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Abstract: even though pedestrians represented 40% of all urban displacements in 
Brazil in 2017, they are still highly vulnerable to traffic accidents, with a mortal-
ity rate of 2.89 per 100 thousand inhabitants in 2018. The literature suggests a 
correlation between the occurrence of traffic accidents and demographic, socio-
economic, and urban structure variables. This study aimed to investigate the pe-
destrian susceptibility to fatal traffic accidents in the City of Curitiba, in Southern 
Brazil, based on the correlation between these events and available demographic, 
socioeconomic, and urban structure spatial variables. The methodology involved 
the integration of a data-driven statistical method (logistic regression) with geo-
spatial techniques in a GIS software. By adopting broadly available spatial infor-
mation, the proposed methods were robust in estimating the events, presenting an 
area under the ROC curve of 0.82 in the cross-validation. Additionally, the results 
highlighted a strong and statistically significant correlation between the pedes-
trian crashes and the analysed variables of road system hierarchy, presence of BRT 
routes, land-use, population density and per capita income.

Keywords: Road safety. Logistic regression. Spatial analysis. Geographic 
Information System.

ESTIMANDO A SUSCETIBILIDADE DE PEDESTRES A ACIDENTES 
DE TRÁFEGO EM CURITIBA, BRASIL

Resumo: apesar do transporte a pé ter representado 40% dos deslocamentos ur-
banos no Brasil em 2017, os pedestres ainda são altamente vulneráveis aos aci-
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dentes de trânsito, com uma taxa de mortalidade de 2.89 a cada 100 mil habitantes em 2018. 
A literatura sugere uma correlação entre a ocorrência de acidentes de trânsito e variáveis 
demográficas, socioeconômicas e de estrutura urbana. Nesse estudo, essa correlação foi in-
vestigada por meio de um modelo estatístico (regressão logística) integrado a ferramentas de 
análise espacial no ambiente SIG, os quais foram aplicados para estimar a susceptibilidade dos 
pedestres aos atropelamentos no Município de Curitiba, na Região Sul do Brasil. Adotando in-
formações espaciais amplamente disponíveis em portais de dados abertos, os métodos propos-
tos apresentaram resultados robustos ao estimar os atropelamentos, conforme demonstrado 
pela área abaixo da curva ROC de 0.82 no processo de validação cruzada. Adicionalmente, os 
resultados destacaram uma forte correlação, estatisticamente significante, entre os atropela-
mentos e as variáveis adotadas de hierarquia do sistema viário, presença de rotas de BRT, uso 
do solo, densidade populacional e renda per capita.

Palavras-chave: Segurança viária. Regressão logística. Análise espacial. Sistema 
de Informações Geográficas.

ESTIMACIÓN DE LA SUSCEPTIBILIDAD DE LOS PEATONES A ACCIDENTES 
DE TRÁFICO EN CURITIBA, BRASIL

Resumen: aunque los peatones representaron el 40% de todos los desplazamientos urbanos en 
Brasil en 2017, siguen siendo altamente vulnerables a los accidentes de tránsito, con una tasa 
de mortalidad de 2.89 por cada 100 mil habitantes en 2018. La literatura sugiere una relación 
entre la ocurrencia de accidentes de tránsito y variables demográficas, socioeconómicas y de 
estructura urbana. En este estudio, esta relación fue investigada a través de un modelo estadís-
tico basado en datos (regresión logística) combinado con análisis espacial GIS, aplicado para 
estimar la susceptibilidad peatonal a accidentes de tránsito en la ciudad de Curitiba, en el sur 
de Brasil. Al adoptar información espacial ampliamente disponible, los métodos propuestos 
fueron robustos para estimar los eventos, presentando un área bajo la curva ROC de 0.82 en 
la validación cruzada. Además, los resultados destacaron una correlación fuerte y estadísti-
camente significativa entre los choques peatonales y las variables analizadas de jerarquía del 
sistema vial, presencia de rutas BRT, uso del suelo, densidad de población e ingreso per cápita.

Palabras clave: Seguridad vial. Regresión logística. Análisis espacial. Sistema de Información 
Geográfica.

The world has been experiencing a fast urbanization process combined with a 
growing population, which has created a large number of metropolises, espe-
cially in the low- and middle-income countries (UNITED NATIONS, 2018). In 

the Brazilian context, since the 1980s quality of life in urban centres have been chal-
lenged by the increased use of motorized private vehicles and the stagnation of the ur-
ban public transport system, driven by an economic slowdown and policy orientation 
(VASCONCELLOS, 1997; MARICATO, 2008). Despite this national trend, the City of 
Curitiba, after the 1970s, experienced an increase in the supply and efficiency of public 
transport, driven by its first Master Plan signed in 1966, which culminated in the im-
plementation of exclusive bus lanes (LEVINSON et al., 2002; MERCIER et al., 2016), 
worldly renowned as Bus Rapid Transit (BRT) system. 

The first federal legislation addressing sustainable urban mobility in Brazil 
were implemented only at the beginning of the 21st century, including Articles 1 



3 , Goiânia, 2021, e8895.      

and 2 of the Federal Law number 10,257 (BRAZIL, 2001) – entitled Estatuto das 
Cidades, and the Federal Law number 12,587 (BRAZIL, 2012) – entitled Lei de Mo-
bilidade Urbana. These instruments supported a new concept on urban mobility in 
the country, resulting in policy efforts to change the planning and design strategies 
in Brazilian cities by focusing on non-motorized means of transportation (SILVA; 
COSTA; MACEDO, 2008).

According to the National Association of Public Transport (2020), in the munici-
palities with more than 60 thousand inhabitants, the non-motorized modes contributed 
to 42.5% of total displacements in 2017, of which 40% was constituted by pedestrians 
and 2.5% by cyclists. Although these means of transportation are more common in 
smaller urban areas, where distances are shorter, they are still significant in the large 
metropolises with more than 1 million inhabitants, encompassing 36.8% of total dis-
placements in the same year (BRAZILIAN NATIONAL ASSOCIATION OF PUBLIC 
TRANSPORT, 2020).

Despite their representativeness, pedestrians remain highly exposed to traffic ac-
cidents in Brazil. As specified by the DATASUS Mortality Information System from 
the Ministry of Health of the Brazilian Government, pedestrians represented 18.43% of 
total deaths caused by traffic occurrences in 2018 (the absolute number of pedestrian 
fatalities was 6,018), corresponding to a mortality rate of 2.89 per 100 thousand inhab-
itants (BRAZILIAN MINISTRY OF HEALTH, 2020). These contradictory figures 
indicate that there is a lot to be improved in Brazilian cities to meet the goal of reduc-
ing road traffic deaths by at least 50% from 2020 to 2030 (UNITED NATIONS, 2020). 

The literature suggests the relationship between the spatial distribution of pedes-
trian crashes accidents and demographic, socioeconomic, and urban structure variables. 
In the context of demographic variables, population density information tends to be eas-
ily available and it is alternatively used as a measure of susceptibility since pedestrian 
direct exposure data is rarely available. Thus, greater population density is consistent-
ly associated with a higher frequency of pedestrian crashes, since it is usually related 
to increased exposure level due to commuting and commercial activities (LASCALA, 
GERBER, GRUENEWALD, 2000; HA, THILL, 2011; CHIMBA, MUSINGUZI, KI-
DANDO, 2018; DING, CHEN, JIAO, 2018). 

Concerning socioeconomic variables, previous studies indicate that low-income 
areas have a higher probability of pedestrian casualties (SIDDIQUI, ABDEL-ATY, 
CHOI, 2012; NOLAND, KLEIN, TULACH, 2013; DAI, JAWORSKI, 2016; GRISÉ et 
al., 2018). Noland et al. (2013) argue that the low-income population is associated with 
a lower proportion of households owning a vehicle, which increases the pedestrian ex-
posure level since people are walking instead of driving. The reduced car ownership 
straightforwardly increases the demand for public transport; consequently, public trans-
port facilities such as bus stops tend to generate a greater pedestrian activity leading to 
a relative increased number of pedestrian crashes around the area (UKKUSURI et al., 
2012; CHEN, ZHOU, 2016; DAI, JAWORSKI, 2016).

The influence of urban structure variables on pedestrian safety is investigated 
throughout several approaches, including the impact of land-use patterns and geometric 
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design parameters. Researches indicate that land-use types capable of generating pedes-
trian activity (e.g. commercial and retail facilities, high-density housing, schools and 
parks) have been related to a higher frequency of pedestrian crashes (KIM, BRUNNER, 
YAMASHITA, 2006; WEDAGAMA, BIRD, METCALFE, 2006; LOUKAITOU-SID-
ERIS, LIGGETT, SUNG, 2007). On the geometric design parameters, the most widely 
investigated in the literature is the number of lanes or road width, since it is criticality 
related to the amount of exposure of pedestrians when crossing streets (SCHNEIDER, 
RYZNAR, KHATTAK, 2004; UKKUSURI et al., 2012; AZIZ, UKKUSURI, HASAN, 
2013; RANKAVAT, TIWARI, 2016; MOHAN, BANGDIWALA; 2017; BASSANI, ROS-
SETTI, CATANI, 2020).

In this context, the main purpose  of this study is to investigate the pedestrian 
susceptibility to fatal traffic accidents in the City of Curitiba, in Southern Brazil, based 
on the correlation between these events and available demographic, socioeconomic, 
and urban structure spatial variables. Moreover the study (1) presents a methodology 
that can be used in any urban area – with open-source datasets – helping to orientate 
urban planning strategies aligned with better road safety-oriented practices; (2) intro-
duces a data-driven statistical method to support the identification of traffic accident 
hotspots a at the municipal scale; (3) investigates the triggering factors associated with 
pedestrian traffic accidents in the urban environment and their interconnections; and 
(4) based on these factors, potentially points out the need for changes in urban policy, 
especially in underdeveloped neighborhoods.

Many authors (SZE, WONG, 2007; TAO et al., 2015; AGARWAL, KACHROO, 
REGENTOVA, 2016; YILDIZ, ATEŞ, 2020) applied the model to investigate the fac-
tors associated with traffic accidents in the built environment. While these studies 
significantly contributed to identifying critical elements in road safety, they rarely fo-
cused on the spatial component through the integration of the regression model with 
geospatial tools.

METHODOLOGY

The proposed methodology encompassed the application of multiple logistic 
regression modelling with geospatial tools to associate the fatal pedestrian crashes 
with spatial factors of the built environment. The logistic regression is a data-driven 
statistical analysis method broadly adopted to understand the response of a binary 
dependent variable to multiple predictors. To develop the analysis, the City of Cu-
ritiba was selected as a case study area. Curitiba is the capital of the State of Parana 
and the largest city in the Southern Region of Brazil, with an estimated population 
of more than 1.9 million inhabitants in 2019 (BRAZILIAN INSTITUTE OF GE-
OGRAPHY AND STATISTICS, 2020). The city has historically developed a linear 
urban occupation along structural axes through the integration of high-density and 
mixed-use developments with structural roads and the BRT system (MOTTA, 2017). 
This urban configuration provides a promising scenario to investigate the proposed 
urban challenge .
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The method was performed in five steps, including the (1) analysis of the traffic 
accident database followed by a random selection of training and validation samples 
for the statistical approach; (2) pre-processing of the required input data, including the 
dependent and independent variables, through a set of geospatial tools; (3) conversion 
of the categorical variables to numeric; (4) execution of the logistic regression analysis 
with all training and validation samples and assessment of the model accuracy; and (5) 
running of the final logistic regression model to estimate the pedestrian susceptibility 
to traffic accidents in the study area.

Traffic Accident Database: Analysis and Sample

The traffic accident database was retrieved from the Project Vida no Trânsito 
from the Ministry of Health of the Brazilian Government, made available by the Cu-
ritiba Institute of Research and Urban Planning (2018a). The database encompasses 
the fatal traffic accidents that occurred in the City of Curitiba from 2010 until 2018.

Initially, the database was filtered according to the category type of accident 
and there were selected only the pedestrian crashes, which are the object of this study. 
To enable the assessment of the model performance, the k-fold cross-validation was 
adopted. The validation approach, in its simplest way, randomly splits the sample into a 
single training set and a single validation set, the latter being used to analyse the model 
predictive capacity. In this approach, the variability in the distribution of observations 
in the training and validation sets can generate highly distinct results. Therefore, the 
cross-validation acts as a refinement of the validation approach by introducing a larger 
number of sets (JAMES et al., 2013).

The k-fold cross-validation was performed following the method described by 
James et al. (2013) by setting the k equals to five. First, the selected traffic accidents 
(a total of 718 occurrences) were randomly split into five folds. Then, five training and 
validation samples were created by interactively adopting 80% (k-1 folds) of the data-
set for training and 20% (remaining fold) for validation. In summary, the split process 
was repeated five times, considering a different fold each time until all of them served 
as the validation sample.

The samples of pedestrian crashes were imported to ArcGIS® by adopting the 
X and Y coordinates provided in the database, thus generating a vector file with ac-
cidents represented as points (see Figure 1). For each one of the training and validation 
samples, the point features were converted to a raster dataset with 10 meters of spatial 
resolution based on a binary classification: 1 for traffic accidents and 0 for no traffic 
accidents. This process generated the input layer that represents the dependent vari-
able in the logistic regression model. The spatial resolution was defined considering 
the scale of the analysis. While a higher resolution would significantly increase the 
model processing time, jeopardizing the model performance in a large study area, a 
lower spatial resolution would merge many accidents into a single pixel, thus resulting 
in data loss.
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Figure 1. Location of fatal pedestrian crashes registered in the City of Curitiba from 2010 to 2018. Source: 
Author.

Factor Maps: Acquisition and Pre-processing
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Data Acquisition

Based on the literature, five spatial factors were select to investigate their rela-
tionship with pedestrian crashes. This includes urban structure (road system hierarchy, 
presence of BRT routes and land-use), socioeconomic (per capita income) and demo-
graphic (population density) variables. The selected spatial factors were pre-processed 
in ArcGIS®.

To represent the road system, the street axes database from the Curitiba Institute 
of Research and Urban Planning (2019a) was adopted, which includes all public streets 
within Curitiba, categorized according to a group of attributes. As information about the 
number of lanes and the street width was not presented in the acquired data, we sought to 
identify the attribute that could be related to these parameters, and the classification by 
road hierarchy was selected. This classification divides the street axes into a hierarchy 
that ranges from 1 (highways) to 4 (minor streets).

The BRT routes were vectorised based on the bus network map provided by Curiti-
ba Urbanisation (2015). To enable this image interpretation process, the original map was 
converted to an image format, which was then georeferenced and geocoded by adopting 
an evenly distributed number of street intersections as Ground Control Points (GCPs). 
The street axes were adopted as a reference when vectorising the BRT routes, thus ensur-
ing that the routes always overlap its corresponding street.

In the case of land-use, the most recent Curitiba Zoning Plan was selected to rep-
resent this factor (CURITIBA INSTITUTE OF RESEARCH AND URBAN PLAN-
NING, 2018b). The plan is regulated by the Municipal Law number 15,511 (CITY OF 
CURITIBA, 2019), which addresses the zoning and land-use in the city. The Zoning Plan 
is a regulatory framework that orientates  urban development by defining zones and sec-
tors that share common characteristics, including densification thresholds and priority 
land-use classes (CITY OF CURITIBA, 2019). Despite the time divergence between the 
traffic accident database (2010-2018) and the implementation of the Zoning Plan (2019), 
the most recent plan was adopted to enable the investigation of the critical areas based 
on the existing urban configuration.

Finally, the per capita income and population density values were extracted from 
the last demographic census (2010 Census) carried out by the Brazilian Institute of Ge-
ography and Statistics (2011). The database includes several demographic and socioeco-
nomic indexes, which are aggregated according to the census tract code, and a polygonal 
vector file representing the census tracts. The desired indexes were combined to the 
attribute table of the vector file through the Join Field tool based on a common primary/
foreign key: the census tract code.

Data Conversion

To enable the performing of a pixel-by-pixel sampling, each acquired variable was con-
verted to a raster dataset with the same spatial resolution and extent as the pedestrian crashes 
binary map. This process created the input factor maps for the logistic regression model.
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Initially, the street axes and BRT routes were converted into a polygonal feature by 
adopting the Buffer tool with 15 meters. This procedure was required to correctly associ-
ate an accident point with its corresponding line (street or BRT route), given that some 
traffic accidents, after georeferenced, did not precisely intersect the street axes. Then, all 
five selected factors were converted to a raster dataset. In this process, the major streets 
and the presence of BRT routes were always prioritized in case of overlapping polygons, 
as happens in the street intersections. In other words, we indicated to the model that ac-
cidents taking place in overlapping areas must always be associated with major streets 
instead of minor streets, and to the presence of BRT routes instead of its absence.

Data Clipping

An important step in the pre-processing phase was the correct delimitation of the 
areas that are exposed to traffic accidents. By adopting the entire city in the analysis, 
without attempting to the road network density, we would wrongly assume that traffic 
accidents can occur in spaces such as airports, large blocks with military or industrial 
installations, green areas, among others. In this case, the statistical analysis would result 
in a low probability of occurrences in these regions because, as expected, the road den-
sity is minimal or even null. However, it does not mean that, in the small road sections 
that cross these areas, there is a low number of observed accidents. 

In this context, all factor maps and accident binary maps were clipped by ap-
plying the 15-meter buffer polygon as a mask, which was previously generated from 
the street axes. In summary, this process resulted in multiple maps that maintained 
the previous pixel values within the buffer extent, while attributed a null value to the 
pixels outside of it.

Categorical Variables: Conversion to Numeric

When performing a logistic regression analysis, the input data is composed of a 
matrix that correlates, in each row, the values of the dependent and independent vari-
ables (JAMES et al., 2013). Therefore, in the context of this study, the first column rep-
resents the pedestrian crashes, which are expressed as a binary. The remaining columns 
represent the factor maps, or the independent variables for which coefficients will be 
estimated to predict the probability of accidents occurrence. However, in the case of the 
categorical variables, which express qualitative instead of quantitative characteristics, 
the estimation of a single coefficient for the whole column is not possible, as these vari-
ables do not possess a numerical meaning (SELTMAN, 2018).

To overcome this limitation, the categorical variables were converted to numer-
ic variables through bivariate statistical analysis by adopting the weight of evidence 
(WoE) method. The WoE was performed based on the theory described by Bonham-
Carter (1994), which applies the prior and conditional probabilities to understand the 
importance of each factor for the occurrence of an analysed event. The prior probabil-
ity ( }{EP ) represents the probability of an event E  occurrence based on similar events 
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that happened in the past. In a GIS environment, this is represented by the number of 
cells with events divided by the total number of cells in the study area. The conditional 
probability ( }|{ CEP ) is calculated when another source of information (e.g. land-use 
classes, road system hierarchy) is adopted for the probability estimation (REGMI; GI-
ARDINO; VITEK, 2010). Therefore, it represents the probability of having an event E  
while being in a specific class C , and it can be calculated as the number of cells with 
events that intersect the analysed class divided by the total number of cells in the class.

Based on these probabilities, Bonham-Carter (1994) defined two equations to es-
timate the positive and negative weights ( +

eW  and −
eW ) for each class of the analysed 

spatial factor. The positive weight indicates how important is the presence of the class 
for the occurrence of the event, while the negative weight indicates how important is its 
absence. The equations are described as follows:

Where }|{ CEP represents the probability of having an event E  while being in 
class C , and }|{ CEP  represents the probability of having an event E  while not being 
in class C .

}|{
}|{log

CEP

CEP
W ee =+ (1)

}|{
}|{log

CEP

CEP
W ee =− (2)

Where }|{ CEP  represents the probability of not having an event C  while being 
in class C , and }|{ CEP  represents the probability of not having an event E  while not 
being in class C .

Based on the positive and negative weights, the final weight ( finaleW , ) for each class 
of a factor map is calculated as (BONHAM-CARTER, 1994):

Where finaleW ,  is the final weight in the class, +
eW  is the positive weight in the 

class, −
eW  is the negative weight in the class, and −

totaleW ,  is the sum of the negative 
weights from all classes represented in a factor map.

According to the equations and concepts described before, a model was developed 
in ArcGIS® to interactively calculate the final weights of evidence for all classes from 
the categorical variables. Additionally, for each categorical variable, six WoE maps were 
generated: five for the training samples of pedestrian crashes and one for the complete 
sample. Therefore, in the context of the k-fold cross-validation, the WoE map estimated 
from the training sample k for the factor F  (categorical) was adopted as a factor map 

WoEF  (numeric) in the logistic regression model that is performed with the same training 
sample k.

In this study, three factors are categorical variables (road system hierarchy, BRT 
routes and land-use) and two are numeric (per capita income and population density). 

−−+ +−= totaleeefinale WWWW ,, (3)
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Because BRT routes represent an indicator variable it should be considered as numeric 
in the logistic regression model, as the coefficient will already represent the behaviour 
of the cells indicating the presence of the routes, the value 1 (SELTMAN, 2018). For 
this reason, only the road system hierarchy and land-use were converted to numeric 
variables.

Logistic Regression Model

The logistic regression model is a powerful method to estimate the probabili-
ty that a certain event happens, based on independent variables (JAMES et al., 2013; 
SELTMAN, 2018). In this sense, the probability values calculated through this method 
range from 0 to 1, where 0 expresses 0% and 1 expresses 100% of the probability of an 
event occurrence. In the case of a multiple logistic regression, where more than one in-
dependent variable, or predictor, is considered to estimate the response of the dependent 
variable, the equation is defined as follows (JAMES et al., 2013): 

pp

pp

XX

XX

e

e
xp βββ

βββ

+++

+++

+
= ...

...

110

110

1
)( (4)

Where )(xp  represents the probability that an event happens, pXX ,...,1  represents 
p predictors, and pβββ ,...,, 10  represents the regression coefficients related to the pre-

dictions.
The regression coefficients are initially unknown. For this reason, they must 

be estimated based on the available training data (JAMES et al., 2013). After this, 
the final logistic regression equation, containing the estimated coefficients, must be 
validated with a new sample, the validation data, to analyse the predictive capac-
ity of the model. Therefore, if the model accurately predicts the behaviour of a new 
dataset, which was not used for training, it is assumed that it has a good predictive 
capacity, and can be applied to investigate a certain phenomenon or to simulate new 
scenarios (FACULTY OF GEO-INFORMATION SCIENCE AND EARTH OBSER-
VATION, 2013).

In this study, six logistic regression models were calibrated, five for the cross-
validation and one to estimate the final pedestrian susceptibility to traffic accidents. 
To create the input dataset for the statistical analysis, the binary maps representing 
the pedestrian crashes were sampled, pixel-by-pixel, with all the spatial factors. Ini-
tially, this process was performed for each one of the five combinations of training 
and validation samples. This procedure resulted in five matrixes, where each pixel 
of the map was translated into a row correlating the dependent and independent 
variables. 

In sequence, the statistical analysis was performed through a code created in 
RStudio®. First, the independent variables were normalized to ensure that they would 
equally contribute to the analysis, thus enabling the comparison between the regression 
coefficients. The normalization scales the values in a way that all variables present a 
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mean of 0 and a standard deviation of 1, while it does not affect the shape of the dis-
tribution (COX, 2007). In this study, the z-score normalization method was adopted, 
which was calculated by subtracting the mean value of the variable, and then dividing 
the result by the standard deviation of the same variable.

After the normalization, the logistic regression model was calibrated, with each 
training sample, by applying the glm() function with the binomial family. This process 
resulted in the regression coefficients for the independent variables. Based on the esti-
mated coefficients, the logistic regression equation was adopted to estimate the pedes-
trian susceptibility to traffic accidents for each sample. The susceptibility values, rang-
ing from 0 to 1, were calculated to all rows of the matrix. After this, the receiver operat-
ing characteristics (ROC) curve was displayed to analyse the overall performance of the 
model, following the method described by James et al. (2013).

To create the ROC curve, several thresholds t, representing a specific probability, 
were defined by adopting an equal interval of 0.05 (i.e. 0.05, 0.10, …, 0.95, 1.00). For 
each threshold, the study area was divided into two classes: (1) susceptible when the 
susceptibility was higher than t; (2) not susceptible when the susceptibility was lower 
than t. Then, for each threshold classification, the true positive rate (TPR) and false 
positive rate (FPR) were calculated based on the equations presented by James et al. 
(2013), as described below:

FNTP
TP

TPR
+

= (5)

TNFP
FP

FPR
+

= (6)

Where TPR is the true positive rate, TP is the number of true positives, and FN is 
the number of false negatives.

Where FPR is the false positive rate, FP is the number of false positives, and TN 
is the number of true negatives.

The points obtained from each combination of TPR and FPR for a specific value 
of t were displayed in a scatter plot, with the FPR represented in the x-axis and the TPR 
in the y-axis.

After evaluating the performance of the logistic regression model through the 
generation of the ROC for all training samples of the k-fold cross-validation, a final 
model was calibrated with the complete sample of pedestrian crashes. The statistical 
analysis was conducted based on the same code in RStudio®, as described before. The 
regression coefficients presented were then applied in the logistic regression equation 
to estimate the pedestrian susceptibility to traffic accidents. In this sense, a suscepti-
bility value was calculated for each pixel of the study area, represented as a row in the 
matrix. To enable the spatial visualization of the results, these values were imported to 
ArcGIS® by adopting the X and Y coordinates as a reference.
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Finally, the susceptibility values were split into three classes by adopting thresh-
olds according to the following rules: (1) the high susceptibility class should contain a 
large number of the historical pedestrian crashes in a small area, (2) the medium sus-
ceptibility class should contain a small number of pedestrian crashes in a small area, 
and (3) the low susceptibility class should contain a small number of pedestrian crashes 
in a large area. Notably, these rules can only be fulfilled with a good model perfor-
mance (typically an AUC over 0.8), when the historical events are correctly associated 
with the areas presenting the highest susceptibility. In the context of this study, the 
model enabled the adoption of thresholds so that the high susceptibility class contained 
82% of the events in 20% of the study area with the highest values, the medium suscep-
tibility class contained 8% of the events in the following 20% of the study area, and the 
low susceptibility class contained 10% of the events in 60% of the study area with the 
lowest values.

Results and Discussion

WoE maps for the adopted independent variables

In an initial stage in the analysis, the data pre-processing and the conversion of 
the categorical variables to numeric generated a set of input maps representing the five 
spatial factors adopted as independent variables in the logistic regression. Figure 2 
exemplifies these input maps. In the figure, maps A and C were obtained through the 
WoE method. In map A (road hierarchy), it is possible to observe that most of the streets 
presented a low WoE value, as represented by the green colour. These streets refer to 
a road hierarchy 4, which represents minor roads. On the other, the areas with a high 
WoE value, highlighted in red, represent the highways in the study area, classified as 
road hierarchy 1. In the case of map C (land-use), the visualization of the orange and 
red areas indicates that most of the higher WoE values were estimated in regions that 
are related either to the presence of highways (see map A), BRT routes (see map B), or 
the central area of the city (the red/orange region in the center of map C). The other spa-
tial factors of BRT routes (map B), per capita income (map D), and population density 
(map E) were not converted to WoE values because they already represent numerical or 
binary variables.
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Figure 2. Spatial factors adopted as independent variables in the logistic regression model: (A) road system 
hierarchy; (B) presence of BRT routes; (C) land-use; (D) per capita income; and (E) population density. 
Source: Author.

Logistic Regression results

In the following step of the methodology, five logistic regression models were 
calibrated to perform the k-fold cross-validation. Table 1 presents the coefficients esti-
mated for the adopted spatial factors, with their corresponding p-values, for each train-
ing sample. The land-use presented the strongest correlation (β = 1.165) with the occur-
rence of pedestrian crashes, followed by the road system hierarchy (β = 0.908). Despite 
the lower correlation of the remaining predictors, they were all statistically significant, 
with a p-value lower than 0.05. The only exception was the population density calibrat-
ed with the training sample 5, which resulted in a p-value equals to 0.166. However, this 
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predictor was still adopted in the final logistic regression model, as it was statistically 
significant when adopting all the other four training samples.

Table 1. Estimated logistic regression coefficients (β) and p-value for each spatial 
factor per cross-validation sample (1, 2, …, 5). Mean and standard deviation values are 
presented to indicate the variation among the analyzed samples. Source: Author.

Spatial factor

Training sample

1 2 3

β p-value β p-value β p-value

Per capita income -0.256 << 0.001 -0.210 << 0.001 -0.199 << 0.001

Population density 0.070 0.013 0.054 0.031 0.059 0.038

Road system hierarchy (WoE) 0.907 << 0.001 0.940 << 0.001 0.908 << 0.001

BRT routes 0.064 0.000 0.054 0.002 0.049 0.006

Land-use (WoE) 1.454 << 0.001 1.202 << 0.001 1.165 << 0.001

Spatial factor

Training sample

Mean
Standard

deviation
4 5

β p-value β p-value

Per capita income -0.248 << 0.001 -0.201 << 0.001 -0.223 0.024

Population density 0.063 0.040 0.045 0.166 0.058 0.008

Road system hierarchy (WoE) 0.914 << 0.001 0.888 << 0.001 0.911 0.017

BRT routes 0.069 << 0.001 0.047 0.010 0.056 0.009

Land-use (WoE) 1.331 << 0.001 1.327 << 0.001 1.296 0.103

The coefficients presented in Table 1 were then applied to estimate the pedes-
trian susceptibility to traffic accidents for each one of the five models. These maps of 
pedestrian susceptibility were integrated with the validation samples (the remaining 
20% of the pedestrian crashes) to generate the ROC curve, as presented in Figure 3. 
The hatched area represents the range between the minimum and the maximum values 
extracted from the five models, while the continuous black line illustrates the average 
value. An ideal ROC curve must be close to the top left corner of the graph, which 
results in an area under the (ROC) curve (AUC) close to 1. An AUC equals to 0.5 indi-
cates that the model performs no better than chance (JAMES et al., 2013), similar to the 
line illustrated as a black dashed line in Figure 3. In this study, the average AUC was 
calculated as 0.82 for the validation samples, thus indicating the good performance of 
the logistic regression model.
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Figure 3. ROC curve (continuous black line) of the logistic regression model for the mean value of the 
cross-validation samples. The shaded area represents the interval between the minimum and the maximum 
values from all validation samples. Source: Author.

Based on the good performance of the cross-validation, a new logistic model was 
calibrated with the entire sample to estimate the pedestrian susceptibility to traffic ac-
cidents in the City of Curitiba. Table 2 presents the estimated regression coefficients. 
Analogously to the training cross-validation, the land-use (β = 1.125) and the road system 
hierarchy (β = 0.915) presented the strongest correlation with the pedestrian crashes, and 
all predictors were considered statistically significant, with a p-value lower than 0.05.

Table 2. Estimated regression coefficients (β) and p-value for each spatial factor for the 
final logistic regression model, trained with the complete sample. Source: Author.

Spatial factor β p-value
Intercept -8.775 << 0.001
Per capita income -0.222 << 0.001
Population density 0.059 0.028
Road system hierarchy (WoE) 0.915 << 0.001
BRT routes 0.057 < 0.001
Land-use (WoE) 1.125 << 0.001
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Estimation of the Pedestrian Susceptibility to Traffic Accidents

The final step of the research was the generation of the susceptibility map based on 
the calibrated logistic regression model. Figure 4 A illustrates the estimated pedestrian 
susceptibility to traffic accidents in the City of Curitiba, with a focus on the areas high-
lighted with a dashed black line. The legend of these areas is highlighted in Figure 4B. 
The combined analysis of the maps presented in Figures 2 and 4 allows the identification 
of the impacts on pedestrians' road safety levels due to the combination of the investi-
gated spatial factors throughout different regions of the city.

Figure 4. Final map of pedestrian susceptibility to traffic accidents in the City of Curitiba. Source: Author.

For example, the BRT routes are associated with the zoning since the high-capacity 
transit supply was a decisive factor for establishing land-use guidelines on the BRT 
routes’ surrounding areas in the City of Curitiba. Also, the road hierarchy was defined 
based on a main road system composed of arterial and bus-exclusive roads. The com-
bination of such factors contributes to a higher susceptibility of pedestrians to traffic 
accidents in the areas adjacent to the BRT routes, as presented in Figure 4.
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On the other hand, the analysis of the population density leads to the identifica-
tion of regions with high population density where there is no BRT service supply or it 
is substantially far, despite the principle of associating high population density (demand) 
and transit supply. The Southern and Eastern peripheral areas of the map are an example 
of such principle detachment. These areas are characterized by a lower per capita income 
level (map D in Figure 2), which evidence the occupation of lower-value areas far from 
the city centre poorly supplied in terms of the transit system. The susceptibility map of 
Figure 4 suggests that such a combination also created a risky environment for pedestri-
ans, as these areas are mostly classified as medium or high susceptibility. In this context, 
a possibly relevant aspect that might explain the failure of the urban planning guidelines 
is the land value, given that the areas close to the transit supply tend to be more expensive 
to live in, resulting in the movement of the low-income population to peripheral areas. 
Also, regions with higher land value tend to present a lower per capita land-use rate, de-
spite the higher construction density. 

Thus, there is enough evidence to suggest that there is a reasonable correspond-
ence between the factors directly defined by urban planning guidelines (i.e. street axis, 
BRT routes and land-use). Conversely, the correspondence of these variables with meas-
ured parameters (i.e. income level and population density) seemed to be impaired by un-
controlled variables. Both situations produce high susceptibility to pedestrian accidents. 
The main road hierarchy is associated with a high-speed limit, in this case, equal to 60 
km/h or even higher. Therefore, the combination of high-speed limits, high population 
density and low per capita income created a high susceptibility environment for traffic 
accidents involving pedestrians.

The presence of BRT routes in combination with high population density, apart 
from the income level, also seems to contribute to the susceptibility of pedestrian fatal 
accidents. Two aspects might explain this association. The first of them is related to 
the physical and operational characteristics of the BRT, a surface-level system in which 
interaction with pedestrians in crossing areas is frequent. It indeed constitutes a risky 
environment, since 13% of pedestrian fatal accidents from 2010 to 2018 involved buses (a 
discretization between normal buses and BRT vehicles is not present). The second aspect 
concerns the association between the BRT service supply and high-speed limit roads that 
compose the structural axes.

CONCLUSION

This study generated an updated map of the pedestrian susceptibility to fatal traf-
fic accidents in the City of Curitiba based on broadly available spatial information on de-
mographic (population density), socioeconomic (per capita income) and urban structure 
factors (presence of BRT routes, road system hierarchy and land-use). The application 
of a data-driven statistical model combined with GIS spatial analysis presented accurate 
results when estimating the susceptibility, as demonstrated by an average area under the 
ROC curve of 0.82 for the validation samples. Therefore, given the great performance of 
the proposed methodology and the simplicity of its variables, it is possible to affirm that 
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the model can be used in any urban areas, supporting urban planning practices focused 
on road safety.

In the context of the urban planning practices, there were identified some exter-
nalities that influence the occurrence of traffic accidents in the built environment. In this 
sense, the urban planning guidelines on public transportation and land-use, even though 
well-succeeded in many aspects, might produce negative side effects in terms of road 
safety of pedestrians. This includes, for example, the high pedestrian susceptibility to 
traffic accidents in the regions adjacent to BRT routes, especially those with high popu-
lation density. Another relevant aspect is the association between the BRT service supply 
and high-speed limit roads, which also presented high susceptibility values.

Additionally, this study enabled the spatial visualization of situations in which the 
urban planning guidelines themselves were not capable of orientating the population 
growth. This constitutes low-income peripheral areas, with high population density, dis-
tant from the transit supply and close to high-speed roads or highways, which, as already 
mentioned, creates a risky combination for severe pedestrian crashes. 

For future studies, it is recommended to adopt the proposed methodology to conduct 
a spatial-temporal analysis of the pedestrian crashes in the City of Curitiba. By adding the 
temporal scale, it might be possible to further understand how pedestrian crashes have 
evolved over the years within the city, or how specific measures that were implemented in 
the past (e.g. policies and legislations) influenced the pedestrian susceptibility throughout 
the city. Another suggestion is the adoption of non-fatal traffic accidents in the analysis, 
which opens a broad range of research questions in the field of road safety. This includes, for 
example, understanding the sensitivity of the susceptibility map according to the severity of 
the accidents. Additionally, future studies can also address the adoption of other variables 
to map the susceptibility of pedestrians to traffic accidents. Several studies – including the 
references in this paper – can be used as a guideline to select the possible variables. Finally, 
the traffic accidents hotspots delimited in this study – the high susceptible areas – can be 
further investigated in future research on a more detailed scale, which can enable the iden-
tification of local elements that might be associated with a higher pedestrian susceptibility.
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