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ABSTRACT Staphylococcus aureus, a versatile human pathogen, poses a
significant challenge in healthcare settings due to its ability to develop antibiotic
resistance and form robust biofilms. Understanding the intricate mechanisms
underlying the antibiotic resistance is crucial for effective infection treatment and
control. This comprehensive review delves into the multifaceted roles of efflux
pumps in S. aureus, with a focus on their contribution to antibiotic resistance
and biofilm formation. Efflux pumps, integral components of the bacterial cell
membrane, are responsible for expelling a wide range of toxic substances,
including antibiotics, from bacterial cells. By actively extruding antibiotics,
these pumps reduce intracellular drug concentrations, rendering antibiotics less
effective. Moreover, efflux pumps have emerged as significant contributors to
both antibiotic resistance and biofilm formation in S. aureus. Biofilms, structured
communities of bacterial cells embedded in a protective matrix, enable S. aureus
to adhere to surfaces, evade host immune responses, and resist antibiotic therapy.
Efflux pumps play a pivotal role in the development and maintenance of S. aureus
biofilms. However, the interplay between efflux pumps, antibiotic resistance
and biofilm formation remains unexplored in S. aureus. This review aims to
elucidate the complex relationship between efflux pumps, antibiotic resistance
and biofilm formation in S. aureus with the aim to aid in the development of
potential therapeutic targets for combating S. aureus infections, especially those
associated with biofilms. The insights provided herein may contribute to the
advancement of novel strategies to overcome antibiotic resistance and disrupt
biofilm formation in this clinically significant pathogen.
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Abbreviations:
ABC – ATP binding cassette,
CCCP – carbonyl
cyanide-3-chlorophenyl hydrazone,
EPIs – efflux pump inhibitors,
EPS – extracellular polymeric matrix
substance,
MATE –multidrug and toxin extrusion,
MFS - major facilitator superfamily,
MRSA - methicillin-resistant S. aureus,
MSCRAMM –microbial surface
component recognizing adhesive
matrix molecules,
RND – resistance nodulation cell
division,
SMR – small multidrug resistance.

INTRODUCTION

The emergence of antimicrobial-resistant bacteria has become
a global health crisis, posing significant challenges to modern
medicine [1]. Among these pathogens, Staphylococcus aureus
is the most prevalent human pathogen, causing a wide range
of infections from mild skin and soft tissue infections to life-
threatening conditions such as pneumonia, endocarditis, and
device-associated infections [2]. S. aureus is a commensal
organism, colonizing the anterior nasal passages of 20% to
80% of the human population [3]. However, its ability to
rapidly develop resistance to a broad spectrum of antimicrobial
compounds has made it a major concern in clinical settings [4].
The U.S. Centre for Disease Control reports S. aureus as the
second most prevalent pathogenic bacteria, highlighting its
significance in public health.

Historically, S. aureus antimicrobial resistance is marked
by the widespread use of methicillin and semi-synthetic anti-

staphylococcal penicillin in the1960s that led to the emergence
of methicillin-resistant S. aureus (MRSA) [5]. Since then, MRSA
has become a leading hospital-associated pathogen [6–9].
Vancomycin, long considered the drug of last resort for severe
MRSA infections, has shown decreased efficacy with the
emergence of vancomycin-intermediate S. aureus (VISA) and
vancomycin-resistant S. aureus (VRSA) in some regions [10].
S. aureus has developed resistance to multiple antibiotic
classes, including aminoglycosides, penicillin, macrolides, and
tetracycline [11], leading to frequent outbreaks and treatment
challenges [12].

Among the various known antibiotic resistance
mechanisms, efflux pumps play a crucial role in S. aureus.
These membrane-bound transporters act as critical defence
mechanisms by expelling antibiotics and other toxic
compounds from the bacterial cell, thereby reducing their

OPEN ACCESS | www.microbialcell.com 368 Microbial Cell | Vol. 11

www.microbialcell.com
mailto:dvsingh@cusb.ac.in
https://doi.org/10.15698/mic2024.11.839
https://www.microbialcell.com


S. Sinha et al. (2024) Efflux pump and antibiotic resistance in S. aureus

intracellular concentration and efficacy [13]. Recent studies
have also suggested a link between efflux pumps, virulence
and biofilm formation, highlighting their multifaceted role in S.
aureus pathogenesis [14].

Biofilm formation represents a sophisticated survival
strategy employed by S. aureus and other pathogens [15–17].
In natural and clinical environments, S. aureus forms complex
microbial communities encased in a protective extracellular
matrix [18]. This mode of growth significantly enhances
S. aureus tolerance to various antibiotic classes, promotes
persistence, and complicates treatment strategies. Studies
have shown that efflux pumps contribute to biofilm formation
by facilitating the export of quorum-sensing molecules
necessary for biofilm development, enhancing tolerance to
antimicrobial compounds within the biofilm structure and
modulation of gene expression involved in extracellular matrix
production [13, 19, 20].

This review presents an understanding of the role of efflux
pumps in developing antibiotic resistance in S. aureus biofilm
which will help in the development of effective therapeutic
strategies against efflux pumps to overcome the increasing
problem of biofilm associated infections.

ANTIBIOTIC RESISTANCEMECHANISMS

Antibiotics are designed to eliminate microorganisms that
are harmful to human health. However, the increased use
of antibiotics has led to the emergence of resistant bacteria,
suggesting that such organisms are present in the environment
and may have evolved due to antibiotic exposure [13, 19, 20].
S. aureus has developed resistance to various antibiotics.
The mechanisms of antibiotic resistance in S. aureus are
diverse and can be broadly categorized into intrinsic and
acquired resistance. Acquired antibiotic resistance often
results from plasmid-mediated resistance [21], mutations in
chromosomal genes or by acquisition of external genetic
elements of resistance [21, 22]. MRSA exemplifies acquired
resistance, primarily encoded by themecA gene carried on the
Staphylococcal Cassette Chromosome mec (SCCmec). This
genetic element can be transferred between staphylococcal
species, thus contributing to the spread of resistance [13].

S. aureus utilizes various mechanisms to develop intrinsic
antimicrobial resistance, including limiting drug uptake,
modifying drug targets, enzymatically inactivating drugs and
actively effluxing the drugs [23, 24]. Among thesemechanisms,
the efflux system is a major mode of intrinsic drug resistance in
S. aureus and is described in detail in the following section.

KNOWNSTRUCTUREANDFUNCTIONOF EFFLUX
PUMPS IN S.AUREUS

Efflux pumps are ubiquitous membrane proteins involved in
the export of the harmful substances from bacterial cells to the
external environment [25]. These proteins, either present on
bacterial chromosomes or on plasmids [26] are employed by
S. aureus, a key mechanism adopted to cope with the diverse
range of antimicrobials used to treat infections [27].

Based on energy requirements and structure, efflux
pumps in S. aureus are classified into five membrane protein
families: Major Facilitator Superfamily (MFS), Small Multidrug
Resistance (SMR), Multidrug and Toxin Extrusion (MATE) family,
Resistance Nodulation Cell Division (RND) superfamily, and

ATP-binding Cassette (ABC) superfamily (Figure 1) [28]. MFS
and SMR transporters utilize proton motive force to drive
substrate extrusion via an anti-port H+ drug mechanism. The
MATE family can use the sodium membrane gradient, while
the ABC superfamily uses ATP hydrolysis to drive substrate
extrusion [29].

Among the known efflux transporters in S. aureus, the
MFS is the primary class, encoded by NorA, NorB, NorC,
MdeA, SdrM, LmrS, QacA, and QacB efflux proteins (Table
1) [30]. NorA is the most studied and predominant efflux pump
associated with the first line defence against antimicrobials in
S. aureus. It is often overexpressed in MRSA strains [31, 32].
The NorA protein consists of twelve transmembrane segments
with 388 amino acids, sharing 44% identity to Escherichia coli’s
tetracycline efflux pump TetA and is 24% identical with Bacillus
subtilis Bmr [33]. NorA pumps expel a variety of compounds,
including hydrophilic fluoroquinolones such as norfloxacin and
ciprofloxacin, dyes like ethidium bromide, and biocides like
quaternary ammonium compounds [34].

NorB efflux pumps have structural similarities with Blt
(41%), and Bmr (30%) of B. subtilis and NorA (30%), QacA
(39%) of S. aureus. NorB confers resistance to a diverse
range of antimicrobial compounds, including biocides like
cetrimide, tetraphenylphosphonium, anddyes suchasethidium
bromide, and hydrophobic and hydrophilic fluoroquinolones
like norfloxacin and ciprofloxacin [43]. The NorC efflux pump is
comprised of 462 amino acids having twelve transmembrane
domains and shares 61% similarity with the norB efflux gene of
S. aureus [43]. NorC is associated with low-level resistance
to ciprofloxacin, moxifloxacin, garenoxacin, and the dye
rhodamine. The Nor efflux pumps (NorA, NorB, NorC) are
regulated by the global regulator MgrA. MgrA acts as a positive
regulator for norA gene expression but a negative regulator
of norB and norC gene expression (Table 1) [62, 63]. This
differential regulation of Nor efflux pumps by MgrA enables the
bacterium to modulate its efflux pump expression in response
to diverse environmental stressors and antimicrobial agents,
thereby optimizing its survival and resistance strategies.

The MdeA efflux pump is a 479 amino-acid protein with
14 transmembrane segments shared similarities with LmrB of
B. subtilis (24%), EmrB of E. coli (24%), and QacA of S. aureus
(23%) [46]. It confers resistance to biocides like benzalkonium
chloride, dequalinium, and tetraphenylphosphonium, and dyes
like ethidium bromide, and antibiotics such as virginiamycin,
novobiocin, mupirocin, and fusidic acid [46, 61].

SdrM is a 447-amino-acid protein with 14 transmembrane
segments, shows 23% similarity with NorB and 21% similarity
with the QacA protein. The SdrM transporter confers resistance
to antimicrobials like norfloxacin and dyes such as acriflavine
and ethidium bromide.

The lincomycin resistance protein LmrS from S. aureus is
480 amino acids long with 14 putative membrane-spanning
domains. It shows similarity with ImrB from B. subtilis (39%), farB
from Neisseria gonorrhoeae (25%), and emrS from E. coli (3%).
Antibiotics such as linezolid, tetraphenylphosphoniumchloride,
sodium dodecyl sulphate, trimethoprim, and chloramphenicol
are less likely to be removedby LmrS efflux pump (Table 1) [48].

QacA and QacB are 514-amino-acid proteins with 14
transmembrane segments [64]. QacA mediates resistance
to antimicrobials such as ethidium bromide and rhodamine,
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FiGURE 1• Known classes of multidrug efflux pumps in S. aureus. Multidrug efflux pumps identified in S. aureus are categorized into five families
of membrane proteins: ATP binding cassette (ABC) superfamily, major facilitator superfamily (MFS), multidrug and toxin extrusion (MATE) family, small
multidrug resistance (SMR) family and FarE, a resistance -nodulation division (RND) type efflux pumps.

quaternary ammoniumcompounds likebenzalkoniumchloride,
tetraphenylphosphonium, and dequalinium, diamidines such
as pentamine and DAPI, biguanides like chlorhexidine, and
guanyl hydrazones [49, 52]. On the other hand, plasmid-
encoded QacB pump provides protection against monovalent
lipophilic cations [64].

S. aureus TetA(K) and Tet38 efflux pumps mediate high
levels of tetracycline resistance [65]. The TetA(K) efflux gene
is plasmid-encoded, functioning as a Na+(K+)/H+antiporter
comprising 459 amino acids and 14 transmembrane
regions [66]. Antibiotics such as tetracycline, oxytetracycline,
and chlortetracycline are rendered ineffective by TetK, but to
a lesser extent to minocycline, doxycycline, and 6-methyl-6-
deoxytetracycline. Bacteria equippedwith the TetK efflux pump
are also resistant to extrinsic stimuli such as sodium stress, alkali
stress, andpotassiumdeficiency stress [67]. Like theNorB efflux
pump, TetK contributes to S. aureus colonisation onmouse skin
and survival during abscess development [68]. Chromosomally
encoded Tet38 with 450 amino acids and 14 transmembrane
domains [68, 69] shares 46% similarity with S. aureus tetK and
45% similarity with B. subtilis tetA [70]. Tet38 is negatively
regulated by MgrA, which confers resistance to quinolones
and tetracyclines [71]. Studies have shown that Tet38 also
plays a role in S. aureus internalization into host cells through
interactionwith the CD36 receptor [72], suggesting its potential
role in biofilm formation and host-pathogen interactions.

Another MFS efflux pump, SepA, comprising 157 amino
acids is also encoded by the S. aureus genome. It confers
low-scale resistance to antiseptics such as benzalkonium

chloride, chlorhexidine gluconate, and chromosomal-encoded
dye acriflavine (Table 1) [54].

TheSMRtransportersareepisomeencoded [36]comprised
of 110 amino acids and possess four transmembrane
helices [73]. The SMR transporters include QacC (QacD,
Ebr, or Smr), QacG, QacH, and QacJ. Despite differences
in amino acid sequences, Smr and QacG/H/J have similar
substrate specificities [36]. This efflux pump confers resistance
to quaternary ammonium compounds, such as benzalkonium
chloride, and monovalent cationic dyes, such as ethidium
bromide [74].

The MATE family member MepA efflux pump consists
of 452-amino-acid protein having twelve transmembrane
regions and is located on chromosome 2. It shares 26%
identity with MATE transporters belonging to other organisms:
CdeA from Clostridium difficile and NorM from Vibrio
parahaemolyticus [75].

MepA is associated with a multidrug-resistant phenotype
in clinical S. aureus strains, providing minimal resistance
against ethidium bromide, chlorhexidine, pentamidine,
tetraphenylphosphonium, quaternary ammonium compounds,
fluoroquinolones (ciprofloxacin, norfloxacin), benzalkonium
chloride, cetrimide, dequalinium, tetraphenylphosphonium,
chloroquine, and tigecycline [40, 76–78]. The mepA gene
is controlled by MepR, which belongs to the MarR family of
transcriptional repressors [39, 79].

S. aureus possess two chromosomally encoded ABC
transporter, Sav1866 and abc. These transporters are single
polypeptides possessing transmembrane and nucleotide-
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TABLE 1• Multidrug resistantefflux pumps reported in S. aureus.

Efflux
pump
family

Gene Gene location Regulator Substrate Reference

SMR Smr (QacC,
QacD, Ebr)
QacG,
QacH
QacJ

Plasmid Not known Benzalkonium Chloride, Cetrimide, Chlorhexidine
Diacetate, Ethidium Bromide, Proflavine,
Cetyltrymethylammonium

[35–38]

MATE MepA Chromosome MepR Ciprofloxacin, Norfloxacin, Moxifloxacin Sparfloxacin
Tigecycline, Pentamidine, Cetrimide, Benzalkonium
Chloride, Dequalinium Tetraphenylphosphonium,
Chlorhexidine, Ethidium Bromide, Acriflavine, Crystal
Violet, Hoechst 33342, 4-6-Diamidino-2-Phenylindole

[39–42]

MFS NorA,
NorB,
NorC

Chromosome MgrA,
NorG

Hydrophilic Fluoroquinolones (Ciprofloxacin, Norfloxacin,
Dparofloxacin, Gemifloxacin, Premafloxacin), Qacs
(Tetraphenyl Phosphonium, Benzalkonium Chloride),
Cetrimide, Tetraphenyl Ammonium, Dyes (E.G. Ethidium
Bromide, Rhodamine)

[43–54]

MdeA Chromosome Not known Virginiamycin, Novobiocin, Mupirocin, Fusidic Acid,
Doxorubicin, Daunorubicin, Benzalkonium Chloride,
Tetraphenylphosphonium, Ethidium Bromide, Hoechst
33342

SdrM Chromosome Not known Norfloxacin, Acriflavine, Ethidium Bromide
LmrS Chromosome Not known Linezolid, Chloramphenicol, Florfenicol, Thrimethoprim

Erythromycin, Kanamycin, Fusidic Acid, Lincomycin,
Streptomycin Tetraphenylphosphonium, Ethidum
Bromide

QacA/B Plasmid QacR Pentamidine, Benzalkonium Chloride, Cetrimide,
Chlorhexidine, Ethidium Bromide (Over 30Mono And
Divalent Cations). Benzalkonium Chloride,
Tetraphenylphosphonium, Ethidium Bromide, Acriflavine,
Rhodamine

TetA (K)
Tet38

Plasmid TetR
MgrA

Tetracycline, Omadacycline, AminoMethylcycline,
Tunicamycin, Fosfomycin, Fatty Acids

SepA Chromosome Not known Benzalkonium Chloride, Chlorhexidine Gluconate, Dye
Acriflavine

ABC Sav1866
AbcA

Chromosome Not known
SarA

Doxorubicin, Vinblastine, Ethidium Bromide, Hoechst
33342, Oxacillin, Imipenem, Nafcillin, Penicillin G,
Methicillin, Cefotaxime, Moenomycin
Tetraphenylphosphonium, Rhodamine, Ethidium
Bromide

[44, 55–
61]

MsrA,
VgaA
Vga(A) LC
VgaB

Plasmid SarZ
MgrA
NorG
Not known

Erythromycin, Macrolides, Type B Streptogramins; Type A
Streptogramin. Lincomycin, Clindamycin; Type A
Streptogramin

binding domains that, upon dimerization, produce a functional
transporter. The crystal structure of Sav1866 has been
identified [55]. Functional studies have shown that Sav1866
can transport diverse substrates such as ethidium bromide,
Hoechst 33342, tetraphenylphosphonium, verapamil and
vinblastine [56]. The other plasmid encoded ABC transporter
belonging to the MsrA efflux pumps and possessing a
single-nucleotide-binding-domain may interact with other
transmembrane proteins [59] . In addition, the Vga proteins
are also expressed by genes present on plasmids with a ATP-
binding-domain (ABD) transporters (Table 1, Figure 2) [80, 81].

The role of efflux pumps is widely known in antibiotic
resistance, however, they regulate the internal environment
by extruding toxic substances, biofilm formation molecules,
quorum sensing molecules and virulence factors (Figure
2) [13]. This multifaceted role of efflux pumps underscores
their importance not only in antibiotic resistance but also in the
overall pathogenicity and survival strategies of S. aureus.

BIOFILMFORMATION IN S.AUREUS

Biofilms are complex, sessile microbial communities encased
in a self-produced extracellular polymeric substance (EPS) that
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FiGURE 2• Intrinsic and antibiotic induced implications of bacterial efflux pumps. Bacterial efflux pumps function by (1) increasing bacterial
pathogenicity by extruding antibacterial molecules produced from the host and secreting bacterial virulence factor, (2) reducing antibiotic efficacy by
pumping them out of the bacteria, thus lowering intracellular concentration of antibiotics, which can increase development of further resistance.

adheres to surfaces and forms aggregates [82]. The EPS,
comprised of polysaccharides, proteins and nucleic acids,
constitutes up to 90% of the biofilm’s dry weight and provides
the immediate environment for the microorganisms to form a
biofilm [83, 84]. The interaction between EPS and bacterial
aggregates confers cohesion and viscoelasticity to the biofilm
structure [85].

Like most of the bacterial species, S. aureus possesses
similar stages of biofilm development, namely, attachment,
accumulation, and detachment [86]. During the attachment
stage, S. aureus initiates biofilm formation through the adhesion
of planktonic cells to natural or biomaterial surfaces. This
event is mediated through the organization of microbial
surface components recognizing adhesive matrix molecules
(MSCRAMMs). The major components of MSCRAMM includes
fibronectin-binding proteins (FnbA and FnbB) [87], clumping
factors suchasClfA,ClfB [88], and serine-aspartate repeat family
proteins such as SdrC, SdrD and SdrE [89].

Following initial attachment, bacterial cells proliferate
and begin to produce EPS in response to environmental
cues [90]. During the aggregation stage, bacteria form biofilms
by recognizingenvironmental signals that stimulate intracellular
signal molecules and regulatory networks which leads to the
proliferation and thickening of the biofilm [91]. Thus, a compact
three-dimensional mushroom like structure of the formed

biofilm is encased in a extracellular matrix which provides
resistance against human immune system and antibiotics [92].

As the biofilm matures, dispersal of the biofilm is triggered
leading to the release of cells from the biofilm [93]. This stage
is important for colonization of new surfaces, dissemination of
infection and continuation of the biofilm life cycle (Figure 3).

BIOFILMFORMATIONANDEFFLUXMEDIATED
ANTIBIOTIC RESISTANCE

Despite being susceptible to antibiotics, bacteria have an
inherent capacity to survive, which occurs by forming a sessile
community called biofilms [94]. The role of efflux pumps
in biofilms is known to be functioning through excretion of
extracellular matrix molecules and quorum sensing molecules
that mediate biofilm formation, in addition to effluxing the
harmful molecules and influencing the surface adhesion [13].
The expression of efflux genes in S. aureus biofilms has been
the determining factor for efflux pump mediated resistance.
A study reported that the expression of several efflux and
transporter genes was altered during biofilm growth compared
to exponential and stationary phase cells [95]. A comparative
transcriptomic study on S. aureus cells under planktonic and
biofilm conditions showed that the expression of transporter
geneswas higher in biofilms than in planktonic cells [96]. Of the
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FiGURE 3• Steps involved in biofilm formation of S. aureus.

MFS transportersmdeA, norB, and norC, which are upregulated
in S. aureus biofilms, norB and norC pumps extrude cetrimide,
ethidium bromide, quinolones, and tetraphenylphosphonium
and the mdeA efflux pump exports a range of quaternary
ammonium compounds and antibiotics [46, 97]. These
observations thus suggest that norB gene expression is
upregulated in response to acid shock but reduced under
other conditions, thus suggesting that it may be involved in
maintaining low pH in the biofilm [75]. Also, the norB gene
functions to ensure that biofilm cells are protected from the
toxic effects of organic acids produced during anaerobic
respiration [98]. Studies demonstrated that MgrA, a pleiotropic
regulator of S. aureus, acts as a negative regulator for the norB
and norC efflux gene, repressing the biofilm formation and thus
establishing a link between efflux pump and biofilm formation
in S. aureus [71]. Moreover, a hypothetical gene showing
characteristics of the MFS family was identified in an insertional
mutant library in a high biofilm-forming clinical isolate of S.
aureus, which, when disrupted, led to a defective biofilm [99].
Although several efflux pumps have been described, most
of the studies explain the role of MFS type efflux pumps in
biofilm formation of S. aureus. However, the exact mechanism
of efflux pumps in mediating antibiotic resistance in biofilms,
the role of non-MFS efflux pump families in biofilm formation
and maintenances and the potential of targeting efflux pumps
as a strategy to combat biofilm-associated infections remains
elusive in S. aureus.

EFFLUXPUMPS INHIBITORS

The emergence of antimicrobial resistance among clinical
strains of S. aureus has necessitated the development of

novel therapeutic strategies. Efflux pump inhibitors (EPIs)
have emerged as a promising approach to combat antibiotic
resistance. EPIs functionbyblocking theextrusionof antibiotics,
thereby restoring antimicrobial susceptibility andenhancing the
clinical efficacy of the existing antibiotics [100].

Traditional EPIs, such as thioridazine and PAβN, have
been found to reduce the biofilm formation in biofilm-forming
strains of S. aureus. CCCP, a broad-spectrum efflux inhibitor,
is effective against efflux pumps requiring proton motive force
for their function [101]. CCCP has a permeabilizing effect
on membranes affecting various cellular processes within
bacterial cells, including cell division and metabolism. CCCP
has been found to reduce biofilm formation under both static
and flow conditions in S. aureus [19]. Interestingly, NMP (1-(1-
Napthylmethyl)-piperazine) was found to be ineffective against
S. aureus, highlighting the specificity of certain inhibitors. The
role of phenothiazines, e.g. thioridazine, in biofilm reduction
remains unclear. Studies have shown no effect on the
expression levels of the norA and abcA efflux genes in S. aureus,
suggesting that their anti-biofilm activity may occur through
alternative mechanisms.

Apart fromtraditionalEPIs, severalplantproductshavebeen
shown to act as efflux pump inhibitors [102]. A compound
namely 4’, 5’-O-dicaffeoylquinic acid isolated from the plant
Artemisia absinthium has been shown to be effective against
MFS efflux pumps in S. aureus, exhibiting its potential as EPI
and an anti-biofilm agent [103]. Additionally, thymoquinone
showed impairmentof theNorAeffluxpumpactivity inmultidrug
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resistant S. aureus [104].
Indeed, it is evident that EPIs can be utilized as anti-

biofilm agents and can be used in conjunction with antibiotics
to overcome antibiotic resistance. Till now, no EPI has
been approved for clinical use due to their toxicity and their
effectiveness at high concentrations.

CONCLUSIONANDPERSPECTIVES

S. aureus remains as the leading human pathogen causing
infections in hospital and community settings. Efflux pump-
mediated antibiotic resistance is the clinical problem rendering
current antibiotics ineffective in eradicating biofilm-associated
infections. The prevalence of efflux pumps poses a significant
challenge in the treatment ofS. aureusbiofilm-related infections,
necessitating the development of alternative therapeutic
strategies that target both the biofilm matrix and efflux pump
activity.

Understanding the interplay between efflux pumps and
biofilm formation sheds light on the complexity of S. aureus
resistance mechanisms. Combating biofilm-related infections
requires a multifaceted approach that considers not only the
inhibition of efflux pumps but also the strategies targeting
key components of the biofilm matrix, such as polysaccharide
intercellular adhesion (PIA).

The accessory gen regulator (agr) is a key of element
of quorum sensing system that controls the cell density and
expression of genes in S. aureus. agr regulates many traits
like virulence factor, biofilm formation and protects them from
oxidative stress. Inhibiting the agr quorum sensing systemmay
prevent biofilm dispersal and the spread of infection. Other
potential strategies include use of quorum sensing inhibitors,
enzymes that degrade extracellular matrix components such as
DNase or dispersin B, phage therapies using bacteriophages
that can penetrate biofilm and combinatorial approaches using
anti-biofilm agents with antibiotics.

Additionally, continuous research into the genetic and
molecular mechanisms underlying efflux pump-mediated
resistance will provide valuable insights for the development of
novel antimicrobial agents and therapeutic interventions.
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