) �= L(ϕ) and thus there does not exist a regularly typed pattern that
can generate L(ϕ). Consequently, L(ϕ) ∈ L(FC-CQ) \ L(PAT[REG]). ��

The focus of the proof of Lemma 5 is giving a language that is in L(FC-CQ) but is
not in L(PAT[REG]). This immediately implies the following:

• L(PAT[REG]) # L(FC-UCQ) as FC-UCQ cannot represent all regular languages
and we have given some L ∈ L(FC-UCQ) \ L(PAT[REG]), and

• L(PAT[REG]) ⊂ L(FC[REG]-CQ) as each regularly typed pattern language can be
easily written as an FC[REG]-CQ.

We now summarize our observations on the relative expressive power in the fol-
lowing Theorem.

Theorem 2 Fig.1 describes the relations between language classes.

123

Theory of Computing Systems

The exact relationship between FC-UCQ and FC[REG]-CQ remains open. From [4],
we know that FC-UCQ cannot express all regular languages. Therefore, there are lan-
guages L ⊆ �∗ such that L ∈ FC[REG]-CQ \ FC-UCQ. The authors conjecture that
L(FC-UCQ) and L(FC[REG]-CQ) are incomparable.

We leave the following problems open:

Open Problem 1. L(FC-UCQ) = L(EP-C)?
Open Problem 2. L(FC[REG]-CQ) = L(FC[REG]-UCQ)?
Open Problem 3. L(FC[REG]-CQ) = L(EP-C[REG])?

The authors conjecture that L(FC[REG]-CQ) ⊂ L(FC[REG]-UCQ), and therefore
conjecture that L(FC[REG]-CQ) ⊂ L(EP-C[REG]).

3.2 Connection to RelatedModels

In the proof of Lemma 1, we showed how to re-write formulas of the form (x =̇ α) as
(w =̇ px · α · sx) ∧ (w =̇ px · x · sx), where px , sx ∈ � are new and unique variables.
Hence, every FC-CQ-formula can be represented as ϕ := ∧n

i=1(w =̇ αi), and therefore
can be understood as a system of word equations {(w =̇ α1), (w =̇ α2), . . . , (w =̇ αn)}
that generates the language

{σ(w) | σ |� (w =̇ αi) for all i ∈ [n]}.

Consequently,FC-CQ languages canbe seen as a natural extensionof pattern languages,
or as the languages of restricted cases of systems of word equations. FC[REG]-CQ
analogously extends regularly typed pattern languages.

We further explore the connection between FC[REG]-CQ and related language gen-
erators by considering a restricted case of xregex. These are regular expressions that
are extended with a repetition operator that allows for the definition of non-regular
languages, and that is available in most modern regular expression implementations
(see for example [19], which also contains a discussion of some peculiarities of these
implementations).

Definition 4 We define the set of xregex recursively:

γ := ∅ | ε | a | (γ ∪ γ) | (γ · γ) | (γ)∗ | x{γ } | &x,

where a ∈ � and x ∈ �. For the purposes of this short section on xregex, we assume
that for every variable x that occurs in γ , we have that x{λ}, for some λ ∈ xregex,
must occur exactly once.

Informally, an xregex of the form x{γ } matches the same words as γ , and also
“stores” the matched word in x . Then, any occurrence of &x repeats the word stored
in x .

Let γ ∈ xregex. If x{λ} is a subexpression of γ , and &y is a subexpression of
λ, then we say that x depends on y. If x depends on y, and y depends on z, then x
depends on z. We assume that for all γ ∈ xregex, if x depends on y, then y cannot

123

Theory of Computing Systems

depend on x . Furthermore, we assume that x cannot depend on x . This avoids defining
the language for troublesome expressions such as x{a · &y · &x} · y{&x · b}.
Example 5 Let γ2 := x{a · �∗} · (&x)∗. Then, L(γ2) is the language of words of the
form (a · w)n where w ∈ �∗ and n ≥ 1.

While the term regular expression is sometimes used to refer to expressions that
contain variables, we reserve the term regular expression for its more “classical”
definition.

Definition 5 We call γ ∈ xregex a regex path if for every subexpression of the form
(λ)∗, we have that λ is a regular expression, and for every subexpression of the form
(λ1 ∪ λ2), we have that λ1 and λ2 are regular expressions. Let XRP denote the set of
regex paths.

Regex paths were considered in [10] (in the context of document spanners). Since
we onlyworkwith XRP, it is unnecessary for us to define the languages generated by an
xregex. Therefore, we do not need to deal with cases such as x{λ} is a subexpression
of (γ)∗, or ((x{aba∗}) ∪ (&x)).

Todefine the languagegenerated by anXRP,weuse ref-words,whichwere originally
introduced by Schmid [20].

Definition 6 The language defined by γ ∈ XRP is defined in a two-step process. First,
we say that γ defines a language of ref-words, denoted by R(γ), over the alphabet
(� ∪ �)∗, where � := ⋃

x∈�{�x ,�x ,&x}. We define R(γ) as follows:

• if γ ∈ � ∪ {&x | x ∈ �} ∪ {∅} ∪ {ε}, then R(γ) = γ ,
• if γ = (γ1 ∪ γ2), then R(γ) = R(γ1) ∪ R(γ2),
• if γ = (γ1 · γ2), then R(γ) = R(γ1) · R(γ2),
• if γ = (λ)∗ for some λ ∈ XRP, then R(γ) = (R(λ))∗, and
• if γ = x{λ} for some λ ∈ XRP, thenR(γ) = �x R(λ) �x .

Let clr : (� ∪ �)∗ → �∗ be a partial morphism, such that clr(a) = a for all
a ∈ �∗, and clr(x) = ε otherwise.

Every u ∈ R(γ) gives rise to a word w ∈ �∗ using the following construction:
Let ū ∈ (� ∪ {�x ,�x })∗ be defined as the word that results from iteratively replacing
every occurrence of &x in γ with v, where �x v �x
 u until no such &x occurs.
Then w := clr(ū). We call such a word w the derivation of u. Finally, we define

L(γ) := {w ∈ �∗ | w is the derivation of some u ∈ R(γ)}.

Note that many definitions for the semantics of xregex exist; for example, see [20,
21]. For our purposes, the definition for XRP languages given in Definition 6 is suffi-
cient.

Using a proof similar to the proof of Lemma 3.19 in [10] and the proof of Lemma
3.6 in [8], we show the following:

Proposition 3 For every γ ∈ XRP, we can effectively construct a formula ϕ ∈
FC[REG]-CQ, such that L(ϕ) = L(γ).

123

Theory of Computing Systems

Proof Let γ ∈ XRP. We construct FC[REG]-CQ such that L(FC[REG]-CQ) = L(γ) by
an inductive proof on the definition of XRP. To aid in this construction, we represent
γ as a rooted parse tree Tγ , which we define recursively. Let γ be the root of Tγ , then:

• If γ is a regular expression or γ = &x for some x ∈ �, then γ is a leaf node,
• if γ = (γ1 · γ2) where either γ1 or γ2 contains a variable, then γ has γ1 as a left
child, and γ2 as a right child, and

• if γ = x{λ} for some λ ∈ XRP, then γ has λ as a single child.

We then associate each node n of Tγ with a variable vn ∈ � as follows: If n is of
the form x{λ}, or &x for some x ∈ �, then let vn := x . Otherwise, let vn := zn , where
zn is a new variable that is unique to n.

Then, for every node n, we also associate an atom An (either a word equation, or a
regular constraint) as follows:

• If n is a concatenation with left child l, and right child r , then we have that
An := (vn =̇ vl · vr),

• if n is of the form x{λ}, let An := (vn =̇ vc), where c is the child of n. Recall that
for this case, we have that vn := x ,

• if n is a regular expression λ, let An := (vn ∈̇ λ), and
• if n is of the form &x , let An := (vn =̇ x).

Let V be the set of nodes in Tγ , and let r be the root of Tγ . Then, let

ϕγ :=
∧

n∈V
An ∧ (w =̇ vr).

We prove the correctness of this construction inductively. First, for leaf nodes of Tγ

that are regular expressions, the correctness follows immediately from the fact that we
have simply represented the regular expression as a regular constraint. To represent
leaf nodes of the form &x in ϕγ , we simply use the variable x .

Next, we consider non-leaf nodes of Tγ . If n is a non-leaf node, then either n = x{λ}
for some λ ∈ XRP, or n = (λ1 · λ2). For the case where n = (λ1 · λ2), the fact that
correctness holds follows from the fact that n is representedwith the atom (vn =̇ vl ·vr),
where vl and vr are the variables that represent λ1 and λ2 respectively. Lastly, if n is a
non-leaf node of the form x{λ}, we have that n is associated with the atom (x =̇ vc),
where vc is the variable that represents λ.

To conclude the proof, we have the extra word equation (w =̇ vr) where vr is the
variable that represents the root node γ , it follows that L(ϕγ) = L(γ). ��

Thus, a large and natural class of xregex can be represented by FC[REG]-CQ, and
the conversion is lightweight and straightforward. If one is willing to go beyond
FC[REG]-CQs, this could be adapted to larger classes of xregex, although simulating
edge cases in the definition of the latter might make the formulas a bit unwieldy.
But a big advantage of logic over xregex is that optimization techniques from rela-
tional first-order logic (such as acyclicity [8] or bounded-width [4]) directly lead to
tractable fragments. Furthermore, since we are able to use conjunction directly in an
FC[REG]-CQ-formula, FC[REG]-CQ can be used as a more compact representation of
XRP.

123

Theory of Computing Systems

4 Decision Problems

The first decision problem we shall look at is the membership problem for FC-CQ
defined as follows: Given w ∈ �∗ and a formula ϕ ∈ FC-CQ as input, decide whether
w ∈ L(ϕ). But first, we define the class of regular patterns:

Definition 7 A pattern α ∈ (� ∪ �)∗ is a regular pattern if |α|x = 1 for every
variable x ∈ vars(α). An FC-CQ consists only of regular patterns if it is of the form∧n

i=1(w =̇ αi) where αi is a regular pattern for each i ∈ [n].
The regular patterns have desirable algorithmic properties (although this comes at

the expense of expressive power). For example, the membership problem for regular
pattern languages can be solved in linear time [22]. When extending regular patterns
to FC-CQ, these desirable algorithmic properties do not carry over.

Theorem 4 Themembership problem for FC-CQ isNP-complete, and remainsNP-hard
even if the formula consists only of regular patterns and the input word is of length
one.

Proof The upper bound is trivial and we therefore focus on the NP-hardness proof
for the restricted class of FC-CQs considered in the theorem’s statement. To prove
NP-hardness when the formula consists only of regular patterns, and the input word is
of length one, we reduce from the NP-complete problem of 1-in-3-SAT. An instance
of 1-in-3 SAT consists of a conjunction of clauses P := C1 ∧C2 ∧ · · · ∧Cm and a set
of propositional variables {y1, y2, . . . , yk}.

Each clause Ci is defined as a disjunction of exactly three distinct literals, where
each literal is either y j or ¬y j for j ∈ [k]. A satisfying assignment for P is an
assignment τ : {y1, . . . , yk} → {0, 1} that satisfies P , and exactly one literal in every
clause is evaluated to 1 (every other literal must evaluate to 0).

For every propositional variable y, let ϕy := (w =̇ yF · yT)where yF , yT ∈ �. For a
literal �, let x� := yF if � = ¬y, and let x� := yT otherwise; where yF , yT ∈ �. Then,
for a clauseC = (�1∨�2∨�3)where �1, �2, �3 are literals, letψC := (w =̇ x�1 ·x�2 ·x�3).

Given an instance P := C1 ∧ C2 ∧ · · · ∧ Cm of 1-in-3-SAT with k variables, let

ϕP :=
k∧

i=1

ϕyi ∧
m∧

j=1

ψC j .

It is clear that ϕP only consists of regular patterns. Next, we prove that σ |� ϕP where
σ(w) = a if and only if P is satisfiable: Assume there exists a substitution σ such that
σ |� ϕ and σ(w) = a. Since σ(w) = a, for every variable yi for i ∈ [k] we have that
σ(yiF · yiT) = a, thus either σ(yiT) = a and σ(yiF) = ε, or vice versa. This encodes
yi as true or false.

We encode each clause Ci as ϕCi which contains a concatenation of variables that
correspond to the literals that appear in Ci . Since we have that σ |� ψC j for all
j ∈ [m], it follows that exactly one of the variables that encodes a literal of C j must
be a, and thus the other literals must be ε. This corresponds to every clause in P being

123

Theory of Computing Systems

evaluated to true, and exactly one literal from every clause being evaluated to true.
Hence, if σ |� ϕ where σ(w) = a if and only if P is satisfiable. ��

We note that the proof of Theorem 4 is fairly standard and only requires minor
tweaks from the proof thatmembership for pattern languages isNP-complete [23] even
under strict restrictions [24–26]. We give a proof as we shall require that membership
for FC-CQ remains NP-hard even if the input word is of length one for Corollary 1.

Our next focus is on static analysis problems.

Definition 8 For each of FC-CQ and FC[REG]-CQ, we define the following static anal-
ysis problems:

1. Universality: Is L(ϕ) = �∗?
2. Emptiness: Is L(ϕ) = ∅?
3. Regularity: Is L(ϕ) regular?
4. Equivalence: Is L(ϕ1) = L(ϕ2)?

First, we consider the complexity bounds of the universality problem for FC-CQ.

Corollary 1 Universality is NP-complete for FC-CQ.

Proof First recall Lemma 1. Given ϕ ∈ FC-CQ, we have that L(ϕ) = �∗ if and only
if ε,a ∈ L(ϕ). From Theorem 4, it follows that the upper bounds are trivial. For the
lower bounds, consider the construction of a formula ϕP from an instance of 1-in-
3-SAT P given in the proof of Theorem 4. Clearly ε ∈ L(ϕP). Therefore, to decide
whether L(ϕP) = �∗, it is necessary and sufficient to decide whether a ∈ L(ϕP)

which is NP-hard (Theorem 4). ��
Proposition 5 Emptiness is PSPACE-complete for FC[REG]-CQ, and emptiness is NP-
hard and in PSPACE for FC-CQ.

Proof Since FC-CQ is a strict subclass of FC[REG]-CQ, we prove the PSPACE upper
bounds for FC-CQ and FC[REG]-CQ simultaneously.

PSPACE Upper Bounds The emptiness problem for C ∈ {FC-CQ, FC[REG]-CQ} is:
Given ϕ ∈ C, decide whether there exists any w ∈ �∗ such that w ∈ L(ϕ). However,
this is equivalent to determining whether there exists some w safe substitution σ such
that σ |� ϕ. This is known as the Satisfiability problem. Since the satisfiability problem
is inPSPACE forEP-C[REG]; for example, see [27], it follows that the emptiness problem
for C is in PSPACE, for any C ∈ {FC[REG]-CQ, FC-CQ}.
FC[REG]-CQ Lower BoundsWe reduce from the satisfiability problem for word equa-
tions with regular constraints. That is, given instances (α =̇ β, T) where α, β ∈
(�∪�)∗ and T is a typing function thatmaps variables inα andβ to regular languages,
decidewhether there exists a pattern substitution σ : (�∪�)∗ → �∗ such that σ(α) =
σ(β) and σ(x) ∈ T (x) for variables x that appear in α and β. Then, (α =̇ β, T) is satis-
fiable if and only if the language forϕ := (w =̇α)∧(w =̇β)∧∧

x∈vars(αβ)(x ∈̇ T (x)) is
non-empty. Since the satisfiability problem for word equations with regular constraints
is PSPACE-complete (see Theorem 7 of [28]), the emptiness problem for FC[REG]-CQ
is PSPACE-complete.

123

Theory of Computing Systems

FC-CQ Lower Bounds
We reduce from the pattern language membership problem, which is an NP-complete
problem [23]. Given w ∈ �∗ and a pattern α, construct ϕ := (w =̇ w) ∧ (w =̇ α).
If w ∈ L(α), then L(ϕ) = {w}. Otherwise, L(ϕ) = ∅. Hence, FC-CQ-emptiness is
NP-hard. ��

Showing the exact complexity bounds of the emptiness problem for FC-CQ
seems rather difficult. This is because the emptiness problem for FC-CQ is two-
way polynomial-time reducible from the satisfiability problem for word equations.
More precisely, the word equation (αL =̇ αR) is satisfiable if and only if the lan-
guage generated by ϕ := (w =̇ αL) ∧ (w =̇ αR) is non-empty. Furthermore, from
ϕ := ∧n

i=1(xi =̇ αi), one can construct – in polynomial time – a word equation
(αL =̇ αR) such that L(ϕ) �= ∅ if and only if (αL =̇ αR) is satisfiable; see Section 5.3
in Chapter 6 of [17]. Thus, the emptiness problem for FC-CQ is a reformulation of the
big open problem as to whether word equation satisfiability is in NP. See [29, 30] for
more details on word equation satisfiability.

Next, we consider universality for FC[REG]-CQ and regularity for FC-CQ. However,
these problems require some technical preparations. We define so-called extended
Turing machines, which were introduced by Freydenberger [31]. The following def-
initions and descriptions follows closely to the definition and description in [31].
However, some details that are not important for our use have been omitted. Refer
to [31] for these omitted details. While these extended Turing machines were intro-
duced for the particulars of so-called extended regular expressions, we observe that
they are useful for our purposes. They have also been used to show universality for
EP-FC is undecidable (Theorem 4.7 of [4]).

4.1 Extended TuringMachines

An extended Turing machine is denoted as a triple X := (Q, q1, δ) where Q :=
{q1, q2, . . . , qk} for some k ≥ 1 is the set of states, q1 ∈ Q is the initial state, and δ is
the transition function.

Extended Turing machines have a tape alphabet of � := {0, 1} where 0 is used as
the blank symbol. Let us now define the transition function

δ : � × Q → (� × {L, R} × Q) ∪ {HALT} ∪ (CHECKR × Q).

If δ(a, q) = (b, M, p) where a,b ∈ � are tape symbols, p, q ∈ Q are states, and
M ∈ {L, R}, then the machine replaces the symbol under the head (in this case a)
with b, moves the head either to the left or the right (depending on M), and enters state
p. As a convention, we adopt the assumption from [31] that δ(0, q1) = (0, L, q2). If
δ(a, q) = HALT, then the machine halts execution, and accepts. We always assume
that there is at least one (a, q) ∈ � × Q such that δ(a, q) = HALT.

We now need to look at what it means if δ(a, q) = (CHECKR, p). If indeed
δ(a, q) = (CHECKR, p), then the machine immediately checks – without moving
the head’s position – whether the tape to the right of the head’s current position only
contains blank symbols. If the right-side of the tape is blank, then the machine moves

123

Theory of Computing Systems

to state p. Otherwise, the machine stays in state q. Hence, if the right-side of the tape
is not blank, then the machine continuously remains in the same state, and thus we
enter an infinite loop.

Without going into details, the CHECKR-instruction is used in-place of meta-
symbols used to mark the start and end of the input word. See [31] for more discussion
on the use of the behaviour of the CHECKR-instruction.

Let aω denote the one-sided infinite word (ti)∞i=1 where ti = a for all i ∈ N+. Let
X := (Q, q1, δ) be an extended Turing machine. A configuration C for X is a tuple
of the form (wL , wR,a, q), where we have:

• wL , wR ∈ �∗0ω are used to denote the tape to the left and right of the head’s
current position respectively (wL is read from right to left, starting with the cell
immediately to the left of the head’s current position),

• a ∈ � is the symbol currently under the head of X , and
• q ∈ Q is the current state.

For two configurationsC,C ′ we useC �X C ′ to denote that ifX is in configuration
C , then it immediately enters C ′. For an example, see Fig. 2.

We define dom(X) for an extended Turing machine X , as the set of all words
w ∈ �∗ · 0ω where, if X starts in the initial configuration (0ω,w,a, q1) for some
a ∈ �, then X halts after a finite number of steps.

Lemma 6 (Freydenberger [31])Consider the followingdecision problems for extended
Turing machines:

1. Emptiness: Given an extended Turing machine X , is dom(X) empty?
2. Finiteness: Given an extended Turing machine X , is dom(X) finite?

Then emptiness is not semi-decidable, and finiteness is neither semi-decidable, nor
co-semi-decidable.

We interpret the left-hand and right-hand side of the tape as natural numbers. For
an infinite sequence t := (ti)∞i=1 over �, let

e(t) :=
∞∑

i=0

2ie(ti),

where e(x) = x for x ∈ {0, 1}. Therefore, e(wL) and e(wR) can be thought of as
a binary number, where the cell closest to the head is the least significant bit. For

Fig. 2 This figure illustrates two configurations of some extended Turing machine X . The configuration
on the left shows X currently in state q j with the head reading 0. If δ(0, q j) = (1, R, ql), then it follows
that the configuration on the right is the immediate successor configuration. Note that w′

L = 1 · 0 · 0ω

123

Theory of Computing Systems

example, if wL = 01101 · 0ω, then e(wL) = 22. Note that since there can only be
a finite number of 1s on the left-hand side and the right-hand side of the tape, the
function e is well defined.

For any configuration C = (wL , wR,a, qi) of X , we define an encoding function
enc that encodes C over the alphabet {0, #} as follows:

enc(wL , wR,a, qi) := 0e(wL)+1 · # · 0e(wR)+1 · # · 0e(a)+1 · # · 0i .

If (Ci)
n
i=1 is a sequence of configurations forX , we say that (Ci)

n
i=1 is an accepting

run if C1 is an initial configuration, Cn is a halting configuration, and Ci �X Ci+1 for
all i ∈ [n − 1].
Observation 1 (Freydenberger [31]) Let X := (Q, q1, δ) be an extended Turing
machine in the configuration C = (wL , wR,a, qi), and δ(a, qi) = (b, M, q j), where
a,b ∈ � are tape symbols, qi , q j ∈ Q are states, and M ∈ {L, R}. For the unique
successor state C ′ = (w′

L , w′
R,a′, q j) where C �X C ′, we have that:

I f M = L : e(w′
L) = e(wL) div 2, e(w′

R) = 2e(wR) + b, a′ = e(wL) mod 2,
i f M = R : e(w′

L) = 2e(wL) + b, e(w′
R) = e(wR) div 2, a′ = e(wR) mod 2,

where div denotes integer division, and mod denotes the modulo operation.

For an extended Turing machine X , let us define a language VALC(X) ⊆ �∗.

VALC(X) := {##enc(C1)## · · · ##enc(Cn)## | (Ci)
n
i=1 is an accepting run}.

Thus, VALC(X) encodes the “computational history” of every accepting run of X .
Let us also define INVALC(X) := �∗ \ VALC(X). The language INVALC(X) can be
thought of as the language of computational histories of every erroneous run ofX . We
distinguish between two types of errors that prohibits a word from being in VALC(X),
and hence is in INVALC(X):

1. Structural errors. A word w ∈ �∗ contains a structural error if it does not encode
any sequence of configurations that starts with a valid initial state for X , and ends
with a valid halting state for X .

2. Behavioural errors. A word w ∈ �∗ contains a behavioural error if it encodes a
sequence of configurations (Ci)

n
i=1 for some n ≥ 1, but Ci �X Ci+1 does not

hold for some i ∈ [n − 1]. These behavioural errors can further be distinguished
between three types of errors:

(a) State errors. The state in Ci+1 is incorrect, or Ci is a halting configuration.
(b) Head errors. The head in Ci+1 reads the wrong symbol.
(c) Tape errors. The tape in Ci+1 does not follow from Ci .

From [31], we know that for a given extended Turing machine X , the language
INVALC(X) is regular if and only if dom(X) is finite. Since finiteness of X is unde-
cidable (again, see [31]), it follows that given X , it is undecidable to determine
whether INVALC(X) is regular. Similarly, due to the fact that the emptiness problem

123

Theory of Computing Systems

for extended Turing machines is undecidable, determining whether INVALC(X) = �∗
is undecidable.

Recall Corollary 1, which states that the universality problem for FC-CQ is NP-
complete. Somewhat surprisingly, when we add regular constraints, the universality
problem becomes undecidable.

Theorem 6 For FC[REG]-CQ, universality is not semi-decidable, and regularity is nei-
ther semi-decidable, nor co-semi-decidable.

To prove Theorem 6, we give a construction that takes an extended Turing
machine X , and returns ϕ ∈ FC[REG]-CQ such that L(ϕ) = INVALC(X). The proof
of Theorem 6 is given in Section4.2.

Observing Corollary 1, we know that the universality problem for FC-CQs is NP-
complete. Therefore, we cannot effectively construct a formula ϕ ∈ FC-CQ such
that L(ϕ) = INVALC(X) for a given extended Turing machine X (otherwise, the
emptiness problem for extended Turing machines would be NP-complete). However,
using a similar proof idea to Theorem 6, we are able to conclude that the regularity
problem for FC-CQ is undecidable.

Theorem 7 The regularity problem for FC-CQ is neither semi-decidable, nor co-semi-
decidable.

In order to prove Theorems 6 and 7, we look at all possible errors that prohibit
some w ∈ �∗ from being in VALC(X). Then, each of these errors can be encoded as
an FC[REG]-CQ or an FC-CQ. However, due to the fact that FC[REG]-CQ and FC-CQ
do not have disjunction, we require some encoding gadgets to simulate disjunction
using concatenation. Referring back to Example 4, we can see a simple example of
simulating disjunction in FC[REG]-CQ. The full proof is given in Section4.3.

To prove Theorem 7, we show how to convert an extended Turing machine X into
ϕ ∈ FC-CQ, such that L(ϕ) = 0 · # · 0 · #3 · INVALC(X) · #3. Thus:
Corollary 2 The equivalence problem for FC-CQ is neither semi-decidable, nor co-
semi-decidable.

Proof From the proof of Theorem 7, we can construct ϕ ∈ FC-CQ from a given
extended Turing machine X , such that L(ϕ) = 0 · # · 0 · #3 · INVALC(X) · #3. Thus,
determining L(ϕ) = L(ψ) where ψ := (w =̇ 0 · # · 0 · #3 · x · #3) for some x ∈ � is
neither semi-decidable, nor co-semi-decidable. ��

While these undecidability results are themselves of interest, in Section5, we con-
sider their implications with regards to minimization and non-recursive trade-offs.

The proofs of Theorems 6 and 7 are given in Sections4.2 and 4.3 respectively. These
proofs are rather lengthy, therefore the reader may wish to skip to the consequences
of these results given in Section5.

4.2 Proof of Theorem 6

Lemma 7 Given an extended Turing machine X , one can effectively construct ϕ ∈
FC[REG]-CQ such that L(ϕ) = INVALC(X).

123

Theory of Computing Systems

Proof Let X be an extended Turing machine. Let � := {#, 0}. We construct ϕ to
simulate a disjunction of errors, each of which prohibits w ∈ �∗ from being in
VALC(X). Let

ϕ := (w =̇ xerror · xtape) ∧ (xerror ∈̇ γerror) ∧ (
xtape ∈̇ (γ ′

struc ∨ ε)
) ∧ ψtape,

where all errors except for tape errors are “pushed” into the regular constraint γerror.
The regular constraint γ ′

struc accepts all encoded runs that do not contain a structural
error (we shall define this regular expressionwhen handling structural errors).We shall
ensure that there is some σ such that σ |� ϕ where σ(w) = ε. Thus, we can choose
between a tape error, or some other error, by considering those substitutions where
σ |� ϕ and either σ(xerror) �= ε or σ(xtape) �= ε. If σ(xerror) �= ε and σ(xtape) �= ε

both hold, then we shall ensure that there is a tape error with the definition of the
subformula ψtape.

As one can observe from the proof of Theorem 14 in [31], all errors except for
tape errors can be encoded as a regular expression. We give a formal proof here for
completeness sake, and due to the fact that this proof can be considered a primer for
the proof of Theorem 7.

Before looking at the actual construction, we define a useful partition on � × Q.
Given an extended Turing machine X := (Q, q1, δ), we define the following sets:

SHALT :={(a, q j) ∈ � × Q | δ(a, q j) = HALT},
SL,R :={(a, q j) ∈ � × Q | δ(a, q j) ∈ (� × {L, R} × Q)}, and

SCHECK :={(a, q j) ∈ � × Q | δ(a, q j) ∈ (CHECKR × Q)}.
Structural Errors To handle structural errors, we first construct a regular expression
γ ′
struc that accepts all words that do not have a structural error. Then, we use the

compliment of this regular language to handle said structural errors.
First, let us consider the following regular expression:

γ1 := ##(0+#0+#0(0 ∨ ε)#0+##)+.

We have that L(γ1) provides the “backbone” for a sequence of configurations. We
ensure that the first configuration is a starting configuration using

γ2 := ##0#0+#0(0 ∨ ε)#0## · �∗.

Likewise, we ensure that the final configuration is a halting configuration. Let

γ3 :=
∨

(a,q j)∈SHALT

(
�∗#0e(a)+1#0 j##

)
.

Lastly, we only ensure valid states are used. Let

γ4 := ##(0+#0+#0+#0 ·
∨

m∈|Q|
(0m) · ##)+.

123

Theory of Computing Systems

Notice that due to the definition of enc, if we have #00m##, then m encodes the
state of the current configuration. Using the occurrence of ## as a way to parse out the
individual elements of a configuration shall be commonly used throughout this proof
and the proof of Theorem 7.

Let us now define γ ′
struc such that

L(γ ′
struc) = L(γ1) ∩ L(γ2) ∩ L(γ3) ∩ L(γ4).

We have that γ ′
struc defines those sequence of configurations that start with an initial

configuration of X , ends with a halting configuration of X , and only uses states from
X . This regular expression can be constructed, due to the fact that regular languages
are effectively closed under intersection. 3

Then, let γstruc such that L(γstruc) = �∗ \ L(γ ′
struc). Thus, γstruc handles all struc-

tural errors. Notice that ε ∈ L(γstruc).

State Errors To handle state errors, we define γstate as:

γstate := γ halt
state ∨ γ

L,R
state ∨ γ check

state ,

where γ halt
state, γ

L,R
state, and γ check

state are to be defined. Each of these regular expressions
deal with a certain type of instructions. For example, γ

L,R
state handles state errors for

those instructions that cause the head to move.
Let

γ halt
state :=

∨

(a,q j)∈Shalt

(
�∗#0e(a)+1#0 j##0�∗).

It follows that for all w ∈ L(γ halt
state), either w has a structural error, or w has a halting

configuration that has a successor configuration.
To help with other state errors, we define a useful regular language γ�= j for every

j ∈ Q, such that L(γ �= j) := {0k | k �= j}.
Next, we define γ

L,R
state as follows

γ
L,R
state :=

∨

(a,q j)∈SL,R

(
�∗#0e(a)+1#0 j##0+#0+#0+#γ �= j ′##�

∗),

where δ(a, q j) = (b, M, q j ′) for all (a, q j) ∈ SL,R. Thus, for any w ∈ L(γ
L,R
state),

it follows that w ∈ INVALC(X) since either there is a structural error, or the state
in one configuration does not follow from the head symbol-state pair in the previous
configuration.

The last type of state error we need to handle are for those (a, q j) ∈ � × Q such
that δ(a, q j) = (CHECKR, ql). To that end, we define

γ
a,q j
state :=(�∗#0#0e(a)+1#0 j##0+#0+#0+#γ �=l##�

∗)∨
(�∗#00+#0e(a)+1#0 j##0+#0+#0+#γ �= j##�

∗).

3 Note that the regular expression γ ′
struc is the same as the regular constraint placed on the variable xtape.

123

Theory of Computing Systems

Recall that if δ(a, q j) = (CHECKR, ql), then we have two cases: If wR = 0ω, then
X moves into state ql . Otherwise, we have that wR �= 0ω, and X remains in q j which
leads to an “infinite loop”. Thus, γ

a,q j
state handles CHECKR instructions by moving to the

incorrect state for the cases where wR = 0ω and wR �= 0ω.
Then, let

γ check
state :=

∨

(a,q j)∈Scheckstate

γ
a,q j
state .

We have now considered every state error, and encoded these errors in one of three
regular expressions (γ halt

state, γ
L,R
state, and γ check

state). Since γstate is a disjunction of these
three regular expressions, we have handled these state errors.

Head Errors If (wL , wR,a, q j) �X (w′
L , w′

R,a′, ql) where δ(a, q j) = (b, L, ql),
then from Observation 1, we know that a′ = e(wL) mod 2.

Therefore, for all (a, q j) where δ(a, q j) = (b, L, ql), we define

γ
a,q j

head :=(�∗#0(00)∗#0+#0e(a)+1#0 j##0+#0+#00#�∗)∨
(�∗#00(00)∗#0+#0e(a)+1#0 j##0+#0+#0#�∗).

Thus, for both parities of wL , we have a parity error in the head symbol.
We do the analogous encoding for those (a, q j) where δ(a, q j) = (b, R, ql):

γ
a,q j

head :=(�∗#0(00)∗#0e(a)+1#0 j##0+#0+#00#�∗)∨
(�∗#00(00)∗#0e(a)+1#0 j##0+#0+#0#�∗).

This expression comes from considering Observation 1, and encoding the errors
for the new head symbol for both parities of e(wR).

To conclude encoding head errors, we consider the CHECKR instruction. From the
definition, CHECKR instructions do not change the head. Thus, for every (a, q j) ∈
� × Q where δ(a, q j) = (CHECKR, ql), we have

γ
a,q j

head := �∗#0e(a)+1#0 j##0+#0+# · γ �=e(a)+1 · #�∗.

Since the new head symbol is not the same as the previous one, we have handled
head errors for the CHECKR instruction. While we defined the regular expressions
γ �= j with state errors in mind, since 0e(a)+1 ∈ {0, 00}, we can reuse these regular
expressions in γ head

a,q j
, as can be seen above.

Now, let us define
γhead :=

∨

(a,q j)∈(SL,R∪SCHECK)

γ
a,q j

head.

It follows that w ∈ L(γhead) if and only if w contains a head error or a structural
error.

Now let us define
γerror := γstruc ∨ γstate ∨ γhead.

123

Theory of Computing Systems

Therefore, γerror contains all words that have a structural error, a state error, or a
head error.
Tape Errors Recall that

ϕ := (w =̇ xerror · xtape) ∧ (xerror ∈̇ γerror) ∧ (xtape ∈̇ (γ ′
struc ∨ ε)) ∧ ψtape,

where all errors except for tape errors are “pushed” into the regular constraint γerror.
Also recall that γ ′

struc defines the language of all encoded runs that do not contain a
structural error. To handle tape errors, we consider those substitutions σ where σ |� ϕ

and σ(xtape) �= ε. Thus, σ(xtape) ∈ γ ′
struc.

We define ψtape as follows:

ψtape := (xtape =̇ x#x#x0x# · x) ∧ (xtape =̇ β1β2 · · · βρ) ∧ (x ∈̇ (ε ∨ γstructured))

∧(x# ∈̇ (# ∨ ε)) ∧ (x# =̇ x#,1 · x#,2 · · · x#,ρ)

∧(x0 ∈̇ (0 ∨ ε)) ∧ (x0 =̇ x0,1x0,2 · · · x0,ρ) ∧ ψ+

∧
ρ∧

i=1

((
x#0,i ∈̇ (#0 ∨ ε)

) ∧ (x#0,i =̇ x#,i · x0,i)
)
,

where γstructured := (0+#0(0 ∨ ε)#0+##) · (0+#0+#0+#0+##)∗, and βi ∈ �∗ for
i ∈ [ρ] are terminal-free patterns to be defined. The regular constraint γstructured
accepts a sequence of configurations without the ##0# prefix. It follows that since
we are considering the case where σ(xtape) �= ε, we have that σ(xtape) ∈ γ ′

struc.
Consequently, σ(xtape) ∈ (##0#0+#0(0 ∨ ε)#0##) · �∗. Thus, it follows that σ(x) ∈
γstructured, σ(x#) = # and σ(x0) = 0 must hold, otherwise σ(xtape) /∈ γ ′

struc.
Since we know that σ(x#) = # and σ(x0) = 0 for any σ where σ |� ϕ, we have

that there is exactly one i ∈ [ρ] such that σ(x0,i) = 0 and σ(x#,i) = # due to the
subformula:

(x# ∈̇ (# ∨ ε)) ∧ (x# =̇ x#,1 · x#,2 · · · x#,ρ) ∧ (x0 ∈̇ (0∨ ε)) ∧ (x0 =̇ x0,1x0,2 · · · x0,ρ).

For all i ′ ∈ [ρ] \ {i}, we have that σ(x0,i ′) = ε and σ(x#,i ′) = ε. Notice that it cannot
hold that σ(x#,i) = # and σ(x0,i ′) = 0 where i, i ′ ∈ [ρ] and i �= i ′ due to the previous
observation along with the subformula

ρ∧

i=1

(
(x#0,i ∈̇ (#0 ∨ ε)) ∧ (x#0,i =̇ x#,i · x0,i)

)
.

If indeed σ(x0,i) = 0 and σ(x#,i) = # for some substitution σ |� ϕ and i ∈ [ρ],
then we call i the selected error for σ . Therefore, ρ ∈ N can be seen as the number
of different patterns needed to cover all the tape errors.

The last thing to do before handling the tape errors is to defineψ+. This subformula
states that if i is the selected error, then certain variables must be replaced with 0+.

123

Theory of Computing Systems

Let

ψ+ :=
ρ∧

i=1

3∧

r=1

(
(zi,r =̇ x0,i · z′i,r) ∧ (zi,r =̇ z′i,r · x0,i)

)
.

It follows that if i ∈ [ρ] is the selected error for σ , then σ(zi,1), σ (zi,2), σ (zi,3) ∈
0+. This is from a combinatorics on words observation: If vu = uv for u, v ∈ �∗,
then there is some z ∈ �∗ and k1, k2 ∈ N such that u = zk1 and v = zk2 (for
example, see Proposition 1.3.2 in Lothaire [16]). Assume that σ(x0,i) = 0, then
σ(zi,1) = σ(z′i,1)σ (x0,i) = σ(x0,i)σ (z′i,1) and thus σ(z′i,1) ∈ 0∗. It therefore follows
that σ(zi,1) ∈ 0+ holds. Notice that if i is not the selected error, then σ(zi,r) = σ(zi,r ′)
for r ∈ [3], and σ(zi,r) = ε can hold.

We are now ready to define the patterns that encode the tape errors. The patterns βi
for i ∈ [ρ] are used to encode the actual tape errors. For i �= j where i, j ∈ [ρ], we
have vars(βi) ∩ vars(β j) = ∅. While defining each pattern βi for i ∈ [ρ], we assume
that i is the selected error. Therefore, we can assume that x#,i = #, x0,i = 0, and
zi,1, zi,2, zi,3 ∈ L(0+).

A tape error describes where we have two configurations C = (wL , wR,a, q j)

and C ′ = (w′
L , w′

R,a, q j), but w′
L or w′

R is not what is expected. We look at each
type of instruction, and encode a tape error for each.

The CHECKR-instruction: As it is the simplest to encode, due to the fact that wL =
w′

L and wR = w′
R should both hold, we start with the CHECKR-instruction.

First, we express an error by consideringwhen e(wL) < e(w′
L). For every (a, q j) ∈

SCHECK , we have a unique i ∈ [ρ] such that4

βi := yi · x#,i · zi,1︸︷︷︸
e(wL)+1

·x#,i · zi,2 · x#,i · (x0,i)e(a)+1 · x#,i · (x0,i) j · (x#,i)2 · zi,1zi,3︸ ︷︷ ︸
e(w′

L)+1

·y′
i .

As zi,3 ∈ L(0+), we have that |0e(wL)| < |0e(w′
L)| and due to the fact that CHECKR

does not change the tape, this encodes an error.
Next, we deal with when e(wL) > e(w′

L). For this case, there is a unique i ∈ [ρ]
for every (a, q j) ∈ SCHECK such that

βi := yi · zi,1zi,2︸ ︷︷ ︸
e(wL)+1

·x#,i · zi,3 · x#,i · (x0,i)e(a)+1 · x#,i · (x0,i) j · (x#,i)2 · zi,1︸︷︷︸
e(w′

L)+1

·x#,i · y′
i .

The above pattern hence encodes e(wL) > e(w′
L).

4 Note that the underbraces in the following patterns are used for intuition purposes. For example, the
variable zi,1 represents 0e(wL)+1. However, to try and avoid notational clutter, we simply use e(wL) + 1
instead.

123

Theory of Computing Systems

As with wL , we also have the analogous case where wR �= w′
R . To that end, there

are unique values i, i ′ ∈ [ρ] for every (a, q j) ∈ SCHECK such that

βi :=yi x#,i ·
e(wR)+1
︷︸︸︷
zi,1 ·x#,i · γi · x#,i ·

e(w′
R)+1

︷ ︸︸ ︷
zi,1 · zi,3 ·x#,i y′

i ,

βi ′ :=yi ′x#,i ′ · zi ′,1zi ′,2︸ ︷︷ ︸
e(wR)+1

·x#,i ′ · γi ′ · x#,i ′ · zi ′,1︸︷︷︸
e(w′

R)+1

·x#,i ′ y′
i ′ ,

where γk := (x0,k)e(a)+1 · x#,k · (x0,k) j · (x#,k)2 · zk,2 for k ∈ {i, i ′}. The reasoning
behind these errors (when wR �= w′

R) follows from the case where wL �= w′
L . That is,

we deal with the two case where e(wR) < e(w′
R), and where e(wR) > e(w′

R) with
βi and βi ′ respectively.

This concludes our look at tape errors for CHECKR instructions. For intuition, for
every symbol-state pair that leads to the CHECKR instruction, we have four patterns.
Two patterns deal with the case where e(wL) �= e(w′

L), and two patterns deal with
the case where e(wR) �= e(w′

R).

Head-movement instructions: To deal with the instructions that cause the head to
move, we partition SL,R further. Let

SL :={(a, q j) ∈ � × Q | δ(a, q j) ∈ (� × {L} × Q}}, and

SR :={(a, q j) ∈ � × Q | δ(a, q j) ∈ (� × {R} × Q}}.

Let us now consider δ(a, q j) = (b, L, ql). We know from Observation 1
that e(w′

L) = e(wL) div 2. First, we consider when e(w′
L) is too large. This is split

into two very similar cases (depending on the parity of wL). For each (a, q j) ∈ SL,
we have unique values i, i ′, i ′′ ∈ [ρ] such that

βi :=yi · x#,i
e(wL)+1

︷ ︸︸ ︷
(x0,i)

2 · (zi,1)
2 ·γi ·

e(w′
L)+1

︷ ︸︸ ︷
x0,i zi,1zi,3 ·y′

i ,

βi ′ :=yi ′ · x#,i ′ x0,i ′ · (zi ′,1)
2

︸ ︷︷ ︸
e(wL)+1

·γi ′ · x0,i ′ zi ′,1zi ′,3︸ ︷︷ ︸
e(w′

L)+1

·y′
i ′ .

We also need to handle the special case where e(wL) = 0:

βi ′′ := y′′
i · x#,i ′′ x0,i ′′︸︷︷︸

e(wL)+1

·γi ′′ · x0,i ′′ · zi ′′,1︸ ︷︷ ︸
e(w′

L)+1

·y′
i ′′

where γk for k ∈ {i, i ′, i ′′} is defined as

γk := x#,k · zk,2 · x#,k · (x0,k)
e(a+1) · x#,k · (x0,k)

j · (x#,k)
2.

123

Theory of Computing Systems

Since z′k,r ∈ 0+ for k ∈ {i, i ′, i ′′} and r ∈ [3], we have that e(w′
L) > e(wL) div 2.

To handle the case where δ(a, q j) = (b, L, ql) and w′
L is too small, we instead

encode this as wL being too large. Since e(w′
L) = e(wL) div 2, we have that e(w′

L) is
too small if e(wL) > 2e(w′

L)+1. Thus, for each (a, q j) ∈ SL, we have a unique i ∈ [ρ]
such that

βi :=yi · (zi,1)
2

︸ ︷︷ ︸
e(wL)+1

·x#,i · zi,2 · x#,i · (x0,i)
e(a+1) · (x0,i)

j · (x#,i)
2 · zi,1︸︷︷︸

e(w′
L)+1

·x#,i · y′
i .

Note that in βi the right-most occurrence of zi,1 encodes 0 · 0e(w′
L). Thus, the

occurrence of (zi,1)2 encodes (00e(w
′
L))2. Hence, (zi,1)2 encodes 2e(w′

L) + 2.
Now, let us deal with errors on the right-hand side of the tape. This is more com-

plicated since we have to deal with what is being written to the tape.
First, let us deal with w′

R being too large. We know from Observation 1 that if
δ(a, q j) = (b, L, ql), then e(w′

R) = 2e(wR)+b. Hence, for each (a, q j) ∈ SL where
δ(a, q j) = (b, L, ql), we have unique values i, i ′ ∈ [ρ] such that

βi := yi · x#,i · x0,i zi,1︸ ︷︷ ︸
e(wR)+1

·x#,i · γi · x#,i · (x0,i)
e(b)+1(zi,1)

2zi,2︸ ︷︷ ︸
e(w′

R)+1

·y′
i .

where
γi := (x0,i)

e(a)+1 · x#,i · (x0,i)
j · (x#,i)

2 · zi,3.
Therefore, βi defines the case where 0 · 0e(w′

R) = 0 · 0e(b) · 02e(wR) · 0m , for some
m ≥ 1. Therefore, if i is the selected error, then w ∈ INVALC(X).

To deal with wR = 0, we define

βi ′ := yi ′ ·x#,i ′ ·x0,i ′ ·x#,i ′ ·(x0,i ′)e(a)+1·x#,i ′ ·(x0,i ′) j ·(x#,i ′)2·zi ′,3·x#,i ′ ·(x0,i ′)e(b)+2·y′
i ′ ,

Next, let us consider when w′
R is too small. First, we just deal with the case where

e(w′
R) is of the wrong parity. To that end, for each (a, q j) ∈ SL where δ(a, q j) =

(b, L, ql), we have unique values i, i ′ ∈ [ρ] such that

βi :=γi · x#,i · x0,i (zi,2)2(x0,i)1−e(b) · x#,i · y′
i ,

βi ′ :=γi ′ · x#,i ′ · x0,i ′(x0,i ′)1−e(b) · x#,i ′ · y′
i ′ ,

where γk for k ∈ {i, i ′} is defined as:

γk := yk · x#,k · (x0,k)
e(a)+1 · x#,k · (x0,k)

j · (x#,k)
2 · zk,1.

We have that βi and βi ′ together encode

�∗ · #0e(a)+1#0 j##0+(00)∗01−e(b)#�∗.

123

Theory of Computing Systems

Since from Observation 1, e(w′
R) mod 2 = b should hold, if i or i ′ is the selected

error, then we have a parity error of the type just encoded.
We now handle the case where w′

R is too small and is of the correct parity. Again,
we encode w′

R being too small as wR being too large. For each (a, q j) ∈ SL where
δ(a, q j) = (b, L, ql), we have unique i, i ′ ∈ [ρ] where

βi :=yi ·
e(wR)+1

︷ ︸︸ ︷
x0,i zi,1zi,2 ·x#,i · γk · x#,i ·

e(w′
R)+1

︷ ︸︸ ︷
x0,i (zi,1)

2(x0,i)
e(b) ·x#,i y′

i ,

βi ′ :=yi ′ · x0,i ′ zi ′,2︸ ︷︷ ︸
e(wR)+1

·x#,i ′ · γk · x#,i ′ · x0,i ′(x0,i ′)e(b)

︸ ︷︷ ︸
e(w′

R)+1

·x#,i ′ y′
i ′ ,

where for k ∈ {i, i ′} the subpattern γk is defined as

γk := (x0,k)
e(a)+1 · x#,k · (x0,k)

j · (x#,k)
2 · z′′k .

Thus βi and βi ′ together, encode

�∗00m0n#0e(a)+1#0 j##0+#002m0e(b)#�∗,

where m ≥ 0, and n ≥ 1. It is clear from the above representation of βi and βi ′ , we
have that e(w′

R) < 2e(wR) + b. Thus, we have handled this type of error.
The final type of error that we need to encode are for those (a, q j) ∈ � × Q such

that δ(a, q j) = (b, R, ql). However, recalling Observation 1, this case is symmetrical
to when δ(a, q j) = (b, L, ql), where the roles for wL , w′

L and wR, w′
R are reversed.

Thus, it is clear that we can handle the tape errors for δ(a, q j) = (b, R, ql) the same
way we handled the tape errors for δ(a, q j) = (b, L, ql), with the minor necessary
changes.

Correctness Now, we show that w ∈ INVALC(X) if and only if w ∈ L(ϕ), where ϕ is
as defined above.

Only if direction: For each w ∈ INVALC(X), there is at least one error that pro-
hibits w ∈ VALC(X) from holding. We have defined a regular expression γerror such
that L(γerror) handles all but the tape errors. Therefore, for any w ∈ INVALC(X), if w

contains a non-tape error, then w ∈ L(ϕ).
If w ∈ �∗ only contains a tape error, then for some i ∈ [ρ], there is some pattern

βi that we have defined such that for some substitution σ |� ϕ, we have that σ(w) =
σ(βi) = w. Note that σ(βi ′) = ε can hold for all i ′ ∈ [ρ] \ {i} due to the fact that
we know σ(x#,i ′) = σ(x0,i ′) = ε whenever i ′ is not the selected error, and all other
variables in βi ′ do not have regular constraints.

If direction: Let w ∈ L(ϕ) and let σ be a substitution such that σ |� ϕ and
σ(w) = w. If σ(xtape) = ε, then w ∈ γerror must hold. Therefore, w ∈ INVALC(X).
If σ(xtape) �= ε, then σ(xtape) ∈ γ ′

struc must hold. However, if this is the case, then
there is some selected error i ∈ [ρ] for σ and therefore:

• σ(x0,i) = 0,

123

Theory of Computing Systems

• σ(x#,i) = #, and
• σ(zi,r) ∈ 0+ for r ∈ {1, 2, 3}.

Since for every i ∈ [ρ] we have that βi uses the variables x0,i , x#,i and zi,r for r ∈ [3]
to encode a tape error, and these variables are not mapped to the empty word, we have
that w has a tape error. Therefore, w ∈ INVALC(X). Note that if σ(xerror) �= ε, then
σ(w) must contain a tape error due to the fact that the above reasoning still holds no
matter what xerror is substituted with.

To conclude this proof, notice that if σ |� ϕ where σ(w) = w, then w ∈ L(ϕ).
Therefore, we have shown that w ∈ INVALC(X) if and only if w ∈ L(ϕ), in turn
showing that L(ϕ) = INVALC(X). ��
Actual Proof of Theorem 6

Theorem 6 For FC[REG]-CQ, universality is not semi-decidable, and regularity is nei-
ther semi-decidable, nor co-semi-decidable.

Proof From Theorem 7 we know that given an extended Turing machine X , one can
effectively construct ϕ ∈ FC[REG]-CQ such that L(ϕ) = INVALC(X). Therefore, if
universality for FC[REG]-CQ were semi-decidable, then emptiness for extended Tur-
ing machines would be semi-decidable, which is a contradiction. If regularity for
FC[REG]-CQ were semi-decidable or co-semi-decidable, then finiteness for Turing
machines would be semi-decidable or co-semi-decidable. ��

4.3 Proof of Theorem 7

Theorem 7 The regularity problem for FC-CQ is neither semi-decidable, nor co-semi-
decidable.

Proof Let X := (Q, q1, δ) be an extended Turing machine, and let � := {0, #}. From
X , we construct ϕ ∈ FC-CQ such that L(ϕ) is regular if and only if INVALC(X) is
regular. More formally, we define ϕ such that:

L(ϕ) = {0 · # · 0 · #3 · w · #3 | w ∈ INVALC(X)}.

In other words, we have fixed words w1, w2 ∈ {0, #}+ such that for each extended
Turing machine X , there exists ϕ ∈ FC-CQ such that L(ϕ) = w1 · INVALC(X) · w2,
where w1 = 0#0#3 and w2 = #3.

Instead of first defining the formula ϕ, and then proving correctness, we take a
different approach and define a set of regularly typed patterns {(βi , Ti) | i ∈ [μ]},
where μ ∈ N depends on X and for each i, j ∈ [μ] where i �= j , we have that
vars(βi) ∩ vars(β j) = ∅. This set is defined such that ∪μ

i=1L(βi , Ti) = INVALC(X),
where Ti is the typing function that maps variables to regular languages. We assume
Ti is defined as follows:

• Ti (xa,i) := {a} for all a ∈ �,
• Ti (yi) := �∗ and Ti (y′

i) := �∗, and
• Ti (zi,r) := 0+ for each r ∈ [4].

123

Theory of Computing Systems

Each βi is defined only using variables shown above. Then, the definitions of the
patterns used to define the errors are somewhat similar to the tape errors in the proof
of Lemma 7. We note that we use patterns such as xc,i for c ∈ � rather than terminal
symbols due to the fact that they may also need to be the emptyword. This shall be
used when we eventually define the formula that encodes INVALC(X).

As with many proofs of this sort, we use a finite number of “rules” for a word
w ∈ �∗ to contain an error, and thus w ∈ INVALC(X). Each rule is encoded as some
(βi , Ti). The encoding of the rules follows closely to the proof of Theorem 14 in [31].

We partition [μ] into sets of contiguous numbers for different types of errors.

1. Estruc := {1, 2, . . . , e1} denote the structural errors,
2. Estate := {e1 + 1, e1 + 2, . . . , e2} denotes the state errors,
3. Ehead := {e2 + 1, e2 + 2, . . . , e3} denotes the head errors, and
4. Etape := {e3 + 1, e3 + 2, . . . , μ} denotes the tape errors.
For example, for every i ∈ Estruc, we have some specific structural error that causes
a word to be in INVALC(X). The error associated to i is encoded in (βi , Ti).

Structural Errors
First, we define βi for i ∈ [7]:

β1 := ε,

β2 := x0,2 · y2,
β3 := y3 · x0,3,
β4 := x#,4 · x0,4 · y4,
β5 := y5 · x0,5 · x#,5,
β6 := x#,6,

β7 := x#,7 · x#,7.

Up to this point, if w /∈ L(βi , Ti) for all i ∈ [7], then w = u## and w = ##v for
some u, v ∈ �∗.

We now define β8 to β12:

β8 := y8 · (x#,8)
3 · y8,

β9 := y9 · x#,9 · x#,9 · z9,1 · x#,9 · x#,9 · y9,
β10 := y10 · x#,10 · x#,10 · z10,1 · x#,10 · z10,2 · x#,10 · x#,10 · y10,
β11 := y11 · x#,11 · x#,11 · z11,1 · x#,11 · z11,2 · x#,11 · z11,3 · x#,11 · x#,11 · y11,
β12 := y12 · x0,12 · x#,12 · z12,1 · x#,12 · z12,2 · x#,12 · z12,3 · x#,12 · x0,12 · y12.

After having dealt with the above cases, we have that if w /∈ L(βi , Ti) for all i ∈
[12], then

w ∈ L(##(0+#0+#0+#0+##)+).

Next, we dealwith the casewhere the state does not encode a state from {q1, . . . , qk}
where k ≥ 1. Notice that for some word w ∈ VALC(X), we have that if # · 0m · ## is a

123

Theory of Computing Systems

factor of w, then m must be an encoding of a state. If m > k, then this configuration
uses a state that is not in the state set of X . We now define β13:

β13 := y13︸︷︷︸
�∗

· x#,13︸︷︷︸
#

· (x0,13)k · z13,1︸ ︷︷ ︸
0m

· (x#,13)2︸ ︷︷ ︸
##

· y′
13︸︷︷︸

�∗

.

This patterns deals with the case where there is a state q encoded in a configuration,
yet q is not in the set of states of X . This is due to the fact that T13(z13,1) ∈ 0+, and
therefore (x0,13)k · z13,1 = 0m for some m > |Q|.

Now, we deal with the error that the symbol the head is currently reading is not
valid. For this, we define β14:

β14 := y14 · (x0,14)
3 · x#,14 · z14,1 · (x#,14)

2 · y′
14.

Thus, if w ∈ (β14, T14), then w ∈ L(�∗ · 000 · # · 0+ · ## · �∗). Therefore, the head
is reading a symbol that is not part of the tape alphabet.

Next, we look at when the initial configuration is not correct: To that end, we define
β15 and β16:

β15 := (x#,15)
2 · (x0,15)

2 · y15,
β16 := (x#,16)

2 · z16,1 · x#,16 · z16,2 · x#,16 · z16,3 · x#,16 · (x0,16)
2 · y16.

The above patterns deals with those w ∈ �∗ that are of the form:

##00�∗,
##0+#0+#0+#00�∗.

These cases encode the possible errors with the initial configuration. This is because
valid initial configurations are of the form ##0#0+#0e(a)+1#0##, for some a ∈ �.
Thus, if e(wL) �= 0, then we have an error (handled by β15), and if the state is not q1,
then we have an error (handled by β16). We have already handled the case where the
head symbol is incorrect with β14.

To conclude the encodingof structural errors,we look atwhen thefinal configuration
is incorrect. For this, we consider i ∈ Estruc \[16], each of which are uniquely mapped
to some (a, q j) ∈ � × Q such that δ(a, q j) �= HALT. For each i ∈ Estruc \ [16] we
construct a pattern βi as follows:

βi := yi · x#,i · (x0,i)
e(a)+1 · x#,i · (x0,i)

j · (x#,i)
2.

Thus, for any i ∈ Estruc \ [16], if w ∈ (βi , Ti), then w ∈ L(�∗#0e(a)+1#0 j##) where
ifX is in state q j and reads the symbol a, thenX does not halt. That is, the run finishes
on a configuration that should not halt.

Thus, if w /∈ L(βi , Ti) for all i ∈ Estruc, then:

• w ∈ L(##(0+#0+#0(0 ∨ ε)#0 j##)+) for j ≤ |Q|,

123

Theory of Computing Systems

• w starts with a valid initial configuration, and
• w ends with a valid halting configuration.

Consequently, if w ∈ L(βi , Ti) for some i ∈ Estruc, then w contains a structural
error. This concludes our encoding of structural errors.

Behavioural Errors Consider two possible configurations C = (wL , wR,a, q j) and
C ′ = (w′

L , w′
R,a′, ql). We have three types of behavioural errors such that C �X C ′

does not hold, and these error types need to be accounted for.

1. State errors. δ(a, q j) = HALT or the encoding of state ql is incorrect,
2. Head errors. The encoding of the head symbol a′ is incorrect, and
3. Tape errors. The left-side of the tape w′

L or the right-side of the tape w′
R contains

an error.

For each of these errors we consider each type of instruction, and consider an error.
Recall the following partition of [μ] \ Estruc:

• Estate := {e1 + 1, e1 + 2, . . . , e2} denotes the state errors,
• Ehead := {e2 + 1, e2 + 2, . . . , e3} denotes the head errors, and
• Etape := {e3 + 1, e3 + 2, . . . , μ} denotes the tape errors.

Each i ∈ Estate is mapped to a certain state error encoded with βi . The analogous
holds for Ehead and Etape.

Before looking at encoding the errors, we define a useful partition on � ×Q. Given
an extended Turing machine X := (Q, q1, δ), we define the following sets:

SHALT :={(a, q j) ∈ � × Q | δ(a, q j) = HALT},
SL,R :={(a, q j) ∈ � × Q | δ(a, q j) ∈ (� × {L, R} × Q)}, and

SCHECK :={(a, q j) ∈ � × Q | δ(a, q j) ∈ (CHECKR × Q)}.

State Errors For two configurationsC = (wL , wR,a, q j) andC ′ = (w′
L , w′

R,a′, ql),
we say a state error for C �X C ′ has occurred if on reading a in state q j , the machine
X goes into a state that is not ql . We also deal with the case where X continues its
computation, even though configuration C leads to HALT.

The HALT-instruction: Let Ehalt
state ⊆ Estate. For every (a, q j) ∈ SHALT, there is a

unique i ∈ Ehalt
state such that

βi := yi · x#,i · (x0,i)
e(a)+1 · x#,i · (x0,i)

j · (x#,i)
2 · x0,i · y′

i .

It follows that for each (a, q j) ∈ SHALT, there exists a unique i ∈ Ehalt
state such

that (βi , Ti) encodes
�∗ · #0e(a)+1#0 j##0 · �∗.

We use ## as a separator between two configurations. Thus, we encode a configu-
ration where the head is reading an a, is in state q j , and has a successor configuration
which is an error since δ(a, q j) = HALT. In these βi , we do not consider the encoding
of the left and right side of the tape, nor do we encode the “successor configuration”.

123

Theory of Computing Systems

While the error encoded by (βi , Ti)may coincide with other errors, we have sufficient
criteria for the word to have the specified state error.

Head movement instructions: Next, let us consider the cases where X moves into
thewrong state. Let Estate

state be a large enough subset of Estate, where Estate
state∩Ehalt

state = ∅.
For (a, q j) ∈ � × Q where δ(a, q j) = (b, M, ql) for M ∈ {L, R}, b ∈ �, and
q j , ql ∈ Q, we associate l ∈ N elements of Estate

state . We use l − 1 of these elements to
encode when the state in the configuration is smaller than l, and we use one to encode
when the state is larger than l.

We first look at when the state is larger than l. To help with the readability of this,
we first define the pattern

γi := yi · x#,i · (x0,i)
enc(a)+1 · x#,i · (x0,i)

j · (x#,i)
2,

Since we encode each state as a number, we first consider the case where the state is
“too large”. For each (a, q j) ∈ �×Qwhere δ(a, q j) = (b, M, ql)whereM ∈ {L, R},
b ∈ �, and q j , ql ∈ Q, we have a unique i ∈ Estate

state such that

βi := γi · zi,1 · x#,i · zi,2 · x#,i · zi,3 · x#,i · (x0,i)
l+1 · y′

i .

The above pattern encodes words of the form

�∗ · #0enc(a)+1#0 j##︸ ︷︷ ︸
γi

·0+#0+#0+#0l+1 · �∗.

We now deal with when the value representing the state is “too small”. To realize
this behaviour, we look at all values between 1 and l − 1 inclusive. That is, for every
(a, q j) ∈ � × Q where δ(a, q j) = (b, M, ql), and every p ∈ [l − 1], we have a
unique i ∈ Estate

state such that

βi := γi · zi,1 · x#,i · zi,2 · x#,i · zi,3 · x#,i · (x0,i)
p · x#,i · y′

i ,

where γi is as defined above (with the correct i values for the variable indices). This
deals with the case where the encoding section is of the form

�∗ · #0enc(a)+1#0i##︸ ︷︷ ︸
γi

·0+#0+#0+#0p# · �∗

for some p ∈ [l − 1].
Thus, for each pair (a, q j) ∈ SL,R, we have a set of patterns, each of which encodes

an error in which the state in one configuration does not follow from the previous
configuration.

The CHECKR-instruction: The only state error left to deal with is when δ(a, q j) =
(CHECKR, ql) for some ql ∈ Q. Recall that if δ(a, q j) = (CHECKR, ql), then we have
two cases: IfwR = 0ω, thenX moves into state ql . Otherwise, we have thatwR �= 0ω,

123

Theory of Computing Systems

and X remains in q j which leads to an “infinite loop”. Let Echeck
state ⊆ Estate such that

Ehalt
state, E

state
state , and Echeck

state forms a partition on Estate.
Let us consider the case where e(wR) = 0, and therefore wR = 0ω. For every

(a, q j) ∈ SCHECK where δ(a, q j) = (CHECKR, ql), have a unique i ∈ Echeck
state such that

βi := γi · zi,1 · x#,i · zi,2 · x#,i · zi,3 · x#,i · (x0,i)
l+1 · y′

i ,

where
γi := yi · x#,i · x0,i · x#,i · (x0,i)

e(a)+1 · x#,i · (x0,i)
j · (x#,i)

2.

This γi is used as a prefix of the βi that models an error, and describes

�∗#0#0e(a)+1#0 j##.

Thus, e(wR) = 0. The pattern βi encodes the fact that the encoded state is too large
by encoding the following language:

�∗#0#0e(a)+1#0 j##︸ ︷︷ ︸
γi

0+#0+#0+#0l+1�∗,

and thus we have an error.
Now we deal with when the state is too small. For every (a, q j) ∈ SCHECK where

δ(a, q j) = (CHECKR, ql), and every p ∈ [l−1], we have a unique i ∈ Echeck
state such that

βi := γi · zi,1 · x#,i · zi,2 · x#,i · zi,3 · x#,i · (x0,i)
p · (x#,i)

2 · y′
i ,

where
γi := yi · x#,i · x0,i · x#,i · (x0,i)

e(a)+1 · x#,i · (x0,i)
j · (x#,i)

2.

Since, we have that after the configuration encoded by γi , the machine should move
into state ql (because γi encodes the case where e(wR) = 0), if we move into some
state qp where p < l, we have an error.

Next, we deal with the case where e(wR) �= 0, and therefore wR �= 0ω. This is
analogous to how we deal with the case when wR �= 0ω. For every (a, q j) ∈ SCHECK
where δ(a, q j) = (CHECKR, ql), have a unique i ∈ Echeck

state such that

βi := γi · zi,2 · x#,i · zi,3 · x#,i · zi,4 · x#,i · (x0,i)
j+1 · y′

i ,

where

γi := yi · x#,i · x0,i zi,1 · x#,i · (x0,i)
e(a)+1 · x#,i · (x0,i)

j · (x#,i)
2.

Note that zi,1 ∈ 0+ is used for 0e(wL), and thus wR �= 0ω. Therefore, the above βi

we deal with the case where the new state p is greater than j .

123

Theory of Computing Systems

Next, we deal with p < j . for every (a, q j) ∈ SCHECK where δ(a, q j) =
(CHECKR, ql), and every 1 ≤ p < j , we have a unique i ∈ Echeck

state such that

βi := γi · zi,2 · x#,i · zi,3 · x#,i · zi,4 · x#,i · (x0,i)
p · x#,i · y′

i ,

where

γi := yi · x#,i · x0,i zi,1 · x#,i · (x0,i)
e(a)+1 · x#,i · (x0,i)

j · (x#,i)
2.

This concludes the state errors.

Head Errors In the previous case (looking at state errors), we have handled all cases
for which a halting configuration is followed by another configuration. Thus, for this
case (looking at head errors), we can safely ignore such “halting errors”.

Consider the configurations (wL , wR,a, q j) and (w′
L , w′

R,a′, ql)where δ(a, q j) =
(b, M, ql) and C �X C ′. Utilizing Observation 1, we can use the parity of e(wL) or
e(wR) to determine the symbol under the head in a successor configuration. We shall
use this observation to encode head errors.

Head movement instructions: For each (a, q j) ∈ � × Q where δ(a, q j) =
(b, L, ql), there is a unique i ∈ Ehead such that

γi := yi · x#,i · x0,i · x#,i · zi,1 · x#,i · (x0,i)
e(a)+1 · x#,i · (x0,i)

j · (x#,i)
2.

The above pattern γi deals with the case where e(wL) = 0. We now define βi for
each such i as

βi := γi · zi,2 · x#,i · zi,3 · x#,i · (x0,i)
2 · x#,i · y′

i .

Thus, βi expresses encoding sections of the form:

�∗ · #0#0+#0e(a)+1#0 j##︸ ︷︷ ︸
γi

·0+#0+#00#�∗.

As the head should be moving left, and e(wL) = 0, it is an error for 0e(a
′)+1 = 00

to hold.
We look at the more general case, where we have that e(wL) is even, and greater

than zero. Again, for each (a, q j) ∈ � × Q where δ(a, q j) = (b, L, ql), there is a
unique i ∈ Ehead such that

γi := yi · x#,i · x0,i (zi,1)2︸ ︷︷ ︸
e(wL)+1

·x#,i · zi,2 · x#,i · (x0,i)
e(a)+1 · x#,i · (x0,i)

j · (x#,i)
2,

and βi is defined as follows

βi := γi · zi,3 · x#,i · zi,4 · x#,i · (x0,i)
2

︸ ︷︷ ︸
e(a′)+1

·x#,i · y′
i .

123

Theory of Computing Systems

For intuition, this deals with configurations of the form (wL , wR,a, q j) where
e(wL) is even by splitting it up into two cases – either 0e(wL)+1 = 0, or 0e(wL)+1 ∈
(00)+ by using x0,i and x0,i (zi,1)2 respectively. For both cases, e(wL) is even, and
thus e(a′) should be 0. However, since 0e(a

′)+1 = 00, we have encoded an error.
Next, we deal with the analogous case for when e(wL) is odd. For each (a, q j) ∈

� × Q where δ(a, q j) = (b, L, ql), we associate some unique i ∈ Ehead and define

γi := yi · x#,i · (zi,1)
2

︸ ︷︷ ︸
e(wL)+1

·x#,i · zi,2 · x#,i · (x0,i)
e(a)+1 · x#,i · (x0,i)

j · (x#,i)
2.

In γi , we have encoded 0e(wL)+1 as (zi,1)2. Therefore, 0e(wL)+1 = (00)+, which
means e(wL) is odd. We now define βi as follows

βi := γi · zi,3 · x#,i · zi,4 · x#,i · x0,i︸︷︷︸
e(a′)+1

·x#,i · y′
i .

As e(wL) is odd, we should have that 0e(a
′)+1 = 00 holds, however, as we have

encoded that 0e(a
′)+1 = x0,i , we have a head error.

Next, let us go over the details of encoding head errors when the head moves to the
right. That is, for those (a, q j) ∈ � × Q where δ(a, q j) = (b, R, ql) we associate
some unique i ∈ Ehead and define

γi := yi · x#,i · x0,i︸︷︷︸
e(wR)+1

·x#,i · (x0,i)
e(a)+1 · x#,i · (x0,i)

j · (x#,i)
2.

The pattern defined above deals with the case where e(wR) = 0. Therefore, in
the correct successor configuration, we should have that the symbol under the head
is 0 mod 2. We now encode the error of this kind in the subsequent βi .

βi := γi · zi,1 · x#,i · zi,2 · x#,i · (x0,i)
2

︸ ︷︷ ︸
e(a′)+1

·x#,i · y′
i .

Analogously to when we move the head to the left, let us now consider the case
where we move the head to the right, and e(wR) is of the form (00)+. For each
(a, q j) ∈ � × Q where δ(a, q j) = (b, R, ql) we have a unique i ∈ Ehead where

γi := yi · x#,i · x0,i · (zi,1)
2

︸ ︷︷ ︸
e(wR)+1

·x#,i · (x0,i)
e(a)+1 · x#,i · (x0,i)

j · (x#,i)
2.

We use γi as a prefix of βi , which is defined as

βi := γi · zi,2 · x#,i · zi,3 · x#,i · (x0,i)
2

︸ ︷︷ ︸
e(a′)+1

·x#,i · y′
i .

123

Theory of Computing Systems

Due to the fact that a′ = e(wR) mod 2 should hold and e(wR) is even, it should hold
that e(a′) = 0. However since we have encoded 0e(a

′)+1 = 00, we have an error.
Let us now consider the case where e(wR) is odd. For each (a, q j) ∈ � × Q where

δ(a, q j) = (b, R, ql) we have some unique i ∈ Ehead such that

γi :=yi · x#,i ·
e(wR)+1
︷ ︸︸ ︷
(zi,1)

2 ·x#,i · (x0,i)
e(a)+1 · x#,i · (x0,i)

j · (x#,i)
2, and

βi :=γi · zi,2 · x#,i · zi,3 · x#,i · x0,i︸︷︷︸
e(a′)+1

·x#,i · y′
i .

The correctness of this behaviour is analogous to previous cases.

The CHECKR-instruction: The last head error wemust deal with is when δ(a, q j) =
(CHECKR, ql). From the definition of (CHECKR, ql), the symbol under the head does
not change. Therefore if indeed it does change, we have an error. To that end, for each
(a, q j) ∈ SCHECK , we have i ∈ Ehead such that

βi := yi ·x#,i ·(x0,i)e(a)+1 ·x#,i ·(x0,i) j ·(x#,i)2 ·zi,1 ·x#,i ·zi,2 ·x#,i ·(x0,i)c+1 ·x#,i · y′
i ,

where if a = 1, then c = 0 and if a = 0, then c = 1. This encodes a change in the
symbol under the head, which is an error if δ(a, q j) = CHECKR(ql).

Tape Errors In the proof of Lemma 7, we define ρ many patterns to encode the tape
errors. The patterns in Etape are identical to the patterns used to encode tape errors
in the proof of Lemma 7, with the necessary changes to the indices. More formally,
let {βi | i ∈ [ρ]} be the set of patterns used to define tape errors for X , as defined
in Lemma 7. Let f : [ρ] → Etape be a bijective function. Then, for each i ∈ [ρ],
let β f (i) be βi , where the only difference is that f (i) is used for the indices of the
variables, rather than i . Since we have the same assumptions for the variables xa,i ,
zi,r and yi , y′

i , it is clear that each βi for i ∈ Etape encodes a tape error.

Defining the Formula Let

ϕ := ϕ0# ∧ ϕerr ∧ ϕtype ∧ ϕ+.

First, let
ϕ0# := (w =̇ 0 · # · 0 · z) ∧ (z =̇ #3 · z′ · #3).

This ϕ0# ensures that any w ∈ L(ϕ) is of the form 0#0#3�∗#3.
Let ϕerr be defined by

ϕerr := (z =̇ α1α2 · · · αμ) ∧
μ∧

i=1

(αi =̇ (x#,i)
3 · βi · (x#,i)

3),

where each βi encodes an error. It is clear that for any substitution σ such that σ |� ϕ,
we have that σ(w) = 0#0#3u#3 = 0#0 · σ(α1α2 · · · αμ) for some u ∈ �∗. Conse-
quently, we have that σ(α1α2 · · ·αμ) = #3u#3.

123

Theory of Computing Systems

Next,we considerϕtype andϕ+ which dealswith types on the variables. The formula
ϕtype ensures that for any i ∈ [μ] and any substitution σ where σ |� ϕ we have that
σ(x0,i) ∈ {ε, 0} and σ(x#,i) ∈ {ε, #}. Furthermore, we ensure that there is exactly
one i ∈ [μ] such that σ(x#,i · x0,i) = #0 and for all i ′ ∈ [μ] \ {i} we have that
σ(x#,i ′ · x0,i ′) = ε.

ϕtype := (x0 =̇0) ∧ (x0 =̇ x0,1 · x0,2 · · · x0,μ) ∧ (x# =̇#) ∧ (x# =̇ x#,1 · x#,2 · · · x#,μ)

∧(x ′ =̇ 0 · # · 0) ∧ (
x ′ =̇

μ∏

i=1

(x0,i · x#,i · x0,i)
)
.

Let σ be a substitution where σ |� ϕ. Since we have that σ(x0) = 0 and σ(x0) =
σ(x0,i · · · x0,μ) it follows that there is exactly one i ∈ [μ] such that σ(x0,i) = 0 and
σ(x0,i ′) = ε for all i ′ ∈ [μ] \ {i}. The analogous reasoning states that there is exactly
one i ∈ [μ] such that σ(x#,i) = #. Furthermore, σ(x#,i) �= ε if and only if σ(x0,i) �= ε

due to the fact that
∏μ

i=1 σ(x0,i · x#,i · x0,i) = 0 · # · 0. That is, if σ(x0,i) �= ε and
σ(x#,i ′) �= ε for some i, i ′ ∈ [μ] where, without loss of generality, i < i ′, then

0#0 = σ(x ′) =
μ∏

i=1

σ(x0,i · x#,i · x0,i) = 00 · #,

due to the fact that there is exactly one i ∈ [μ] such that σ(xa,i) = a for each a ∈ �.
If this is the case, then σ |� ϕ does not hold.

Thus, ϕtype states that for any substitution σ where σ |� ϕ there is exactly one
i ∈ [μ] such that for all a ∈ �, we have σ(xa,i) = a, and for all j ∈ [μ] \ {i}, we
have xa, j = ε. If this does indeed hold, then we say that i ∈ [μ] is the selected error
for σ .

The last subformula ϕ+ deals with the type for variables of the form zi,1, zi,2, etc.
For this, we define:

ϕ+ :=
μ∧

i=1

4∧

r=1

(
(zi,r =̇ x0,i · z′i,r) ∧ (zi,r =̇ z′i,r · x0, j)

)
.

Thus, if σ(x0,i) = 0, then zi,1, zi,2, zi,3, zi,4 ∈ L(0+).
Therefore, if i ∈ [μ] is the selected error for σ , then

• σ(x0,i) = 0,
• σ(x#,i) = #, and
• σ(zi,r) ∈ 0+ for r ∈ [4].
Consequently, if i ∈ [μ] is the selected error for σ , then σ(βi) ∈ INVALC(X). This

is because each βi uses these variables (which are not mapped to the empty-word if
i is the selected error for σ) to encode some error that prohibits σ(βi) from being in
VALC(X).

123

Theory of Computing Systems

Correctness For this correctness proof, we show that

L(ϕ) := 0#0#3INVALC(X)#3.

In other words, 0#0#3w#3 ∈ L(ϕ) if and only if w ∈ INVALC(X).
If direction: Let v = 0#0#3w#3 where w ∈ INVALC(X). Since w ∈ INVALC(X),

the word must contain at least one error. For every possible w ∈ INVALC(X), we have
some i ∈ [μ] such that w ∈ L(βi , Ti). Thus, there exists i ∈ [μ] and σ |� ϕ where i
is the selected error for σ and

σ(w) = 0 · # · 0 · #3 · σ(βi) · #3,

and σ(w) = v. It follows that σ(αi ′) = ε for all i ′ ∈ [μ] \ {i}. Thus, we have dealt
with one direction for the correctness proof.

Only if direction: Let v ∈ L(ϕ). From the structure of ϕ, we know that v =
0#0#3w#3 for somew ∈ �∗. Furthermore, we know that for any substitution σ where
σ |� ϕ such that σ(w) = v, we have that #3w#3 = σ(α1α2 · · · αμ).

Let v = 0#0#3w#3 where v ∈ L(ϕ). Let σ |� ϕ where σ(w) = v, and let i ∈ [μ]
be the selected error for σ . We now look at two cases.

• Case 1. For all j ∈ [μ] \ {i}, we have that σ(α j) = ε.
• Case 2. There exists j ∈ [μ] \ {i} such that σ(α j) �= ε.

Recall that since i is the selected error for σ , we have that σ(x0,i) = 0, σ(x#,i) = #,
and zi,r ∈ 0+ for r ∈ [4].

Case 1: For all j ∈ [μ] \ {i}, we have σ(α j) = ε. Therefore,

• σ(w) = 0 · # · 0 · σ(z),
• σ(z) = σ(αi), and
• σ(αi) = #3 · σ(βi) · #3.
Consequently, σ(w) = 0#0#3 · σ(βi) · #3 where σ(βi) ∈ INVALC(X).
Case 2: Let j ∈ [μ] \ {i} such that σ(α j) �= ε. For any σ |� ϕ, we know that:

σ(w) = 0 · # · 0 · #3 · v · #3, and

σ(w) = 0 · # · 0 · σ(z),

where σ(z) = σ(α1 · α2 · · · αi · · · αμ). Thus,

σ(α1 · α2 · · ·αi−1) · σ(αi) · σ(αi+1 · · ·αμ) = #3 · v · #3.

Recall that i is the selected error for σ and therefore σ(αi) ∈ #3 · �∗ · #3. Because
there exists some j ∈ [μ] \ {i} where σ(α j) �= ε, we have that

w1 · #3 · σ(βi) · #3
︸ ︷︷ ︸

σ(αi)

·w2 = #3 · v · #3,

where σ(α1 · · · αi−1) = w1 and σ(αi+1 · · · αμ) = w2, and w1 · w2 �= ε. The rest of
the proof for this direction shows that v ∈ INVALC(X).

123

Theory of Computing Systems

• Let |w1| > 3. Then, w1 = #3w′
1 where w′

1 ∈ �+. It therefore must hold that
σ(α1 · · ·αi) = #3w′

1#
3σ(βi)#3, and thus we have a structural error due to the

occurrence of #3 in w.
• Let |w2| > 3. Then, w2 = w′

2#
3 where w′

2 ∈ �+. Thus, we have that
σ(αi · · ·αμ) = #3σ(βi)#3w′

2#
3, and we again have a structural error.

• Let |w1| ≤ 3 and |w2| ≤ 3. Then, σ(α1 · · · αμ) = #k1 · σ(βi) · #k2 for some
k1, k2 ≥ 3, where σ(βi) ∈ INVALC(X). Therefore, w ∈ INVALC(X).

Thus, we have shown that v ∈ L(ϕ) where v = 0 · # · 0 · #3 · w · #3 if and only if
w ∈ INVALC(X).

To conclude, given an extended Turing machine X , we construct ϕ ∈ FC-CQ such
that

L(ϕ) := {0 · # · 0 · #3 · w · #3 | w ∈ INVALC(X)}.
Since regular languages are closed under quotients, it is thus clear that L(ϕ) is reg-

ular if and only if INVALC(X) is regular. Therefore, observing Lemma 6, the regularity
problem for FC-CQ is undecidable. ��

5 Descriptional Complexity

In this section, we consider some of the consequences of the aforementioned undecid-
ability results. First, we look atminimization. To examine the problemofminimization,
we first must discuss what complexity measure we wish to minimize for. Instead of
giving an explicit measure, such as the length, we give the more general definition of
a complexity measure from Kutrib [32].

Definition 9 Let F ∈ {FC-CQ, REG}, where REG is the set of regular expressions. A
complexity measure for F is a recursive function c : F → N such that the elements of
F can be enumerated effectively in increasing order, and for every n ∈ N, there exist
finitely many ϕ ∈ F with c(ϕ) = n.

From Theorem 7, we conclude that FC-CQ cannot be minimized effectively:

Corollary 3 Let c be a complexity measure for FC-CQ. There is no algorithm that given
ϕ ∈ FC-CQ, constructs ψ ∈ FC-CQ such that L(ϕ) = L(ψ) and ψ is c-minimal.

Proof Consider ϕ ∈ FC-CQ that was constructed in the proof of Theorem 7 from
an extended Turing machine. We remind the reader that for a given extended Turing
machine X , we construct ϕ such that:

L(ϕ) = {0 · # · 0 · #3 · w · #3 | w ∈ INVALC(X)}.

Now consider the following formula:

ψ := (w =̇ 0#0#3x#3).

From ψ and ϕ, we have that L(ϕ) = L(ψ) if and only if INVALC(X) = �∗. As
determining whether INVALC(X) = �∗ is undecidable (recall Lemma 6), it follows
that deciding whether L(ϕ) = L(ψ) is undecidable.

123

Theory of Computing Systems

Since ψ is fixed, the set of c-minimal queries ψ ′ ∈ FC[REG]-CQ such that L(ψ) =
L(ψ ′) is finite, there exists a recursive function to find such a c-minimal formula ψ ′.
Now assume that there exists an algorithm P that given ϕ, gives an equivalent ϕ′ such
that c(ϕ′) is minimal. Then, there would be an algorithm that determines whether
INVALC(X) = �∗ by checking whether ϕ′ is equivalent to ψ ′. Consequently, the
assumption that P exists cannot hold. ��

Given complexitymeasures c1 and c2 for FC-CQ and REG (respectively), we say that
there is a non-recursive trade-off from FC-CQ to REG if for every recursive function
f : N → N, there exists ϕ ∈ FC-CQ such that L(ϕ) ∈ L(REG), but c2(γ) > f (c1(ϕ))

holds for every γ ∈ REG with L(ϕ) = L(γ).
Hartmanis’ meta theorem [33] allows us to draw conclusions about the relative

succinctness of models from certain undecidability results. Thus, we can conclude the
following.

Theorem 8 The trade-off from FC-CQ to REG is non-recursive.

Proof This proof follows from Hartmanis’ meta theorem [33] which states the fol-
lowing: For two systems A and B of representations, given a representation r ∈ B, if
it is not co-semi-decidable whether there exists an equivalent representation r ′ ∈ A,
then there is a non-recursive trade-off from B to A. See [32] for more details. From
the proof of Theorem 7 we know that determining whether L(ϕ) is regular for a given
ϕ ∈ FC-CQ is not decidable, semi-decidable, or co-semi-decidable. Thus, we can
invoke Hartmanis’ meta theorem, to determine that there is a non-recursive trade-off
from FC-CQ to regular expressions. ��

Less formally, Theorem 8 states that even for those FC-CQs that generate a regular
language, the size blowup from the FC-CQ to the regular expression that accepts the
same language is not bounded by any recursive function.

While Theorem 8 also shows that the trade-off from FC[REG]-CQ to regular expres-
sions is non-recursive, this seems less surprising. Purely from the definition of FC-CQ,
it does not seem like FC-CQ should be able to generate many complicated regular
languages. Thus, the fact that the size blowup from FC-CQ to an equivalent regular
expression is not bounded by any recursive function highlights the deceptive com-
plexity of languages generated by FC-CQ.

6 Conclusions

This paper studies FC-CQ and FC[REG]-CQ, with a particular focus on language the-
oretic questions. Regarding the expressive power, Fig. 1 gives an inclusion diagram.
However, there are still many open problems, such as whether L(FC[REG]-CQ) is
closed under union. Furthermore, it is not known whether L(EP-C) = L(FC-UCQ). As
L(FC-UCQ) = L(EP-FC), this question is particularly fundamental, as it asks whether
the finite model restriction of FC decreases the expressive power compared to the
theory of concatenation (see [4]).

With regards to decision problems, we show that the membership problem for
FC-CQ is NP-complete, and remains NP-hard even if the input word is of length one,

123

Theory of Computing Systems

and the formula only consists of regular patterns. Restrictions like acyclicity (see [8])
and bounded width (see [4]) lead to tractable fragments; however, there is still a lot
of research to be done on identifying further tractable fragments and comparing their
expressive power. The main technical contribution of this paper is that the universality
problem for FC[REG]-CQ, and the regularity problem for FC-CQ is undecidable.

Acknowledgements This work was funded by EPSRC grant EP/T033762/1. The authors would like to
thank Joel D. Day, AnthonyW. Lin, Ana Sălăgean, and the anonymous reviewers for their helpful feedback.

Author Contributions Both authors are equally responsible for the content and reviewed the submission of
this manuscript.

Data Availability No datasets were generated or analysed during the current study.

Declarations

Conflict of interest The authors declare no Conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Karhumäki, J., Mignosi, F., Plandowski, W.: The expressibility of languages and relations by word
equations. J. ACM 47(3), 483–505 (2000)

2. Diekert, V., Gutierrez, C., Hagenah, C.: The existential theory of equations with rational constraints in
free groups is PSPACE-complete. Inf. Comput. 202(2), 105–140 (2005)

3. Durnev, V.G.: Undecidability of the positive ∀∃ 3-theory of a free semigroup. Sib. Math. J. 36(5),
917–929 (1995)

4. Freydenberger, D.D., Peterfreund, L.: The theory of concatenation over finite models. In: Proceedings
of ICALP 2021, pp. 130–113017 (2021)

5. Fagin, R., Kimelfeld, B., Reiss, F., Vansummeren, S.: Document spanners: A formal approach to
information extraction. J. ACM 62(2), 12 (2015)

6. Freydenberger, D.D., Kimelfeld, B., Peterfreund, L.: Joining extractions of regular expressions. In:
Proceedings of PODS 2018, pp. 137–149 (2018)

7. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases vol. 8. Addison-Wesley Reading, Reading
(1995)

8. Freydenberger, D.D., Thompson, S.M.: Splitting spanner atoms: A tool for acyclic core spanners. In:
Proceedings of ICDT 2022, pp. 6–1618 (2022)

9. Freydenberger, D.D.: A logic for document spanners. Theory Comput. Syst. 63(7), 1679–1754 (2019)
10. Freydenberger, D.D., Holldack, M.: Document spanners: From expressive power to decision problems.

Theory Comput. Syst. 62(4), 854–898 (2018)
11. Thompson, S.M., Freydenberger, D.D.: Generalized core spanner inexpressibility via Ehrenfeucht-

Fraïssé games for FC. arXiv:2306.16364 (2023)
12. Angluin, D.: Finding patterns common to a set of strings. J. Comput. Syst. Sci. 21(1), 46–62 (1980)
13. Geilke, M., Zilles, S.: Polynomial-time algorithms for learning typed pattern languages. In: Interna-

tional Conference on Language and Automata Theory and Applications, pp. 277–288 (2012)

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2306.16364

Theory of Computing Systems

14. Koshiba, T.: Typed pattern languages and their learnability. In: EuropeanConference onComputational
Learning Theory, pp. 367–379 (1995)

15. Schmid, M.L.: Inside the class of regex languages. In: Proceedings of DLT 2012, pp. 73–84 (2012)
16. Lothaire, M.: Combinatorics on Words, vol. 17. Cambridge University Press, Cambridge (1997)
17. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, Volume 1: Word, Language,

Grammar. Springer, Berlin (1997)
18. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Compu-

tation, vol. 3. Addison-Wesley Longman Publishing Co., Inc, New York (2006)
19. Freydenberger, D.D., Schmid, M.L.: Deterministic regular expressions with back-references. J. Com-

put. Syst. Sci. 105, 1–39 (2019)
20. Schmid, M.L.: Characterising REGEX languages by regular languages equipped with factor-

referencing. Inf. Comput. 249, 1–17 (2016)
21. Carle, B., Narendran, P.: On extended regular expressions. In: Proceedings of LATA 2009, pp. 279–289

(2009)
22. Shinohara, T.: Polynomial time inference of extended regular pattern languages. In: RIMS Symposia

on Software Science and Engineering, pp. 115–127 (1983)
23. Ehrenfreucht, A., Rozenberg, G.: Finding a homomorphism between two words is NP-complete. Inf.

Process. Lett. 9(2), 86–88 (1979)
24. Manea, F., Schmid, M.L.: Matching patterns with variables. In: Combinatorics on Words: 12th Inter-

national Conference, WORDS 2019, Loughborough, UK, September 9–13, 2019, Proceedings 12, pp.
1–27. Springer (2019)

25. Fernau, H., Schmid, M.L.: Pattern matching with variables: A multivariate complexity analysis. Inf.
Comput. 242, 287–305 (2015)

26. Fernau,H., Schmid,M.L.,Villanger,Y.:On the parameterised complexity of stringmorphismproblems.
Theory Comput. Syst. 59(1), 24–51 (2016)

27. Plandowski, W.: Satisfiability of word equations with constants is in PSPACE. J. ACM 51(3), 483–496
(2004)

28. Manea, F., Nowotka, D., Schmid, M.L.: On the solvability problem for restricted classes of word
equations. In: International Conference on Developments in Language Theory, pp. 306–318. Springer
(2016)

29. Day, J.D., Manea, F., Nowotka, D.: The hardness of solving simple word equations. In: Proceedings
of MFCS 2017, pp. 18–11814 (2017)

30. Diekert, V., Robson, J.M.: Quadratic word equations. Jewels are Forever: Contributions on Theoretical
Computer Science in Honor of Arto Salomaa, pp. 314–326 (1999)

31. Freydenberger, D.D.: Extended regular expressions: Succinctness and decidability. Theory Comput.
Syst. 53(2), 159–193 (2013)

32. Kutrib, M.: The phenomenon of non-recursive trade-offs. Int. J. Found. Comput. Sci. 16(05), 957–973
(2005)

33. Hartmanis, J.: On Gödel speed-up and succinctness of language representations. Theor. Comput. Sci.
26(3), 335–342 (1983)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Languages Generated by Conjunctive Query Fragments of FC[REG]
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Patterns
	2.2 FC Conjunctive Queries

	3 Expressive Power and Closure Properties
	3.1 Expressive Power
	3.2 Connection to Related Models

	4 Decision Problems
	4.1 Extended Turing Machines
	4.2 Proof of Theorem 6
	4.3 Proof of Theorem 7

	5 Descriptional Complexity
	6 Conclusions
	Acknowledgements
	References

