
Journal of Imaging Science and Technology R© 64(6): 060408-1–060408-11, 2020.
c© Society for Imaging Science and Technology 2020

Limitations of CNNs for Approximating the Ideal Observer
Despite Quantity of Training Data or Depth of Network

Khalid Omer
Wyant College of Optical Sciences, The University of Arizona, 1630 E University Blvd, Tucson, AZ 85719

E-mail: komer@email.arizona.edu

Luca Caucci
Department of Medical Imaging, The University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724

Meredith Kupinski
Wyant College of Optical Sciences, The University of Arizona, 1630 E University Blvd, Tucson, AZ 85719

Abstract. The performance of a convolutional neural network (CNN)
on an image texture detection task as a function of linear image
processing and the number of training images is investigated.
Performance is quantified by the area under (AUC) the receiver
operating characteristic (ROC) curve. The Ideal Observer (IO)
maximizes AUC but depends on high-dimensional image likelihoods.
In many cases, the CNN performance can approximate the IO
performance. This work demonstrates counterexamples where a
full-rank linear transform degrades the CNN performance below the
IO in the limit of large quantities of training data and network layers.
A subsequent linear transform changes the images’ correlation
structure, improves the AUC, and again demonstrates the CNN
dependence on linear processing. Compression strictly decreases
or maintains the IO detection performance while compression can
increase the CNN performance especially for small quantities of
training data. Results indicate an optimal compression ratio for the
CNN based on task difficulty, compression method, and number
of training images. c© 2020 Society for Imaging Science and
Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2020.64.6.060408]

1. INTRODUCTION AND RELATEDWORK
This work compares the detection performance of single and
multi-layer CNNs (sCNN/mCNN) as well as state-of-the-art
deep layered CNN architectures with the Bayesian ideal
observer (IO). Performance is quantified by the area under
(AUC) the receiver operating characteristic (ROC) curve.
The IO maximizes AUC as well as other detection task
figures of merit [1]. The AUC of the IO evaluates system
performance and can be utilized as a comparative tool for
quantifying observer-model detection performance [2]. For
many tasks, the IO can be well approximated by a CNN given
an adequate quantity of training data [3].

Reith and Wandell [4] compare the performance of
CNN, IO, and support vector machines (SVM) for var-
ious image texture types in a binary classification task.

IS&T Member.
Received July 13, 2020; accepted for publication Nov. 25, 2020; published
online Dec. 24, 2020. Associate Editor: Yaohua Xie.
1062-3701/2020/64(6)/060408/11/$25.00

When trained on textured patterns, the neural network
approached IO performance and outperformed SVM [5].
Reith and Wandell also investigate the performance of two-
and one-dimensional randomization of the image texture
pixel positions. This transformation of randomization pixel
positions is linear and can be calculated by a matrix–vector
product, where the matrix is a scrambled version of the
identity matrix. Since the IO is invariant to multiplica-
tion by a non-singular matrix, the IO remains constant
throughout the various degrees of pixel randomization. The
neural network performance with two-dimensional (2D)
randomization across the image plane is less than SVM
but IO. Randomization results in longer range correlation
between pixels. When trained on column randomized image
textures, the neural network performed better than the SVM
but below the IO. For column randomization, correlation
between pixels along the rows remained the same, which
results in higher network performance as compared to a
2D randomization. Additionally, Zhang et al. [6] reports
the training error of neural networks trained under various
modifications of the input images and labels. They have
shown that 2D randomization of image pixels requires
additional training time for the training error to converge.

A related study on adversarial examples showed that
additive perturbation can lead to misclassification with high
confidence while maintaining the visible appearance of the
original image [7]. Including adversarial examples in the
training set can avoid misclassification and be used as a
regularization technique [8].

In this work, the relationship between linear image
transforms and classification performance is investigated on
image textures. One of the transformation matrix that is
populated by elements randomly sampled from a uniform
distribution over [0, 1]. This transformation randomizes the
pixel position and weight while the prior work discussed
[4, 6] only randomizes position. The linear transformation
in this work alters the image appearance and correlation
structure unlike the retained visual features in adversarial
examples.

J. Imaging Sci. Technol. 060408-1 Nov.-Dec. 2020

mailto:komer@email.arizona.edu

Omer, Caucci, and Kupinski: Limitations of CNNs for approximating the ideal observer despite quantity....

This work makes three contributions:

(1) The detection performance of IO is invariant to full-rank
transforms while the CNN performance can change.
This work demonstrates linear transformations that
reduce the CNN to near-guessing performance for large
quantities of training images and increased network
depth,

(2) Utilize another full-rank linear transformation, which
depends on the covariance matrix of the classes, to
subsequently increase the CNN performance on the
same images which were reduced to near-guessing,

(3) Utilize this same linear transformation, which depends
on the covariance matrix of the two classes, to increase
the CNN performance through compression.

2. MATHEMATICAL BACKGROUND
An image detection task from Gaussian distributed, zero
class mean image data allows closed-form analytic expres-
sions for the IO and optimal linear compression. When
the covariance matrices of these two classes are unequal,
the data is called heteroscedastic and the images have the
appearance of different textures. Two image texture classes
are simulated on a 64× 64 pixel grid with dimensionality
M = 4096. A given image is denoted by the M × 1 vector
g. The covariance matrix of each class is chosen to be
circulant with a Gaussian kernel and parameterized by a
scalar-valued correlation length, denoted by σ . Changing the
correlation length yields image textures of varying spatial
textures. According to Geirhos et al., the CNN learning is
biased toward image texture as opposed to image shape [9].
The synthetic images used in this article have an analytic
expression for the IO since the covariance matrices are
exactly known. Real images are not used since they would
require estimations of the theoretical IO to compare network
performance.

The M-dimensional vector g will represent the input
to the classifier, which will classify this vector as either
belonging to the population corresponding to the probability
density function (PDF) pr1(g) or the population correspond-
ing to the PDF pr2(g). This vector may be a direct image,
a reconstructed image, or the raw data being produced by
an imaging system. This work utilizes synthetic images of
known covariance matrices which has an analytic expression
of the IO to be the theoretical performance limit of the
detection task.

The IO uses the log-likelihood ratio

λ(g)= ln[3(g)] = ln[pr1(g)] − ln[pr2(g)] (1)

as a decision variable and compares the result to a thresh-
old [1]. Here,3(g) is the likelihood ratio pr1(g)/pr2(g). If the
decision variable is above the threshold, then the data vector
is assigned to pr1(g), and otherwise it is assigned to pr2(g).

In imaging applications, the dimensionM of the vector g
(e.g. the number of pixels) is very large. Assuming for i= 1, 2
that pri(g) is a Gaussian PDF, with zeromean and covariance

matrix Ki, the log-likelihood ratio is

λ(g)= gK−1
2 g†

− gK−1
1 g†. (2)

Here, scale factors and terms which do not depend on g have
been ignored. Implementing the log-likelihood ratio, even
with these PDF assumptions, incurs two major challenges.
The first challenge is computational; even for Gaussian PDFs
two M ×M covariance matrices Ki need to be inverted,
which may not be feasible if, for example, the input images
contain millions of pixels. The second challenge is that, if the
image statistics are estimated from data, which is often the
case, a very large number of samples are required for reliable
estimates. For example, in the Gaussian case, the number
of samples must be greater than or equal to M to achieve
invertible estimates for the Ki. The number of samples needs
to be at least an order of magnitude greater than M to get
reliable estimates. This provides a motivation for trying to
reduce the dimension of the data vector before implementing
the log-likelihood ratio.

The linear data transformation is implemented by an
L×M dimensional matrix T via the equation t= Tg. Using
terminology from the perception literature, each row of T is
referred to as a channel [10]. In this article, t will be called a
channelized image or a channelized data vector. The number
L is the dimension of the channelized data and satisfies
L�M . Channelized data are preferable for mathematical
observers since calculating a decision variable usually
involves the estimation of parametric likelihoods [11]. In
the channelized representation, this estimation can be much
more accurate given common constraints on finite training
data [12, 13]. Computational needs are also lower because
the inverse of a covariance matrix, required for likelihood
evaluations, is now L× L instead ofM ×M .

The channels are linearly independent when T is a
full-rank matrix. Consider zero-mean normal distributions
for the channelized data conditional on the two populations

pri(t)=
exp

[
−

1
2 t

†(TKiT †)−1t
]

√
(2π)L det(TKiT †)

(3)

for i = 1, 2. Note that the covariance of the channelized
data are related to the covariance of the image data by
Ci = TKiT †, where Ci is the L× L covariance matrix of the
channelized data.

The covariance matrix eigenanalysis is rarely practical
for modern imaging systems since an image is comprised of
several million elements. Fukunaga and Koontz were the first
to suggest covariance matrix eigendecomposition for detec-
tion and classification tasks [14].With certain eigenspectrum
assumptions, the Fukunaga–Koontz transform (FKT) is the
low-rank approximation to the optimal classifier for zero
mean, heteroscadastic, and normally distributed data [15,
16]. An adaptation of FKT widely used in pattern recog-
nition, is called a tuned basis function (TBF) [17]. When
the quantity of training data is limited, linear compression
using FKT can increase detection performance of the CNN.

J. Imaging Sci. Technol. 060408-2 Nov.-Dec. 2020

Omer, Caucci, and Kupinski: Limitations of CNNs for approximating the ideal observer despite quantity....

The ‘‘curse of dimensionality’’ is evident from a performance
peak at an optimal compression, followed by a decrease [18].
The CNN performance on the linearly compressed images
is heavily dependent upon the compression matrix. For IO,
full-rank linear transformations do not change detection
performance regardless of the specific compression matrix.

This FKT method uses a matrix T to transform the
data so that T (K1 + K2)T † equals the identity matrix.
This equality guarantees that both covariance matrices
of the transformed data will have the same eigenvectors.
Furthermore, the sum of the two eigenspectra, when
eigenvalues associated with the same eigenvector are added,
is equal to one. Consequently, the FKT can be helpful for
detection because it makes the strongest eigenvectors of one
class the weakest eigenvectors of the other.

Principal component analysis (PCA) is a commonly
used method for dimensionality reduction and is similar
to FKT as both methods utilize eigenspectrum analysis
to construct a transformation matrix [19]. However, the
PCA does not consider a two-class problem and instead
diagonalizes a single object class covariance matrix.

3. PERFORMANCE EVALUATIONMETHODS
Formation of the CNN architecture is done through the
TensorFlow Keras API in Python. Tensor operations are
executed utilizing 4 Nvidia 1080Ti graphic cards. Network
construction is a heuristic model based on prior knowledge
regarding the image ensemble. For example, kernel size
selection can be estimated based on the correlation length.
As the correlation length increases, the spatial variability
in the image decreases, allowing for a larger kernel size
to be used without affecting detection performance. The
diagram of sCNN and mCNN architectures can be found in
Figures 1 and 2, respectively. Architecture design of sCNN
and mCNN consist of one and four convolutional blocks,
respectively. The convolutional block for sCNN and the
initial block for mCNN has a convolutional layer containing
32 non-zero padded convolutional kernels of size 2× 2 of
stride 1. Subsequent convolution blocks for mCNN contain
12 non-zero padded convolutional kernels of size 4× 4. The
convolutional blocks for mCNN and sCNN utilize batch
normalization and Leaky ReLU for regularization [20]. A
flattened layer occurs after the last convolutional block and is
the largest contribution of network parameters, with sCNN
having more parameters than mCNN. Both networks have
an additional dense layer of size 128× 1which also has batch
normalization and LeakyReLU. The initial convolution block
and the last dense layer for both mCNN and sCNN have
dropout set to 0.75 as an additional degree of regularization.
All architectures utilize binary cross-entropy as the loss
function. For the mCNN, dropout on the first and last
layer are zero for σ1 = 1.0 and σ2 = 0.4 pixels. These large
differences between correlation length require adjustments
to optimize the network architecture. Dropout is set to zero
to increase AUC for this long correlation length difference.
Batch size is approximately 10% of the training set but is

Figure 1. Architecture design for the single-layer CNN (sCNN). The
non-zero padded convolution block and last dense layer includes several
regularization techniques to avoid overfitting. sCNN has more parameters
than mCNN primarily due to the large number of connections between
the convolution block and the flattened layer.

slightly varied to increase performance depending on task
difficulty and number of training images.

When trained, the channelized array (L× 1) is reshaped
into a (

√
L ×
√
L) matrix to allow for 2D convolution to

occur. L varies from 16 to 4096, where L must be integer
squares. The value of 16 was chosen to be the minimum
L value in order to preserve the sCNN throughout the
experiment, values smaller than 16 would require the kernel
size of 2× 2 to become a 1× 1 to allow for the minimum
stride= 1.

The number of trainable parameters for the sCNN is
equal to

Ns = 737+ 4096
(√

L− 2
)2
, (4)

and for mCNN equals

Nm = 3533+ 1536
(√

L− 14
)2
. (5)

When the image is linearly transformed, L is the number
of linear channels. Equations (4) and (5) are also valid for
unprocessed images and full-rank transformations. Here,
L =M represents the number of pixels of the unprocessed
image and the total number of linear channels for a full-rank
transformation. Image compression decreases the number
of parameters utilized in the CNN. For the sCNN, L values
between 16 to 4096 have a trainable parameter range between
Ns = 803, 553 to Ns = 15, 745, 761. The mCNN is trained
only when L =M , and uses Nm = 3, 843, 533 parameters.
When L > 44, sCNN has more trainable parameters than
mCNN. The sCNN has more parameters than mCNN due
to the flattening on the last convolutional layer followed
by a fully connected/dense layer. The number of trainable
parameters in the CNN is related to the product of: number
of parameters in last layer, number of kernels, and number of
fully connected parameters.

Additionally, the binary classification performance anal-
ysis includes state-of-the-art CNN architectures VGG-

J. Imaging Sci. Technol. 060408-3 Nov.-Dec. 2020

Omer, Caucci, and Kupinski: Limitations of CNNs for approximating the ideal observer despite quantity....

Figure 2. Architecture design for the multi-layer CNN (mCNN). The first non-zero padded convolution block and last dense layer includes several
regularization techniques to avoid overfitting. mCNN has less parameters compared to sCNN due to the smaller final convolution block and flattened
layer.

16 [21], ResNet-50 [22], and DenseNet-121 [23] on the
channelized images g̃. The selection of these networks were
based on the increase in complexity as compared to sCNN
and mCNN with varying structural design.

3.1 Generating Images
A simple covariance model is chosen to provide an analytic
solution for the IO and FKT. Two classes of images are
simulated on a 64× 64 pixel grid;M = 642. The covariance
matrix of each class is chosen to be circulant with a Gaussian
kernel and parameterized by a correlation length as in

[Ki]n,m = exp(
−((nx −mx)mod64)2− ((ny −my)mod64)2

2σ 2
i

)
, (6)

where σi is the correlation length of the ith class in units of
pixels. The 2D vectors n and m are pixel indices. A short
correlation length yield images of higher frequency content
than images of longer correlation length; see Figure 3.

3.2 Channelized Images: Linear Data Transformation
Multiplying an L×M matrix and theM × 1 vector g reduces
the dimension of the data to L × 1 and the compression
ratio is L/M . The matrix is fully populated of rank L.
In this work the IO and CNN detection performance
are compared for three linear data reduction methods:
(1) FKT compression denoted by the matrix T , (2) linear
compression without any prior knowledge denoted by R,
and (3) FKT compression subsequent to uncompressed R
(i.e. L = M) denoted by T̃ . FKT is the optimal linear
compression method given the constraint that images are
Gaussian distributed, zero class mean, and heteroscadastic.
On the other extreme, linear compression with no prior
knowledge is implemented by populating a matrix with
samples from a uniform distribution. The channelized data

are still zero-mean Gaussian distributed with covariance
matrices: TKiT †, RKiR†, or T̃RKiR†T̃ †.

For L=M , the matrices T , R, and T̃ are full rank, in-
vertible, and g has not been compressed. The data-processing
inequality guarantees that information to discriminate the
classes has not been increased by post-processing [24].
For L = M these operators are invertible and therefore
information has not been lost when the images are not
compressed. Figures 3, 4, 5, and 6 are example images
with two different correlation lengths and uncompressed
channelized images using matrices T , R, and T̃ , respectively.

The FKT matrix is populated by L eigenvectors of
K−1

2 K1 with corresponding eigenvalues κl . The IO AUC can
bemaximizedwhen these eigenvectors are chosen to have the
L largest values of κl + κ−1

l [16]. Then the compressed data
is

t= Tg, (7)

where T is an L×M matrix and FKT makes the strongest
eigenvectors of one class and the weakest eigenvectors of the
other. The FKT ensures that TK1T†

+ TK2T†
= I, where I

is the identity matrix. Consequently, when the variance in a
given pixel is low for one class, it is high for the other. This
variance difference is visible in samples of t for L=M case
given in Fig. 4.

Without any prior knowledge of pr(g), compression can
be implemented by

r=Rg. (8)

Here, R is an L×M matrix populated by elements sampled
from a uniform distribution over [0, 1]. For the special case
of L=M , no compression takes place which is denoted by
g̃ = Rg. Uncompressed channelized images g̃ are shown in
Fig. 5.

The FKT applied to the g̃ image set is denoted by

t̃= T̃ g̃. (9)

J. Imaging Sci. Technol. 060408-4 Nov.-Dec. 2020

Omer, Caucci, and Kupinski: Limitations of CNNs for approximating the ideal observer despite quantity....

Figure 3. Example images of g for classes: (a) σ1 = 1.00 and (b) σ2 = 0.40 pixels. The visual difference between the two classes is distinct; the σ1 = 1.00
image spatial structure varies less than the σ1 = 0.40 image.

Figure 4. Example channelized images t from FKT for classes: (a) σ1 = 1.00 and (b) σ2 = 0.40 pixels. The FKT constrains pixels of high variance in one
class to have low variance in the other. Here t= Tg and example images g are shown in Fig. 3. Visible differences between the classes are present in
both g and t but the correlation structure is different.

Here, R is now full rank of size M ×M and T̃ [RK1R†
+

RK2R†
]T̃ †
= I is the FKT constraint. Compression is

achieved via the L×M matrix T̃ when L<M . Once again,
when the variance in a given pixel is low for one class it is
high for another. This variance difference is visible in Fig. 6.

3.3 Estimating Observer Performance
The last node of the network consists of a sigmoid activation
function. This sigmoid produces an estimate of the posteriors
pr(i|g) [25]. For the case of equal prevalence pr(i = 1) =
pr(i= 2), the posteriors are

pr(i= 1|g)=
1

1+3(g)
, (10)

where 3(g) is the likelihood ratio defined in Eq. (1) and
pr(i = 2|g) = 1− pr(i = 1|g). The posteriors are evaluated

on a set of testing images to generate an ROC curve; the AUC
is estimated by trapezoidal integration. The average values
of the AUC estimates did not change for more than 20,000
testing images (10,000 pr(i = 1|g) and 10,000 pr(i = 2|g)),
so this quantity was selected as an asymptotic estimate.

4. RESULTS
These results compare the performance ofCNNarchitectures
to IO using various forms of image sets. The detection
task performance are computed from four image data sets:
original image data g, image data compressed by FKT t,
linear compression with no prior knowledge r, and FKT
compression subsequent to a non-compressive (i.e. L=M)
invertible linear transform denoted by t̃. The detection
performance for a specific model and type of data set is

J. Imaging Sci. Technol. 060408-5 Nov.-Dec. 2020

Omer, Caucci, and Kupinski: Limitations of CNNs for approximating the ideal observer despite quantity....

Figure 5. Example channelized images g̃ from full-rank linear transform for classes: (a) σ1 = 1.00 pixels and (b) σ2 = 0.40 pixels. Here g̃= Rg and
images g are shown in Fig. 3. There is no visible difference between the two classes after this full-rank linear transform R.

Figure 6. Example channelized images t̃ from FKT for classes: (a) σ1 = 1.00 pixels and (b) σ2 = 0.40 pixels. Here t̃= T̃ g̃ and channelized images g̃
are shown in Fig. 5. The visible differences between the images g (see Fig. 3) which was lost in the uncompressed channelized images g̃ (see Fig. 5) has
been restored by FKT channelized images shown in this figure.

denoted, for example by sCNNt for a single-layer CNN on
an FKT channelized image set.

In Figure 7, the AUCs are compared for: IOg, IOt,
sCNNg, and mCNNg as a function of number of training
images. An easy task is evaluated in Fig. 7(a) and a more
difficult task, where the correlation lengths are more similar,
is reported in Fig. 7(b). The IO does not depend on the
number of training images because the true value of the
covariance matrices are used to estimate AUC. The AUC
for IOt is compared for different numbers of FKT channels:
L = 4, 40, and 400. As expected, the AUC of IOt increases
with the number of channels. At a given L, the AUC of IOt is
lower for the more difficult task in Fig. 7(b) as compared to
Fig. 7(a).

The gap between the AUCs of IOt for the easy and more
difficult task closes as the number of channels decreases.

At maximum compression, for IOt : L = 4 AUC = 0.54
for the easy task and AUC = 0.52 for the more difficult
task; see Figs. 7(a) and 7(b), respectively. Notably, for 100
training images mCNNg and sCNNg are outperformed by
IOt : L = 40 for the easy task and IOt : L = 4 for the more
difficult task. For a given L, the CNN requires a greater
quantity of training data to meet IOt as the task difficulty
increases.

The number of trainable parameters in the sCNN and
mCNN depends on the image size; see Eqs. (4) and (5).
Both the sCNN and mCNN have the same hyperparameters
in the first block. The number of trainable parameters for
the sCNNg and mCNNg are: Ns = 15, 745, 761 and Nm =
3, 843, 533, respectively. Detection performance depends on
both the number of independent samples and the number of
trainable network parameters. The number of independent

J. Imaging Sci. Technol. 060408-6 Nov.-Dec. 2020

Omer, Caucci, and Kupinski: Limitations of CNNs for approximating the ideal observer despite quantity....

Figure 7. AUC dependence on quantity of training images for: (a) an easy task, where IOgAUC = 0.98 and (b) a task of moderate difficulty, where
IOgAUC = 0.88. Here σ1 = 0.38 pixels and in (a) σ2 = 0.30 pixels and (b) σ2 = 0.34 pixels. The upper bound on AUC, for a given number of channels
(L), is given by IOt, which is always lower for the more difficult task in (b). Here, the CNN performance strictly increases with quantity of training data.
mCNNg outperforms sCNNg for 500 and 1,000 training images. For larger quantities of training images sCNNg performance is greater.

samples is the product of the number of training images
and the size of an image. Above 1,000 training images,
the number of independent samples exceeds the number of
trainable parameters in mCNNg, but is less than the number
of trainable parameters in sCNNg. Also above 1,000 training
images, the AUC of sCNNg meets or exceeds the AUC of
mCNNg; see Fig. 7. At and below 1,000 training images
mCNNg outperforms or equals sCNNg where the reduction
of trainable parameters increases detection performance.

When the number of independent samples increases
to 2, 048, 000 and 4, 096, 000 for 500 and 1000 training
images, respectively, the mean AUC increases by 0.05 to 0.85
based on task difficulty and number of training images; see
Figs. 7(a) and 7(b) for respective performance increases. The
AUC of the sCNN is about 0.10 less than mCNN in this
region. The task is now better estimated by the mCNN due
to the magnitude of the number of independent samples and
training images being equal.

When the number of training images exceeds 5000
training images, the number of independent samples is larger
than 20, 480, 000. The number of independent sample count
is now in the same order of magnitude as the number of
sCNN parameters. Here, the sCNN AUC is greater than
mCNN by .02 in Figs. 7(a) and 7(b). In the limit of increased
training images, the AUC difference between sCNNg and
mCNNg decreases. The difference in the performance of
the two networks decreases as the number of independent
samples outweighs network parameters.

Figure 8 reports AUC as a function of compression ratio
M/L for an easy task of: (a) short correlation lengths and
(b) longer correlation lengths. The AUC mean and standard
deviation are estimated from 100 training images. The IO
performance is denoted by circle markers. Triangle markers
denote performance of sCNN. The colors denote linear
processing methods: red (t), green (r), and blue (t̃) defined
in Eqs. (7), (8), and (9), respectively. The IO is invariant to
multiplication by a non-singular matrix. Therefore, IO AUC
is equal for all three full-rank compression matrices when

L = M . As the compression ratio increases, the IO AUC
decreases at different rates for each compression matrix.
Compression from FKT (red) is optimal linear compression
for this zero-mean Gaussian heteroscadastic data. The AUC
= 1.0 for the FKT compressed image (denoted by IOt
and red circles in Fig. 8) until M/L ≈ 10, where the
AUC decreases monotonically with compression ratio. The
performance trend of sCNNt matches IOt for large com-
pression ratios. However, given small compression sCNNt
AUC is convex and performance peaks atM/L≈ 6. Further
compression degrades the detection performance due to
the trade-off between information content and estimation
from finite sample statistics [18]. This performance peak
is less pronounced in Fig. 8(a) as compared to Fig. 8(b).
The correlation lengths are shorter and therefore image data
contains higher frequency content in Fig. 8(a) compared
to Fig. 8(b). Both detection tasks are of similar difficulty
level given by IO AUC = 1.0 for uncompressed images.
However, even for uncompressed images the sCNNt AUC
for these tasks deviates; see Fig. 8(b) compared to Fig. 8(a).
The longer correlation length structure is more challenging
for the sCNN to learn given a low quantity of training
data. This indicates that although IO AUC is a metric for
detection task difficulty, it is not necessarily a predictor of the
quantity of training images necessary for an IO performance
approximation. The correlation structure of the data also
needs to be considered.

The IO AUC decreases most rapidly when no prior
knowledge is used in the compression matrix IOr (green
circles in Fig. 8). Compression is implemented by populating
an L × M matrix with uniformly distributed random
samples; see Eq. (8), even at low compression ratios, where
IOr AUC = 1.0 the sCNNr AUC ≈ 0.50. This result is
the largest disparity between CNN and IO reported in this
work. The non-singular linear transform g̃ = Rg does not
change the information content of the image data since the
original image data can be recovered by g=R−1g̃. However,

J. Imaging Sci. Technol. 060408-7 Nov.-Dec. 2020

Omer, Caucci, and Kupinski: Limitations of CNNs for approximating the ideal observer despite quantity....

Figure 8. AUC mean and standard deviation are estimated from 100 training images as a function of compression ratio for an easy task of: (a) short
correlation lengths and (b) longer correlation lengths. IO performance is denoted by circle markers. Triangle markers denote performance of sCNN.
The colors denote linear processing methods: red (t), green (r), and blue (̃t) defined in Eqs. (7), (8), and (9), respectively. The AUC improvement with
compression of sCNNt and sCNNt̃ is less appreciable for the shorter correlation length images (a) compared to longer correlation length images (b).

the sCNN trained on g̃ no longer recognizes the correlation
differences between the two classes.

The correlation structure change due to matrix multi-
plication by R can be changed again by an FKT compression
matrix applied to g̃ images; see Eq. (9). This is denoted by IOt̃
(blue circles in Fig. 8) and closely matches the curve for IOt
(red circles in Fig. 8), with a maximum AUC difference of
less than 0.01 which begins to occur when M/L= 10. The
AUC of sCNNt and sCNNt̃ differs by ≈0.10 at M/L = 1
for the shorter correlation length images in Fig. 8(a). For
the longer correlation length images in Fig. 8(b), AUC of
sCNNt and sCNNt̃ differs by ≈0.01 at M/L= 1. Therefore,
the effectiveness of FKT to restore a correlation structure
which sCNN can recognize depends on the correlation
structure of the original data set. For the shorter correlation
length case, an increase in FKT compression on g̃ results in
AUC fluctuating near 0.7 and peaking at M/L ≈ 200; see
sCNNt̃ denoted by blue triangles in Fig. 8(a). For the longer
correlation case, theAUCof sCNNt̃ ismore similar to sCNNt
including the performance peak observed nearM/L= 10.

Figure 9 shows the AUC versus compression ratio for
(a) Ntrain = 100 and (b) Ntrain = 10, 000 training images.
The IO AUC decreased in Fig. 9 as compared to Fig. 8
because the correlation lengths are both shorter. Due to
the shorter correlation lengths, IO and CNN detection task
difficulty increases. For Ntrain = 100; see Fig. 9(a), sCNNt
peaks at AUC ≈ 0.55. The sCNNt AUC using additional
training images in Fig. 9(b) increases to AUC = 0.72.
This result proves to agree with the assessments made in
Fig. 7 that an increased performance can be achieved with
additional training images. Fig. 9 shows that the validity of
this assessment includes compressed data sets. Additional
training images increases the sensitivity to compression as
seen in Fig. 9(b).

In Figure 10, the AUC of IO and mCNN are compared
for an extremely easy detection task (σ1 = 1.00, σ2 = 0.40
in magenta) and a more difficult detection task (σ1 = 0.38,

σ2 = 0.34 in green). See Fig. 3 for example images of the
extremely easy task. The mCNN performance is reported
as a function of number of training images for g and
g̃ = Rg. The IO performance does not depend on number
of training images or non-singular linear transform. For both
the extremely easy andmore difficult detection task,mCNNg
improves monotonically with increased quantity of training
images. Even if the correlation length differences are small,
the CNN is learning to distinguish the images.

For the easier task mCNNg̃ AUC (magenta circles in
Fig. 10) improves monotonically with increased quantity
of training images. For 1,000 and 10,000 training images,
AUC≈ 0.65, while peaking at an AUC= 0.782 for 1,000,000
training images. For the more difficult task mCNNg̃ AUC
≈ 0.5 (green circles in Fig. 10) and does not improve with
increased quantity of training images. This result indicates
that the non-singular linear transform g̃=Rg can render the
correlation differences undetectable to the CNN unless the
original images g differ in correlation length by a sufficiently
large magnitude.

Table I shows the AUC performance trained on g̃ when
σ1 = 1.0 and σ2 = 0.40 using common state-of-the-art
neural network architectures: VGG-16, ResNet-50, and
DenseNet-121 which contains 16, 50, and 121 network
layers, respectively. The CNN architectures in Table I
contain more convolutional layers than sCNN/mCNN while
ResNet-50 and DenseNet-121 have complexities in their
architectures not found in mCNN/sCNN. All architectures
excluding VGG-16 include regularization techniques such
as batch normalization and dropout. VGG-16, ResNet-50,
and DenseNet-121 have 14.7M , 23.5M , and 6.9M training
parameters, respectively. During training, usage of early
stoppingwas incorporated to avoid overfitting to the training
set and minimize the generalization error. The VGG-16
AUC = 0.737 and AUC = 0.739 for 1000 and 10,000
images. For mCNN, AUC ≈ 0.65 for 1000 and 10,000
training images, as seen in Fig. 10. For 1000 training images

J. Imaging Sci. Technol. 060408-8 Nov.-Dec. 2020

Omer, Caucci, and Kupinski: Limitations of CNNs for approximating the ideal observer despite quantity....

Figure 9. AUC as a function of data compression for a task of moderate difficulty (σ1 = 0.38, σ2 = 0.34) and varying quantities of training images:
(a) Ntrain = 100 and (b) Ntrain = 10,000. IO performance is denoted by circle markers and does not depend on number of training images. Triangle
markers denote performance of sCNN. The colors denote linear processing methods: red (t), green (r), and blue (̃t) defined in Eqs. (7), (8), and (9),
respectively.

Figure 10. AUC as a function of number of training images for
two classification tasks of varying difficulty. In magenta IOg = 1.0 for
σ1 = 1.00, σ2 = 0.40 (see Fig. 3 for example images) and in green
IOg = 0.87 for σ1 = 0.38, σ2 = 0.34. Performance on image data
g is denoted by circle markers, performance on the linear transformed
images g̃= Rg is denoted by triangles. For the easier task mCNNg̃ AUC
(magenta circles) improves with increased quantity of training images.

VGG-16 has a larger AUC compared to ResNet-50 and only
slightly larger for DenseNet-121. For 10,000 training images
the AUC differences between architectures are within one
standard deviation. Deeper and more complex networks
such as ResNet-50 and DenseNet-121 are often attributed to
learning higher level features. The complexities in ResNet-
50 and DenseNet-121 consist of regularization techniques
to avoid vanishing gradients that saturate and decrease
network performance. Table I suggests these techniques do
not contribute in increasing the performance beyond the
performance of VGG-16. The cases shown in Table I still
perform below the IO AUC = 1.0 indicating that a simple
task for the IO is difficult even for the state-of-the-art CNN
architectures.

Table I. For various state-of-the-art CNN architectures, the AUC mean and standard
deviation of the detection task for g̃ images (see Fig. 5); hereσ1 = 1.0 andσ2 = 0.40
(see Eq. (6)) and IO AUC is 1.0. For 1000 training images, VGG-16 has a larger AUC
compared to ResNet-50 and only slightly larger for DenseNet-121. For 10,000 training
images the AUC differences are within one standard deviation.

CNN architecture #of training images AUC

VGG-16
1,000 0.737± 0.001
10,000 0.739± 0.002

ResNet-50
1,000 0.703± 0.003
10,000 0.735± 0.002

DenseNet-121
1,000 0.731± 0.004
10,000 0.724± 0.015

5. CONCLUSION
In many imaging applications, CNNs performance approxi-
mates the IO detection performance given enough training
data; see Figs. 7 and 10. The quantity of image data required
for this approximation depends strongly on the difficulty of
the detection task (i.e. the similarity of the image PDFs) and
the number of measurements in a single image (M). This
work demonstrates that certain linear transformations of the
image data challenge this approximation.

The results for AUC versus number of training images
in Figs. 7(a) and 7(b) show the AUC of sCNN, mCNN,
and IO as a function of number of training images utilizing
the unaltered image set g. For 500 and 1,000 training
images, the mCNN outperforms sCNN. The mCNN uses
additional layers in the network architecture resulting in
fewer parameters than sCNN. This result goes against
some findings suggesting neural networks benefit from
overparameterization [26]. The parameters in the deeper
layers utilize additional convolutions that provide beneficial
results for small quantities of training images [27]. With
increasing quantities of training images, the difference in

J. Imaging Sci. Technol. 060408-9 Nov.-Dec. 2020

Omer, Caucci, and Kupinski: Limitations of CNNs for approximating the ideal observer despite quantity....

performance of mCNN and sCNN decreases as learning is
also strongly related to the number of training images in the
data set, asymptotically approaching the IO performance [3].
Additionally, in Table I, the added layers and regularization
techniques using ResNet-50 and DenseNet-121 do not
increase performance compared to the shallower network
VGG-16 for this detection task.

For small training sets, linear transformation in the
form of compression can increase or decrease the CNN
performance; see Figs. 8 and 9. Good compressionmakes use
of prior information to preserve detection task performance.
The balance between the compression ratio and sacrifice
of information is determined by the task difficulty and
number of training data. The work done in this article
further analyzes the case where the data set is small and
performance of the sCNN is increased by utilizing the
FKT compared to no compression method. The FKT is the
optimal low-rank approximation to the optimal classifier for
zero mean, heteroscadastic, and normally distributed data.
Therefore, the FKT provides the optimal data reduction
method for the presented image textures. The convex shaped
sCNNt from Fig. 8 demonstrates an optimal compression
ratio with performance peaking at M/L ≈ 5. Increasing
compression degrades performance of the sCNN as task
difficulty increases (IO AUC decreases), known as the ‘‘curse
of dimensionality’’ [18]. The FKT requires the covariance
matrix of the two classes to meet the condition where
T (K1+K2)T † is the identity matrix.

Furthermore, Figs. 8–10 include observer performance
on image set g̃, which uses a transformation matrix that
does not depend on the prior knowledge of the two classes.
This transformation matrix is sampled from a uniform
distribution over [0, 1] and randomize the pixel weight and
position. The CNN AUC = 0.5 for g̃ even in the limit of
large training data; see Figs. 7 and 8. The CNN trained on
g̃ was only able to achieve non-guessing performance when
the task was extremely simple (σ1 = 1.0 and σ2 = 0.40); see
Fig. 8. Since the matrix is full rank, the IO performance on
g̃ and g are equal, with a value of 1.0. For the extremely
simple task, the mCNN AUC = 1.0 when trained on g
for 1,000 training images. In contrast, mCNN AUC =
0.65 when trained on g̃ for the same amount of training
images. This implies a greater difficulty for the network to
generalize a representation for g̃. With the state-of-the-art
network architectures, performance on g̃ images increases
compared to mCNN; see Table I. However, the AUC of
the state-of-the-art CNN architectures performed below IO
for even a 121-layer architecture. Table I suggests that the
techniques used in ResNet-50 and DenseNet-121 to improve
upon shallower networks do not contribute in increasing the
performance beyond VGG-16 for this detection task.

This article also presents a method to change the
correlation structure of g̃ through a subsequent FKT
full-rank linear transformation that then increases CNN
performance; see Figs. 8 and 9. This change in correlation
structure does not alter the information in the original
image since the transformation is invertible; therefore, IO

performance remains unchanged up to numerical error. This
linear transformation also does not increase the amount of
information in the image, as stated by the data-processing
inequality. However, the restoration process presumably
restores the correlation structure to a pattern recognized by
the CNN.

Overall, this work contributes a linear transformation
that reduces the CNN to near-guessing performance even
for large quantities of training images. Subsequently applying
a different full-rank transformation that depends on the
covariance matrix of the two classes increases the CNN
performance. This work also shows that the FKT can be used
to increase the CNN performance through compression.

REFERENCES
1 H. H. Barrett and K. J. Myers, Foundations of Image Science (Wiley, New
York, 2013).

2 W. S. Geisler, ‘‘Contributions of ideal observer theory to vision research,’’
Vis. Res. 51, 771–781 (2011); Vision Research 50th Anniversary Issue:
Part 1.

3 W. Zhou, H. Li, and and M. A. Anastasio, Approximating the Ideal
Observer and Hotelling Observer for binary signal detection tasks by use
of supervised learning methods. arXiv:1905.06330, (2019).

4 F. Reith and B. Wandell, A convolutional neural network reaches optimal
sensitivity for detecting some, but not all, patterns. arXiv:1911.05055,
(2019).

5 S. Wolfram, ‘‘Statistical mechanics of cellular automata,’’ Rev. Mod. Phys.
55, 601–644 (1983).

6 C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals,
Understanding deep learning requires rethinking generalization.
2016. arXiv:1611.03530, Published in ICLR (2017).

7 I. J. Goodfellow, J. Shlens, and C. Szegedy, Explaining and harnessing
adversarial examples. arXiv:1412.6572, (2014).

8 A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay, and
D. Mukhopadhyay, Adversarial attacks and defences: A survey.
arXiv:1810.00069, (2018).

9 R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann, andW.
Brendel, ‘‘Imagenet-trained CNNs are biased towards texture; increasing
shape bias improves accuracy and robustness,’’ Int’l. Conf. on Learning
Representations (ICLR, La Jolla, CA, 2019).

10 D. J. Field, ‘‘Relations between the statistics of natural images and the
response properties of cortical cells,’’ J. Opt. Soc. Am. A 4, 2379–2394
(1987).

11 C. K. Abbey, H. H. Barrett, and M. P. Eckstein, ‘‘Practical issues and
methodology in assessment of image quality using model observers,’’
Proc. SPIE 3032, 182–194 (1997).

12 M. A. Kupinski, E. Clarkson, and J. Y. Hesterman, ‘‘Bias in Hotelling
observer performance computed from finite data,’’ Proc. SPIE 6515,
65150S–65150S–7 (2007).

13 B. D. Gallas, ‘‘Variance of the channelized-hotelling observer from a finite
number of trainers and testers,’’ Proc. SPIE 5034, 100–111 (2003).

14 K. Fukunaga and W. L. G. Koontz, ‘‘Application of the Karhunen-Loeve
expansion to feature selection and ordering,’’ IEEE Trans. Comput. 19,
311–318 (1970).

15 X. Huo, ‘‘A statistical analysis of Fukunaga-Koontz transform,’’ IEEE
Signal Process. Lett. 11, 123–126 (2004).

16 M. K. Kupinski and E. Clarkson, ‘‘Method for optimizing channelized
quadratic observers for binary classification of large-dimensional image
datasets,’’ J. Opt. Soc. Am. A Opt. Image Sci. Vis. 32, 549–565 (2015).

17 A. Mahalanobis, R. R. Muise, S. R. Stanfill, and A. Van Nevel, ‘‘Design
and application of quadratic correlation filters for target detection,’’ IEEE
Trans. Aerosp. Electron. Syst. 40, 837–850 (2004).

18 R. Bellman, Dynamic Programming (Princeton University Press, Prince-
ton, NJ, 1957), Vol. XXV, p. 342.

19 T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning , Springer Series in Statistics (Springer NewYork Inc., NewYork,
NY, USA, 2001).

J. Imaging Sci. Technol. 060408-10 Nov.-Dec. 2020

https://doi.org/10.1016/j.visres.2010.09.027
http://arxiv.org/abs/1905.06330
http://arxiv.org/abs/1911.05055
https://doi.org/10.1103/RevModPhys.55.601
http://arxiv.org/abs/1611.03530
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1810.00069
https://doi.org/10.1364/JOSAA.4.002379
https://doi.org/10.1109/T-C.1970.222918
https://doi.org/10.1109/LSP.2003.821650
https://doi.org/10.1109/LSP.2003.821650
https://doi.org/10.1109/LSP.2003.821650
https://doi.org/10.1364/JOSAA.32.000549
https://doi.org/10.1109/TAES.2004.1337458
https://doi.org/10.1109/TAES.2004.1337458
https://doi.org/10.1109/TAES.2004.1337458

Omer, Caucci, and Kupinski: Limitations of CNNs for approximating the ideal observer despite quantity....

20 S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network
training by reducing internal covariate shift. CoRR, arXiv:1502.03167,
(2015).

21 K. Simonyan and A. Zisserman, Very deep convolutional networks for
large-scale image recognition. CoRR, arXiv:1409.1556, (2015).

22 K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for
image recognition,’’ 2016 IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR) (IEEE, Piscataway, NJ, 2016), pp. 770–778.

23 G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, ‘‘Densely
connected convolutional networks,’’ 2017 IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR) (IEEE, Piscataway, NJ, 2017),
pp. 2261–2269.

24 T. M. Cover and J. A. Thomas, Elements of Information Theory , Wiley
Series in Telecommunications and Signal Processing (Wiley-Interscience,
USA, 2006).

25 I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT,
Cambridge, MA, 2016), http://www.deeplearningbook.org.

26 Z. Allen-Zhu, Y. Li, and Y. Liang, ‘‘Learning and generalization in
overparameterized neural networks, going beyond two layers,’’ in
Advances in Neural Information Processing Systems 32, edited by H.
Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and R.
Garnett (Curran Associates, Inc., San Diego, CA, 2019), pp. 6155–6166.

27 H. W. Lin and M. Tegmark, ‘‘Why does deep and cheap learning work so
well?,’’ J. Stat. Phys. 168, 1223–1247 (2017).

J. Imaging Sci. Technol. 060408-11 Nov.-Dec. 2020

http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1409.1556
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1007/s10955-017-1836-5

	Introduction and Related Work
	Mathematical Background
	Performance Evaluation Methods
	Generating Images
	Channelized Images: Linear Data Transformation
	Estimating Observer Performance

	Results
	Conclusion
	References

